1
|
He Y, Li G, Wu Y, Cai N, Chen Z, Mei B, Chen X, Zhang B, Jin G, Ding Z. Actin like 6A is a prognostic biomarker and associated with immune cell infiltration in cancers. Discov Oncol 2024; 15:503. [PMID: 39333441 PMCID: PMC11436596 DOI: 10.1007/s12672-024-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE To investigate the role of Actin like 6 A (ACTL6A) in cancer and explore the potential mechanism of its function. METHODS Differential expression of ACTL6A was analyzed using Oncomine and TIMER database. Then, we downloaded data sets from TCGA database. The correlation between ACTL6A expression and survival in pan-cancer were analyzed by "survival", "survminer" R package and PrognoScan database. STRING (v 11.0) and stringAPP for Cytoscape v3.7.2 were used to predict ACTL6A associated genes. Copy number and methylation alterations of ACTL6A were analyzed using cBioPortal and GSCALite. Transcription factors were downloaded from The Human Transcription Factors Database and analyzed using "limma" R package, JASPAR and PROMO database. Correlations analysis between ACTL6A and immune cells were performed using TIMER and GEPIA database. RESULTS In our studies, we found that ACTL6A was widely upregulated in cancers, which might be attributed to its gene amplifications. Moreover, ACTL6A might regulated by transcription factors (TFs), including E2F1, YY1, CDX2 and HOXD10. In addition, high ACTL6A expression was associated with poor prognosis in most cancers. Meanwhile, ACTL6A was associated with the infiltration of immune cells, especially in liver hepatocellular carcinoma and brain lower grade glioma. CONCLUSION Amplification of ACTL6A is correlated with poor prognosis and contribute to immune cells infiltration in LIHC and LGG, which may provide immune-related therapeutic targets to guide clinical strategies.
Collapse
Affiliation(s)
- Yi He
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ganxun Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Yu Wu
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Zeyu Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bin Mei
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Guannan Jin
- Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, 430000, China.
| | - Zeyang Ding
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
2
|
Peng ZT, Hu R, Fu JY. Sulforaphane suppresses cell proliferation and induces apoptosis in glioma via the ACTL6A/PGK1 axis. Toxicol Mech Methods 2024; 34:507-516. [PMID: 38221767 DOI: 10.1080/15376516.2024.2306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
This study aimed to examine the expression and biological functions of ACTL6A in glioma cells (U251), the effects of sulforaphane on the growth of U251 cells and the involvement of the ACTL6A/PGK1 pathway in those effects. The U251 cell line was transfected with ACTL6A over-expression plasmids to upregulate the protein, or with ACTL6A inhibitor to underexpress it, then treated with different concentrations of sulforaphane. Cell viability, proliferation, and apoptosis were assessed using standard assays, and levels of mRNAs encoding ACTL6A, PGK1, cyclin D1, Myc, Bax or Bcl-2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). ACTL6A and PGK1 were expressed at higher levels in glioma cell lines than in normal HEB cells. ACTL6A overexpression upregulated PGK1, whereas ACTL6A inhibition had the opposite effect. ACTL6A overexpression induced proliferation, whereas its inhibition repressed proliferation, enhanced apoptosis, and halted the cell cycle. Moreover, sulforaphane suppressed the growth of U251 cells by inactivating the ACTL6A/PGK1 axis. ACTL6A acts via PGK1 to play a critical role in glioma cell survival and proliferation, and sulforaphane targets it to inhibit glioma.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Rong Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Jing-Yu Fu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| |
Collapse
|
3
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Ding H, Jiang M, Lau CW, Luo J, Chan AM, Wang L, Huang Y. Curaxin CBL0137 inhibits endothelial inflammation and atherogenesis via suppression of the Src-YAP signalling axis. Br J Pharmacol 2023; 180:1168-1185. [PMID: 36495259 DOI: 10.1111/bph.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerotic vascular disease is the leading cause of mortality and morbidity worldwide. Our previous study uncovered that endothelium-specific knockdown of YAP suppresses atherogenesis, suggesting that YAP is a promising therapeutic target against atherosclerotic vascular disease. We established a drug screening platform, which aimed to identify new YAP inhibitors for anti-atherosclerotic treatment. EXPERIMENTAL APPROACH Drug screening was performed by a luciferase reporter gene assay. RNA sequencing was performed to acquire the transcriptomic profile of CBL0137-treated endothelial cells. We assessed and validated the inhibitory effect of CBL0137 on YAP activity and inflammatory response in HUVECs and HAECs. We evaluated the vasoprotective effect of CBL0137 in vivo against plaque formation in ApoE-/- mice, using both disturbed flow-induced and chronic western diet-induced atherosclerotic models. KEY RESULTS We identified CBL0137 as a novel YAP inhibitor from an FDA drug library. CBL0137 inhibited YAP activity by restraining its phosphorylation at Y357. CBL0137 inhibited YAP activity to repress endothelial inflammation. Mechanistically, CBL0137 suppressed YAP phosphorylation at Y357 via the tyrosine-protein kinase Src. Furthermore, administration of CBL0137 ameliorated endothelial inflammation and the atherogenesis induced by disturbed flow and consumption of an atherogenic diet in ApoE-/- mice. CONCLUSION AND IMPLICATIONS To our knowledge, this is the first study to identify CBL0137 as a novel YAP inhibitor. We have demonstrated that pharmacologically targeting YAP by CBL0137 inhibits atherogenesis. The present results suggest that CBL0137 holds promise as a new drug for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Minchun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Andrew M Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
FBXW7 Reduces the Cancer Stem Cell-Like Properties of Hepatocellular Carcinoma by Regulating the Ubiquitination and Degradation of ACTL6A. Stem Cells Int 2022; 2022:3242482. [PMID: 36159747 PMCID: PMC9492413 DOI: 10.1155/2022/3242482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subset of tumor cells that can initiate tumorigenesis and promote tumor advance. A previous study showed that the expression of FBXW7 in hepatocellular carcinoma (HCC) clinical samples was lower than that in the adjacent nontumor tissues and was negatively correlated with the invasion and migration of HCC cells. However, the biological characteristics and the underlying molecular mechanisms of FBXW7 in HCC stemness are yet to be elucidated. In present study, we found that FBXW7 participates in the self-renewal, tumorigenicity, sorafenib therapy, and stem cell-like properties of HCC cells in vivo and in vitro. The upregulation of FBXW7 inhibited the stemness and reduced the tumorigenicity and drug resistance of HCC cells. Mechanistically, proteins binding to FBXW7 were identified by coimmunoprecipitation and protein colocalization assays. We confirmed ACTL6A as a novel downstream target for FBXW7. The in vivo ubiquitination assay showed that FBXW7 repressed HCC malignancy by regulating the oncogenic activity of ACTL6A in a ubiquitin-dependent manner. Furthermore, we found that ACTL6A overexpression inversed the self-renewal abilities and tumorigenic abilities depressed by overexpressing FBXW7. The current findings suggested that FBXW7 reduces the stemness of HCC cells by targeting and degrading ACTL6A and provides a novel target for the diagnosis and treatment of HCC.
Collapse
|
6
|
Wang Q, Cao Z, Wei Y, Zhang J, Cheng Z. Potential Role of SWI/SNF Complex Subunit Actin-Like Protein 6A in Cervical Cancer. Front Oncol 2021; 11:724832. [PMID: 34395295 PMCID: PMC8358818 DOI: 10.3389/fonc.2021.724832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
SWI/SNF complex subunit Actin-like protein 6A (ACTL6A) has been regarded as an oncogene, regulating the proliferation, migration and invasion of cancer cells. However, the expression pattern and biological role of ACTL6A in cervical cancer have not been reported. In this study, the mRNA expression and protein level of ACTL6A in cervical cancer samples were determined by public database and immunohistochemical (IHC) analysis. The effects of ACTL6A on cervical cancer cells were investigated via MTT, colony-formation assay, tumor xenografts and flow cytometry. Gene set enrichment analysis (GSEA) was used to explore the potential mechanism of ACTL6A in regulating tumorigenesis of cervical cancer. The results revealed that ACTL6A was markedly upregulated in cervical cancer tissues. Silencing ACTL6A expression resulted in decreased cervical cancer cell proliferation, colony formation and tumorigenesis in vitro and in vivo. Furthermore, we demonstrated that knockdown of ACTL6A induced cell cycle arrest at G1 phase, ACTL6A-mediated proliferation and cell cycle progression were c-Myc dependent. Our study provides the role of ACTL6A in cervical oncogenesis and reveals a potential target for therapeutic intervention in this cancer type.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zuozeng Cao
- Department of Obstetrics and Gynecology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Ma L, Shan L. ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway. Exp Lung Res 2021; 47:250-259. [PMID: 33896314 DOI: 10.1080/01902148.2021.1916651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: To delve into the related molecular mechanism of ACTL6A on non-small cell lung cancer (NSCLC) cell growth and apoptosis.Methods: Quantitative real-time polymerase chain reaction, immunohistochemical staining, and western blot assays were employed to examine ACTL6A mRNA and protein expression in four NSCLC cell line (NCI-H2170, LTEP-s, NCI-H1703, and PC-9) and normal lung cell line (BEAS-2B). CCK-8 cell viability assays and clone formation assay were applied to verify the cell proliferation of NCI-H2170 cell line after knockdown of ACTL6A. Flow cytometry assays were applied to check the role of ACTL6A in the apoptosis of NSCLC cells. The western blot assays were employed to examine the protein expression of WWC1, YAP, TAZ, and CYR61 in NCI-H2170 after knockdown of ACTL6A. Finally, xenograft tumor was taken out and checked the tumor volumes and weight. Immunohistochemical staining and western blot assays were employed to examine cell proliferation and apoptosis of NSCLC in vivo.Results: In this study, the results showed that the mRNA and protein expression level of ACTL6A was higher in four NSCLC cell line than normal lung cell line, respectively. Suppression of ACTL6A inhibited the growth and promoted apoptosis of NSCLC cells. Meanwhile, ACTL6A promotes tumor growth and inhibits apoptosis of NSCLC in vivo via Hippo/YAP signaling pathway.Conclusion: ACTL6A promotes the proliferation in NSCLC by regulating Hippo/YAP pathway.
Collapse
Affiliation(s)
- Ling Ma
- Pulmonary Medicine Department (Inpatient Area 1), The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Shan
- Pulmonary Medicine Department (Inpatient Area 1), The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
9
|
Actin-like 6A enhances the proliferative and invasive capacities of laryngeal squamous cell carcinoma by potentiating the activation of YAP signaling. J Bioenerg Biomembr 2020; 52:453-463. [DOI: 10.1007/s10863-020-09855-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
|
10
|
Zhao J, Li L, Yang T. MiR-216a-3p suppresses the proliferation and invasion of cervical cancer through downregulation of ACTL6A-mediated YAP signaling. J Cell Physiol 2020; 235:9718-9728. [PMID: 32401366 DOI: 10.1002/jcp.29783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
The tumor-suppressive role of microRNA-216a-3p (miR-216a-3p) has been evidenced in multiple tumors. Yet, the relevance of miR-216a-3p in cervical cancer remains undermined. The current study was designed to determine the expression and potential function of miR-216a-3p in cervical cancer. Expression of miR-216a-3p was markedly decreased in cervical cancer and functional assays revealed an inhibitory effect of miR-216a-3p on the proliferation, colony formation, and invasion of cervical cancer. Actin-like 6A (ACTL6A) was identified as a target gene of miR-216a-3p. Elevated ACTL6A expression was detected in cervical cancer, and ACTL6A inhibition exhibited a tumor-suppressive effect. ACTL6A inhibition increased yes-associated protein (YAP) phosphorylation and downregulated YAP-mediated transcriptional activity. ACTL6A restoration or YAP reactivation partially abrogated the miR-216a-3p-mediated antitumor effect in cervical cancer cells. Taken together, these data demonstrate that miR-216a-3p acts as a potential tumor-suppressive miRNA in cervical cancer, which exerts its function through inhibition of YAP signaling via targeting ACTL6A.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Long Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Metabolomics Reveals that Cysteine Metabolism Plays a Role in Celastrol-Induced Mitochondrial Apoptosis in HL-60 and NB-4 Cells. Sci Rep 2020; 10:471. [PMID: 31949255 PMCID: PMC6965619 DOI: 10.1038/s41598-019-57312-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, celastrol has shown great potential for inducing apoptosis in acute myeloid leukemia cells, especially acute promyelocytic leukaemia cells. However, the mechanism is poorly understood. Metabolomics provides an overall understanding of metabolic mechanisms to illustrate celastrol's mechanism of action. We treated both nude mice bearing HL-60 cell xenografts in vivo and HL-60 cells as well as NB-4 cells in vitro with celastrol. Ultra-performance liquid chromatography coupled with mass spectrometry was used for metabolomics analysis of HL-60 cells in vivo and for targeted L-cysteine analysis in HL-60 and NB-4 cells in vitro. Flow cytometric analysis was performed to assess mitochondrial membrane potential, reactive oxygen species and apoptosis. Western blotting was conducted to detect the p53, Bax, cleaved caspase 9 and cleaved caspase 3 proteins. Celastrol inhibited tumour growth, induced apoptosis, and upregulated pro-apoptotic proteins in the xenograft tumour mouse model. Metabolomics showed that cysteine metabolism was the key metabolic alteration after celastrol treatment in HL-60 cells in vivo. Celastrol decreased L-cysteine in HL-60 cells. Acetylcysteine supplementation reversed reactive oxygen species accumulation and apoptosis induced by celastrol and reversed the dramatic decrease in the mitochondrial membrane potential and upregulation of pro-apoptotic proteins in HL-60 cells. In NB-4 cells, celastrol decreased L-cysteine, and acetylcysteine reversed celastrol-induced reactive oxygen species accumulation and apoptosis. We are the first to identify the involvement of a cysteine metabolism/reactive oxygen species/p53/Bax/caspase 9/caspase 3 pathway in celastrol-triggered mitochondrial apoptosis in HL-60 and NB-4 cells, providing a novel underlying mechanism through which celastrol could be used to treat acute myeloid leukaemia, especially acute promyelocytic leukaemia.
Collapse
|
12
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
13
|
Zhang J, Zhang J, Wei Y, Li Q, Wang Q. ACTL6A regulates follicle-stimulating hormone-driven glycolysis in ovarian cancer cells via PGK1. Cell Death Dis 2019; 10:811. [PMID: 31649264 PMCID: PMC6813335 DOI: 10.1038/s41419-019-2050-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Enhanced glycolysis has been identified as a hallmark of cancer. As a novel oncogene, ACTL6A is aberrantly amplified in several types of human cancers and has been shown to regulate tumor growth and progression. However, the roles of ACTL6A in the development of ovarian cancer and the regulation of cancer glucose metabolism are mostly unknown. Here we show that ACTL6A is overexpressed in ovarian cancers compared with adjacent non-tumor tissues, and that ACTL6A overexpression correlates with poor prognosis. Silencing of ACTL6A in vitro inhibits proliferation, clonal growth, and migration, and decreases glucose utilization, lactate production, and pyruvate levels of ovarian cancer cells. We found a positive correlation between ACTL6A and PGK1 expression in ovarian cancer tissues. Enforced ACTL6A expression increased PGK1 expression, whereas knockdown of ACTL6A had the opposite effect. Altered ACTL6A expression inhibits the tumorigenicity of ovarian cancer cells in vivo by downregulating PGK1. In addition, the expression of ACTL6A is regulated by follicle-stimulating hormone (FSH) stimulation via PI3K/AKT pathway. Importantly, ACTL6A regulates FSH-enhanced glycolysis in ovarian cancer. Taken together, our findings highlight the critical role of ACTL6A in ovarian cancer development and identify its contribution to glucose metabolism of cancer cells.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qingxian Li
- Department of Gynaecology and Obstetrics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
14
|
Sima X, He J, Peng J, Xu Y, Zhang F, Deng L. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS One 2019; 14:e0222305. [PMID: 31504061 PMCID: PMC6736241 DOI: 10.1371/journal.pone.0222305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
SWItch/Sucrose NonFermentable (SWI/SNF) is a set of multi-subunits chromatin remodeling complexes, playing important roles in a variety of biological processes. Loss-of-function mutations in the genes encoding SWI/SNF subunits have been reported in more than 20% of human cancers. Thus, it was widely considered as a tumor suppressor in the past decade. However, recent studies reported that some genes encoding subunits of SWI/SNF complexes were amplified and play oncogenic roles in human cancers. In present study, we summarized the genetic alteration spectrum of SWI/SNF complexes, and firstly systematically estimated both the copy number variations and point mutations of all 30 genes encoding the subunits in this complex. Additionally, the bioinformatics analyses were performed for two significantly amplified genes, ACTL6A and BRD9, to investigate their oncogenic roles in human cancers. Our findings may lay a foundation for the discovery of potential treatment targets in SWI/SNF complexes of cancers.
Collapse
Affiliation(s)
- Xiaoxian Sima
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jiangnan He
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jie Peng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanmei Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feng Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, P.R. China
- College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, P.R. China
- * E-mail:
| |
Collapse
|