1
|
Stanciu GD, Ababei DC, Solcan C, Uritu CM, Craciun VC, Pricope CV, Szilagyi A, Tamba BI. Exploring Cannabinoids with Enhanced Binding Affinity for Targeting the Expanded Endocannabinoid System: A Promising Therapeutic Strategy for Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2024; 17:530. [PMID: 38675490 PMCID: PMC11053678 DOI: 10.3390/ph17040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite decades of rigorous research and numerous clinical trials, Alzheimer's disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory role in different physiological processes, such as neuroprotection, modulation of inflammation, and synaptic plasticity. This aligns with previous research showing that cannabinoid receptor ligands have the potential to trigger the functional structure of neuronal and brain networks, potentially impacting memory processing. Therefore, our study aims to assess the effects of prolonged, intermittent exposure (over 90 days) to JWH-133 (0.2 mg/kg) and an EU-GMP certified Cannabis sativa L. (Cannabixir® Medium Flos, 2.5 mg/kg) on recognition memory, as well as their influence on brain metabolism and modulation of the expanded endocannabinoid system in APP/PS1 mice. Chronic therapy with cannabinoid receptor ligands resulted in reduced anxiety-like behavior and partially reversed the cognitive deficits. Additionally, a reduction was observed in both the number and size of Aβ plaque deposits, along with decreased cerebral glucose metabolism, as well as a decline in the expression of mTOR and CB2 receptors. Furthermore, the study revealed enlarged astrocytes and enhanced expression of M1 mAChR in mice subjected to cannabinoid treatment. Our findings highlight the pivotal involvement of the extended endocannabinoid system in cognitive decline and pathological aspects associated with AD, presenting essential preclinical evidence to support the continued exploration and assessment of cannabinoid receptor ligands for AD treatment.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Cristina-Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Vlad-Constantin Craciun
- Department of Computer Science, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania;
| | - Cosmin-Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
2
|
Zhang R, He X, Cheng J, Zhang X, Han C, Liu Y, Chen P, Wang Y. (m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells. Neurotox Res 2023; 41:627-637. [PMID: 37971633 DOI: 10.1007/s12640-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.
Collapse
Affiliation(s)
- Ruisan Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China
| | - Xinliang He
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Jianghong Cheng
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China
| | - Xiaofan Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Chen Han
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Yifan Liu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Peng Chen
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
3
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
4
|
Marini P, Cowie P, Ayar A, Bewick GS, Barrow J, Pertwee RG, MacKenzie A, Tucci P. M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter. Int J Mol Sci 2023; 24:ijms24021308. [PMID: 36674826 PMCID: PMC9867084 DOI: 10.3390/ijms24021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Philip Cowie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Barrow
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
5
|
Alan E, Kerry Z, Sevin G. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs. Fundam Clin Pharmacol 2022; 37:397-427. [PMID: 36576325 DOI: 10.1111/fcp.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment so widespread that it interferes with a person's ability to complete daily activities. AD is becoming increasingly common, and it is estimated that the number of patients will reach 152 million by 2050. Current treatment options for AD are symptomatic and have modest benefits. Therefore, considering the human, social, and economic burden of the disease, the development of drugs with the potential to alter disease progression has become a global priority. In this review, the molecular mechanisms involved in the pathology of AD were evaluated as therapeutic targets. The main aim of the review is to focus on new knowledge about mitochondrial dysfunction, oxidative stress, and neuronal transmission in AD, as well as a range of cellular signaling mechanisms and associated treatments. Important molecular interactions leading to AD were described in amyloid cascade and in tau protein function, oxidative stress, mitochondrial dysfunction, cholinergic and glutamatergic neurotransmission, cAMP-regulatory element-binding protein (CREB), the silent mating type information regulation 2 homolog 1 (SIRT-1), neuroinflammation (glial cells), and synaptic alterations. This review summarizes recent experimental and clinical research in AD pathology and analyzes the potential of therapeutic applications based on molecular disease mechanisms.
Collapse
Affiliation(s)
- Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Zeliha Kerry
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Llorente-Ovejero A, Bengoetxea de Tena I, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, Manuel I, Rodríguez-Puertas R. Cannabinoid Receptors and Glial Response Following a Basal Forebrain Cholinergic Lesion. ACS Pharmacol Transl Sci 2022; 5:791-802. [PMID: 36110372 PMCID: PMC9469185 DOI: 10.1021/acsptsci.2c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/28/2022]
Abstract
The endocannabinoid system modulates learning, memory, and neuroinflammatory processes, playing a key role in neurodegeneration, including Alzheimer's disease (AD). Previous results in a rat lesion model of AD showed modulation of endocannabinoid receptor activity in the basalo-cortical pathway following a specific lesion of basal forebrain cholinergic neurons (BFCNs), indicating that the glial neuroinflammatory response accompanying the lesion is related to endocannabinoid signaling. In this study, 7 days after the lesion, decreased astrocyte and increased microglia immunoreactivities (GFAP and Iba-1) were observed, indicating microglia-mediated neuroinflammation. Using autoradiographic studies, the density and functional coupling to G-proteins of endocannabinoid receptor subtypes were studied in tissue sections from different brain areas where microglia density increased, using CB1 and CB2 selective agonists and antagonists. In the presence of the specific CB1 receptor antagonist, SR141716A, [3H]CP55,940 binding (receptor density) was completely blocked in a dose-dependent manner, while the selective CB2 receptor antagonist, SR144528, inhibited binding to 25%, at best. [35S]GTPγS autoradiography (receptor coupling to Gi/0-proteins) evoked by CP55,940 (CB1/CB2 agonist) and HU308 (more selective for CB2) was abolished by SR141716A in all areas, while SR144528 blocked up to 51.8% of the coupling to Gi/0-proteins evoked by CP55,940 restricted to the nucleus basalis magnocellularis. Together, these results demonstrate that there are increased microglia and decreased astrocyte immunoreactivities 1 week after a specific deletion of BFCNs, which projects to cortical areas, where the CB1 receptor coupling to Gi/0-proteins is upregulated. However, at the lesion site, the area with the highest neuroinflammatory response, there is also a limited contribution of CB2.
Collapse
Affiliation(s)
| | | | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Laura Lombardero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Iván Manuel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| |
Collapse
|
7
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
8
|
Rajamma SS, Krishnaswami V, Prabu SL, Kandasamy R. Geophila repens phytosome-loaded intranasal gel with improved nasal permeation for the effective treatment of Alzheimer's disease. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
10
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
11
|
Use of bladder antimuscarinics is associated with an increased risk of dementia: a retrospective population-based case-control study. Sci Rep 2021; 11:4827. [PMID: 33649451 PMCID: PMC7921664 DOI: 10.1038/s41598-021-84229-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022] Open
Abstract
The association between bladder antimuscarinic use and dementia development is unclear. We used data from the Taiwan National Health Insurance Research Database to determine the association between the exposure dose and duration of bladder antimuscarinics and the subsequent dementia risk. We enrolled participants aged 55 years or more and defined a dementia cohort (International Classification of Diseases, Ninth Revision, Clinical Modification codes 290, 294.1, and 331.0). We used a propensity score matching method, and randomly enrolled two controls without dementia. We evaluated dementia risk with respect to the exposure dose and duration of treatment with seven bladder antimuscarinics (oxybutynin, propiverine, tolterodine, solifenacin, trospium, darifenacin, and fesoterodine) used for at least 1 year before the index date, after adjusting for age, sex, comorbidities, and medications. The dementia risk was 2.46-fold (95% confidence interval: 2.22–2.73) higher in Taiwanese patients who used bladder antimuscarinics for ≥ 1 year than in those who were not exposed to this treatment. The risk proportionally increased with increasing doses of antimuscarinics for less than 4 years. Taiwanese patients aged 55 years or more on bladder antimuscarinics exhibited a higher risk of dementia. Additional studies in other countries are required to determine whether this result is valid worldwide.
Collapse
|
12
|
Connor C, Hamilton J, Robison L, Hadjiargyrou M, Komatsu D, Thanos P. Abstinence from chronic methylphenidate exposure modifies cannabinoid receptor 1 levels in the brain in a dose-dependent manner. Curr Pharm Des 2021; 28:331-338. [PMID: 33504296 DOI: 10.2174/1381612827666210127120411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Methylphenidate (MP) is a widely used psychostimulant prescribed for Attention Deficit Hyperactivity Disorder, and is also used illicitly by healthy individuals. Chronic exposure to MP has been shown to affect physiology, behavior, and neurochemistry. METHODS The present study examined its effect on the endocannabinoid system. Adolescent rats had daily oral access to either water (control), low dose MP (4/10 mg/kg), or high dose MP (30/60 mg/kg). After 13 weeks of exposure, half of the rats in each group were euthanized, however the remaining rats underwent a four-week long abstinence period. Cannabinoid receptor 1 binding (CB1) was measured with in vitro autoradiography using [3H] SR141716A. RESULTS Rats who underwent a 4-week abstinence period after exposure to chronic HD MP showed increased binding compared to rats with no abstinence period in several cortical and basal ganglia regions of the brain. In contrast to this, rats who underwent a 4-week abstinence period after exposure to chronic LD MP showed lower binding compared to rats with no abstinence period in mainly the basal ganglia regions and in the hindlimb region of the somatosensory cortex. Following 4 weeks of drug abstinence, rats who were previously given HD MP showed higher [ 3H] SR141716A binding than rats given LD MP in many of the cortical and basal ganglia regions examined. These results highlight biphasic effects of MP treatment on cannabinoid receptor levels. Abstinence from HD MP seemed to increase CB1 receptor levels while abstinence from LD MP seemed to decrease CB1 levels. CONCLUSION Given the prolific expression of cannabinoid receptors throughout the brain, many types of behaviors may be affected as a result of MP abstinence. Further research will be needed to help identify these behavioral changes.
Collapse
Affiliation(s)
- Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| | - Lisa Robison
- Department of Neuroscience and Experimental Techniques, Albany Medical College, Albany, NY. United States
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY. United States
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY. United States
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY. United States
| |
Collapse
|
13
|
Sánchez-Sarasúa S, Fernández-Pérez I, Espinosa-Fernández V, Sánchez-Pérez AM, Ledesma JC. Can We Treat Neuroinflammation in Alzheimer's Disease? Int J Mol Sci 2020; 21:E8751. [PMID: 33228179 PMCID: PMC7699542 DOI: 10.3390/ijms21228751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), considered the most common type of dementia, is characterized by a progressive loss of memory, visuospatial, language and complex cognitive abilities. In addition, patients often show comorbid depression and aggressiveness. Aging is the major factor contributing to AD; however, the initial cause that triggers the disease is yet unknown. Scientific evidence demonstrates that AD, especially the late onset of AD, is not the result of a single event, but rather it appears because of a combination of risk elements with the lack of protective ones. A major risk factor underlying the disease is neuroinflammation, which can be activated by different situations, including chronic pathogenic infections, prolonged stress and metabolic syndrome. Consequently, many therapeutic strategies against AD have been designed to reduce neuro-inflammation, with very promising results improving cognitive function in preclinical models of the disease. The literature is massive; thus, in this review we will revise the translational evidence of these early strategies focusing in anti-diabetic and anti-inflammatory molecules and discuss their therapeutic application in humans. Furthermore, we review the preclinical and clinical data of nutraceutical application against AD symptoms. Finally, we introduce new players underlying neuroinflammation in AD: the activity of the endocannabinoid system and the intestinal microbiota as neuroprotectors. This review highlights the importance of a broad multimodal approach to treat successfully the neuroinflammation underlying AD.
Collapse
Affiliation(s)
| | | | | | - Ana María Sánchez-Pérez
- Neurobiotechnology Group, Department of Medicine, Health Science Faculty, Universitat Jaume I, 12071 Castellón, Spain; (S.S.-S.); (I.F.-P.); (V.E.-F.)
| | - Juan Carlos Ledesma
- Neurobiotechnology Group, Department of Medicine, Health Science Faculty, Universitat Jaume I, 12071 Castellón, Spain; (S.S.-S.); (I.F.-P.); (V.E.-F.)
| |
Collapse
|