1
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
3
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan,*Correspondence: Faryal Mehwish Awan, ✉ ;
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
5
|
Sun J, Harrington MA, Porter B. Sex Difference in Spinal Muscular Atrophy Patients - are Males More Vulnerable? J Neuromuscul Dis 2023; 10:847-867. [PMID: 37393514 PMCID: PMC10578261 DOI: 10.3233/jnd-230011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Sex is a significant risk factor in many neurodegenerative disorders. A better understanding of the molecular mechanisms behind sex differences could help develop more targeted therapies that would lead to better outcomes. Untreated spinal muscular atrophy (SMA) is the leading genetic motor disorder causing infant mortality. SMA has a broad spectrum of severity ranging from prenatal death to infant mortality to normal lifespan with some disability. Scattered evidence points to a sex-specific vulnerability in SMA. However, the role of sex as a risk factor in SMA pathology and treatment has received limited attention. OBJECTIVE Systematically investigate sex differences in the incidence, symptom severity, motor function of patients with different types of SMA, and in the development of SMA1 patients. METHODS Aggregated data of SMA patients were obtained from the TREAT-NMD Global SMA Registry and the Cure SMA membership database by data enquiries. Data were analyzed and compared with publicly available standard data and data from published literature. RESULTS The analysis of the aggregated results from the TREAT-NMD dataset revealed that the male/female ratio was correlated to the incidence and prevalence of SMA from different countries; and for SMA patients, more of their male family members were affected by SMA. However, there was no significant difference of sex ratio in the Cure SMA membership dataset. As quantified by the clinician severity scores, symptoms were more severe in males than females in SMA types 2 and 3b. Motor function scores measured higher in females than males in SMA types 1, 3a and 3b. The head circumference was more strongly affected in male SMA type 1 patients. CONCLUSIONS The data in certain registry datasets suggest that males may be more vulnerable to SMA than females. The variability observed indicates that more investigation is necessary to fully understand the role of sex differences in SMA epidemiology, and to guide development of more targeted treatments.
Collapse
Affiliation(s)
- Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Melissa A. Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Ben Porter
- TREAT-NMD Services Limited, Newcastle upon Tyne, UK
| | - on behalf of the TREAT-NMD Global Registry Network for SMA
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
- TREAT-NMD Services Limited, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Singh NN, O'Leary CA, Eich T, Moss WN, Singh RN. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene. Front Mol Biosci 2022; 9:928581. [PMID: 35847983 PMCID: PMC9283826 DOI: 10.3389/fmolb.2022.928581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans contain two nearly identical copies of Survival Motor Neuron genes, SMN1 and SMN2. Deletion or mutation of SMN1 causes spinal muscular atrophy (SMA), one of the leading genetic diseases associated with infant mortality. SMN2 is unable to compensate for the loss of SMN1 due to predominant exon 7 skipping, leading to the production of a truncated protein. Antisense oligonucleotide and small molecule-based strategies aimed at the restoration of SMN2 exon 7 inclusion are approved therapies of SMA. Many cis-elements and transacting factors have been implicated in regulation of SMN exon 7 splicing. Also, several structural elements, including those formed by a long-distance interaction, have been implicated in the modulation of SMN exon 7 splicing. Several of these structures have been confirmed by enzymatic and chemical structure-probing methods. Additional structures formed by inter-intronic interactions have been predicted by computational algorithms. SMN genes generate a vast repertoire of circular RNAs through inter-intronic secondary structures formed by inverted Alu repeats present in large number in SMN genes. Here, we review the structural context of the exonic and intronic cis-elements that promote or prevent exon 7 recognition. We discuss how structural rearrangements triggered by single nucleotide substitutions could bring drastic changes in SMN2 exon 7 splicing. We also propose potential mechanisms by which inter-intronic structures might impact the splicing outcomes.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, United States
| | - Collin A. O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Taylor Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
7
|
Luo D, Singh NN, Singh RN. Internal Introns Promote Backsplicing to Generate Circular RNAs from Spinal Muscular Atrophy Gene. Genes (Basel) 2022; 13:1145. [PMID: 35885927 PMCID: PMC9323214 DOI: 10.3390/genes13071145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Human survival motor neuron 1 (SMN1) codes for SMN, an essential housekeeping protein involved in most aspects of RNA metabolism. Deletions or mutations of SMN1 lead to spinal muscular atrophy (SMA), a devastating neurodegenerative disease linked to a high rate of infant mortality. SMN2, a near identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 due to predominant skipping of SMN2 exon 7. Restoration of SMN by splicing modulation of SMN2 exon 7 or gene replacement are currently approved therapies of SMA. Human SMN genes produce a vast repertoire of circular RNAs (circRNAs). However, the mechanism of SMN circRNA generation has not yet been examined in detail. For example, it remains unknown if forward splicing impacts backsplicing that generates circRNAs containing multiple exons. Here, we employed SMN as a model system to examine the impact of intronic sequences on the generation of circRNAs. We performed our experiments in HeLa cells transiently transfected with minigenes expressing three abundantly represented circRNAs containing two or more SMN exons. We observed an enhanced rate of circRNA generation when introns joining exons to be incorporated into circRNAs were present as compared to the intronless context. These results underscore the stimulatory effect of forward splicing in the generation of circRNAs containing multiple exons. These findings are consistent with the reported low abundance of SMN circRNAs comprised of single exons. We confirmed our findings using inducible HEK 293 cells stably expressing the SMN circRNAs. Our results support the role of the exon junction complex in the generation of the exon-only-containing circRNAs. We showed that SMN circRNAs were preferentially localized in the cytoplasm. These findings provide new insights regarding our understanding of circRNA generation and open avenues to uncover novel functions of the SMN genes.
Collapse
Affiliation(s)
| | | | - Ravindra Narayan Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.L.); (N.N.S.)
| |
Collapse
|
8
|
Cuartas J, Gangwani L. R-loop Mediated DNA Damage and Impaired DNA Repair in Spinal Muscular Atrophy. Front Cell Neurosci 2022; 16:826608. [PMID: 35783101 PMCID: PMC9243258 DOI: 10.3389/fncel.2022.826608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in DNA repair pathways are a major cause of DNA damage accumulation leading to genomic instability and neurodegeneration. Efficient DNA damage repair is critical to maintain genomicstability and support cell function and viability. DNA damage results in the activation of cell death pathways, causing neuronal death in an expanding spectrum of neurological disorders, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease (AD), and spinal muscular atrophy (SMA). SMA is a neurodegenerative disorder caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMA is characterized by the degeneration of spinal cord motor neurons due to low levels of the SMN protein. The molecular mechanism of selective motor neuron degeneration in SMA was unclear for about 20 years. However, several studies have identified biochemical and molecular mechanisms that may contribute to the predominant degeneration of motor neurons in SMA, including the RhoA/ROCK, the c-Jun NH2-terminal kinase (JNK), and p53-mediated pathways, which are involved in mediating DNA damage-dependent cell death. Recent studies provided insight into selective degeneration of motor neurons, which might be caused by accumulation of R-loop-mediated DNA damage and impaired non-homologous end joining (NHEJ) DNA repair pathway leading to genomic instability. Here, we review the latest findings involving R-loop-mediated DNA damage and defects in neuron-specific DNA repair mechanisms in SMA and discuss these findings in the context of other neurodegenerative disorders linked to DNA damage.
Collapse
Affiliation(s)
- Juliana Cuartas
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Laxman Gangwani
| |
Collapse
|
9
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
10
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
11
|
Weng X, Lu XJ. Circular RNA and human diseases: Basic research and translational implications. Cell Signal 2021; 86:110100. [PMID: 34329729 DOI: 10.1016/j.cellsig.2021.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoling Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
13
|
Mao L, Guo J, Hu L, Li L, Bennett S, Xu J, Zou J. Circular RNAs in childhood-related diseases and cancers: A review. Cell Biochem Funct 2020; 39:458-467. [PMID: 33354822 DOI: 10.1002/cbf.3611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022]
Abstract
Research into the diagnosis, treatment and prevention of childhood-related diseases is the key to reducing their morbidity and mortality. Circular RNAs (circRNAs) play critical roles, both in physiology and pathology, and there is ample evidence to show that they play varying roles in tissue development and gene regulation. Studies on circRNAs in different childhood-related diseases have confirmed their great potential for disease prevention and treatment. These breakthroughs highlight the pathological role of circRNAs in cancers, as well as cardiovascular and hereditary childhood illnesses. In this review, we summarize the role of circRNAs in childhood-related diseases and cancer, and provide an update of the possible diagnostic and therapeutic application of circRNAs.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Linghui Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lexuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Abstract
Neuromuscular disorders are a heterogeneous group of conditions affecting the neuromuscular system. The aim of this article is to review the major epigenetic findings in motor neuron diseases and major hereditary muscular dystrophies. DNA methylation changes are observed in both hereditary and sporadic forms, and combining DNA methylation analysis with mutational screening holds the potential for better diagnostic and prognostic accuracy. Novel, less toxic and more selective epigenetic drugs are designed and tested in animal and cell culture models of neuromuscular disorders, and non-coding RNAs are being investigated as either disease biomarkers or targets of therapeutic approaches to restore gene expression levels. Overall, neuromuscular disorder epigenetic biomarkers have a strong potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|