1
|
Fang L, Zhu Z, Han M, Li S, Kong X, Yang L. Unlocking the potential of extracellular vesicle circRNAs in breast cancer: From molecular mechanisms to therapeutic horizons. Biomed Pharmacother 2024; 180:117480. [PMID: 39357330 DOI: 10.1016/j.biopha.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer remains the leading cause of cancer-related morbidity and mortality among women worldwide, underscoring the urgent need for novel diagnostic and therapeutic strategies. This review explores the emerging roles of circular RNAs (circRNAs) within extracellular vesicles (exosomes) in breast cancer. circRNAs, known for their stability and tissue-specific expression, are aberrantly expressed in breast cancer and regulate critical cellular processes such as proliferation, migration, and apoptosis, positioning them as promising biomarkers. Exosomes facilitate intercellular communication by delivering circRNAs, reflecting the physiological and pathological state of their source cells. This review highlights the multifaceted roles of exosomal circRNAs in promoting tumor growth, metastasis, and drug resistance through their modulation of tumor metabolism, the tumor microenvironment, and immune responses. In particular, we emphasize their contributions to chemotherapy resistance and their potential as both diagnostic markers and therapeutic targets. By synthesizing current research, this review provides novel insights into the clinical applications of exosomal circRNAs, offering a foundation for future studies aimed at improving breast cancer management through non-invasive diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Zehua Zhu
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Shaojie Li
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China.
| |
Collapse
|
2
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Tierno D, Grassi G, Zanconati F, Dapas B, Scaggiante B. Plasma Circular RNAs as Biomarkers for Breast Cancer. Biomedicines 2024; 12:875. [PMID: 38672229 PMCID: PMC11048241 DOI: 10.3390/biomedicines12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
4
|
Zhu J, Li Q, Wu Z, Xu W, Jiang R. Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res 2024; 9:262-276. [PMID: 38282696 PMCID: PMC10818160 DOI: 10.1016/j.ncrna.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Circular RNAs (circRNAs) and small non-coding RNAs of the head-to-junction circle in the construct play critical roles in gene regulation and are significantly associated with breast cancer (BC). Numerous circRNAs are potential cancer biomarkers that may be used for diagnosis and prognosis. Widespread expression of circRNAs is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies show that circRNAs have two main biological modulation models: sponging and RNA-binding. This review explained the biogenesis of circRNAs and assessed emerging findings on their sponge function and role as RNA-binding proteins (RBPs) to better understand how their interaction alters cellular function in BC. We focused on how sponges significantly affect the phenotype and progression of BC. We described how circRNAs exercise the translation functions in ribosomes. Furthermore, we reviewed recent studies on RBPs, and post-protein modifications influencing BC and provided a perspective on future research directions for treating BC.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Gao D, Cui C, Jiao Y, Zhang H, Li M, Wang J, Sheng X. Circular RNA and its potential diagnostic and therapeutic values in breast cancer. Mol Biol Rep 2024; 51:258. [PMID: 38302635 DOI: 10.1007/s11033-023-09172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as "circRNA" links together from one end to another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolutionary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells. CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels. CircRNAs offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation, invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investigations on the pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Can Cui
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxuan Jiao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Junjie Wang
- Department of Pathophysiology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Kansara S, Singh A, Badal AK, Rani R, Baligar P, Garg M, Pandey AK. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer. Semin Cancer Biol 2023; 95:1-12. [PMID: 37364663 DOI: 10.1016/j.semcancer.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Altered energy metabolism is one of the hallmarks of tumorigenesis and essential for fulfilling the high demand for metabolic energy in a tumor through accelerating glycolysis and reprogramming the glycolysis metabolism through the Warburg effect. The dysregulated glucose metabolic pathways are coordinated not only by proteins coding genes but also by non-coding RNAs (ncRNAs) during the initiation and cancer progression. The ncRNAs are responsible for regulating numerous cellular processes under developmental and pathological conditions. Recent studies have shown that various ncRNAs such as microRNAs, circular RNAs, and long noncoding RNAs are extensively involved in rewriting glucose metabolism in human cancers. In this review, we demonstrated the role of ncRNAs in the progression of breast cancer with a focus on outlining the aberrant expression of glucose metabolic pathways. Moreover, we have discussed the existing and probable future applications of ncRNAs to regulate energy pathways along with their importance in the prognosis, diagnosis, and future therapeutics for human breast carcinoma.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Agrata Singh
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Abhishesh Kumar Badal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Reshma Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India; National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
7
|
Liang J, Ye C, Chen K, Gao Z, Lu F, Wei K. Non-coding RNAs in breast cancer: with a focus on glucose metabolism reprogramming. Discov Oncol 2023; 14:72. [PMID: 37204526 DOI: 10.1007/s12672-023-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Breast cancer is the tumor with the highest incidence in women worldwide. According to research, the poor prognosis of breast cancer is closely related to abnormal glucose metabolism in tumor cells. Changes in glucose metabolism in tumor cells are an important feature. When sufficient oxygen is available, cancer cells tend to undergo glycolysis rather than oxidative phosphorylation, which promotes rapid proliferation and invasion of tumor cells. As research deepens, targeting the glucose metabolism pathway of tumor cells is seen as a promising treatment. Non-coding RNAs (ncRNAs), a recent focus of research, are involved in the regulation of enzymes of glucose metabolism and related cancer signaling pathways in breast cancer cells. This article reviews the regulatory effect and mechanism of ncRNAs on glucose metabolism in breast cancer cells and provides new ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chun Ye
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Kaiqin Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zihan Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
8
|
Kong Z, Han Q, Zhu B, Wan L, Feng E. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR-136-5p/YWHAZ axis. Thorac Cancer 2023. [PMID: 37192740 DOI: 10.1111/1759-7714.14928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most malignant cancers. Increasing evidence suggests that circular RNAs (circRNAs) are involved in breast cancer progression through sponging microRNA (miRNA). However, the underlying molecular mechanisms of circ_0069094 in breast cancer are unclear. This study aimed to reveal the effect of the circ_0069094/miR-136-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) pathway on the malignant progression of breast cancer. METHODS The quantitative real-time polymerase chain reaction and western blot were used to assess the expression of circRNA/miRNA/mRNA. The functional effects of circ_0069094 on the cell processes of breast cancer were investigated by cell counting kit-8, colony-forming assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and transwell invasion assay. The interactions among circ_0069094, miR-136-5p, and YWHAZ were assessed by dual-luciferase reporter assay. A xenograft experiment was performed to determine the effects of circ_0069094 on tumor formation. RESULTS Circ_0069094 was overexpressed in paclitaxel (PTX)-resistant breast cancer tissues and cells, and the silencing of circ_0069094 decreased tumor growth, cell proliferation and cell invasion while increasing PTX sensitivity and cell apoptosis in PTX-resistant cells. In addition, miR-136-5p was a target of circ_0069094, and miR-136-5p inhibition abolished circ_0069094 knockdown-induced effects in PTX-resistant cells. MiR-136-5p expression was decreased in PTX-resistant breast cancer tissues and cells, and the overexpression of miR-136-5p suppressed the malignant behaviors of breast cancer cells by targeting YWHAZ. Importantly, circ_0069094 regulated YWHAZ expression in breast cancer by targeting miR-136-5p. CONCLUSION Circ_0069094 silencing improved PTX sensitivity in breast cancer progression through competitively sponging miR-136-5p.
Collapse
Affiliation(s)
- Zhihua Kong
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Bisheng Zhu
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Long Wan
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, China
| | - Enrong Feng
- Department of Ultrasound, Xianning Hospital of Traditional Chinese Medicine, Xianning City, China
| |
Collapse
|
9
|
Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett 2023; 552:215978. [PMID: 36283584 DOI: 10.1016/j.canlet.2022.215978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.
Collapse
|
10
|
Abedi-Gaballu F, Kamal Kazemi E, Salehzadeh SA, Mansoori B, Eslami F, Emami A, Dehghan G, Baradaran B, Mansoori B, Cho WC. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11:cells11192973. [PMID: 36230935 PMCID: PMC9563138 DOI: 10.3390/cells11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Elham Kamal Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Seyed Ahmad Salehzadeh
- Department of Medicinal Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Emami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (B.M.); (W.C.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
- Correspondence: (B.M.); (W.C.C.)
| |
Collapse
|
11
|
Gao SL, Fan Y, Liu XD, Liu W, Zhao M. circ_0089153 exacerbates breast cancer cells proliferation and metastasis via sponging miR-2467-3p/E2F6. ENVIRONMENTAL TOXICOLOGY 2022; 37:1458-1471. [PMID: 35225430 DOI: 10.1002/tox.23498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The role of circ_0089153 in breast cancer (BCa) malignancy development was explored. circ_0089153 expression in BCa was analyzed by Gene Expression Omnibus database. Clinical tissues were obtained from 90 BCa patients. Cell counting kit-8 assay, 5-ethnyl-2 deoxyuridine assay and colony formation experiment were applied for proliferation detection. Wound healing assay and Transwell experiment were used for migration and invasion detection. Dual luciferase reporter gene assay, RNA immunoprecipitation assay and RNA pull-down assay were conducted. In vivo growth and metastasis of BCa cells were performed. Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were applied for RNAs and proteins expression. The up-modulated circ_0089153 indicated an unfavorable survival of BCa patients. circ_0089153 knockdown attenuated BCa cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) (P < .01). circ_0089153 was miR-2467-3p sponge. Low miR-2467-3p expression indicated a worse survival of BCa patients. miR-2467-3p overexpression reduced BCa cells proliferation, migration, invasion and EMT (P < .05). circ_0089153 enhanced BCa cells proliferation, migration, invasion and EMT by sponging miR-2467-3p (P < .05). E2F6 was directly suppressed by miR-2467-3p. E2F6 high expression in BCa patients associated with worse survival. circ_0089153 knockdown suppressed in vivo BCa cells growth and lung metastasis (P < .01). circ_0089153 was an oncogene in breast cancer, which enhanced proliferation and metastasis through sponging miR-2467-3p/E2F6. circ_0089153 was suggested to be a potential target for BCa target treatment.
Collapse
Affiliation(s)
- Shu-Lan Gao
- Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Fan
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Dan Liu
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Department of Geriatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Man Zhao
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Construction of a circRNA-miRNA-mRNA Regulatory Network for Coronary Artery Disease by Bioinformatics Analysis. Cardiol Res Pract 2022; 2022:4017082. [PMID: 35223093 PMCID: PMC8866025 DOI: 10.1155/2022/4017082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
Background. Circular RNAs (circRNAs) were known to be related to the pathogenesis of many diseases through competing endogenous RNA (ceRNA) regulatory mechanisms. However, the function of circRNA in coronary artery disease (CAD) remains unclear. In this study, we aim to construct a circRNA-related competing endogenous RNA (ceRNA) network in CAD. Methods. The gene expression profiles of CAD were obtained from Gene Expression Omnibus datasets. Bioinformatics analysis was performed to construct a ceRNA regulatory network, from which the hub genes involved were identified through protein-protein interaction (PPI) networks leading to the identification of the circRNA-miRNA-hub gene subnetwork. In addition, function enrichment analysis was performed to detect the potential biological mechanism in which circRNA might be involved. Results. A total of 115 DEcircRNAs (differentially expressed circRNAs), 17 DEmiRNAs (differentially expressed microRNAs), and 790 DEmRNAs (differentially expressed mRNAs) were identified between CAD and control groups from microarray datasets. Functional enrichment analysis showed that DEmRNAs were significantly involved in inflammation-related pathways and ubiquitin-protein ligase binding. After identifying 20 DEcircRNA-DEmiRNA pairs and 561 DEmiRNA-DEmRNA pairs, we obtained a circRNA-miRNA-mRNA regulatory network. PPI network analysis showed that eight hub genes were closely related to CAD, leading to the identification of a circRNA-miRNA-hub gene subnetwork consisting of nine circRNAs (hsa_circ_0020275, hsa_circ_0020387, hsa_circ_0020417, hsa_circ_0045512, hsa_circ_0047336, hsa_circ_0069094, hsa_circ_0071326, hsa_circ_0071330, and hsa_circ_0085340), four miRNAs (hsa-miR-136-5p, hsa-miR-376c-3p, hsa-miR-411-5p, and hsa-miR-654-5p), and eight mRNAs (MKRN1, UBE2H, UBE2W, UBE2D1, UBE2F, BE2J1, ZNRF1, and SIAH2). In addition, we discovered these hub genes were enriched in the ubiquitin-mediated proteolysis pathway, suggesting circRNAs may be involved in the pathogenesis of CAD through this pathway. Conclusions. This study may deepen our understanding of the potential role of circRNA-miRNA-mRNA regulation network in CAD and suggest novel diagnostic biomarkers and therapeutic targets for CAD.
Collapse
|
13
|
Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 2021; 523:120-130. [PMID: 34537217 DOI: 10.1016/j.cca.2021.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Among cancers, breast cancer has the highest incidence rate among women and poses a tremendous threat to women's health. Messenger RNA (mRNA), microRNA (miRNA) and circular RNA (circRNA) play vital roles in the progression of breast cancer through a variety of biological effects and mechanisms. Recently, the regulatory network formed by circRNAs, miRNAs and mRNAs has piqued attention and garnered interest. CircRNAs bind to miRNAs through a regulatory mechanism in which endogenous RNAs compete to indirectly regulate the expression of mRNA corresponding to downstream target genes of miRNAs, contributing to the progression of breast cancer. The circRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of breast cancer and a potential breast cancer treatment target, providing unlimited possibilities for the development of breast cancer biomarkers and therapeutic strategies. This article reviews recent research progress on the circRNA-miRNA-mRNA axis as a regulatory network of competing endogenous RNAs in breast cancer. Herein, we focus on the mechanism and function of the circRNA-miRNA-mRNA axis in the occurrence and metastasis of breast cancer, and resistance to chemotherapy.
Collapse
Affiliation(s)
- Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Feng Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| |
Collapse
|
14
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
15
|
Ghafouri-Fard S, Hussen BM, Taheri M, Ayatollahi SA. Emerging role of circular RNAs in breast cancer. Pathol Res Pract 2021; 223:153496. [PMID: 34052769 DOI: 10.1016/j.prp.2021.153496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Circular RNAs (cirRNAs) are generally considered as non-coding RNAs which can act as molecular sponges for miRNAs, exert regulatory roles in transcription or splicing, and interplay with RNA binding proteins. These single-stranded transcripts can affect tumor growth, the metastatic ability of cancer cells, stemness properties, and resistance to therapeutic options. Recent investigations have shown the crucial effects of circrNAs in the evolution of breast cancer. Signature of circRNAs in breast cancer samples has been mostly assessed through microarray-based methods revealing up-regulation of some circRNAs such as circ-TFF1, circACAP2, circ-TFCP2L1, hsa_circ_0000519, circDENND4C, circPLK1 and circRNA_069718, while down-regulation of other circRNAs such as hsa_circ_0000375, circYap, hsa_circ_0025202, circTADA2A-E6, circASS1 and circRNA_BARD1 in breast cancer samples. Mechanistically, these transcripts mainly affect breast cancer tumorigenesis via serving as sponges for miRNAs. In the current manuscript, we explore the results of researches that appraised the role of circRNAs in breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
16
|
Yu J, Qin Y, Zhou N. Knockdown of Circ_SLC39A8 protects against the progression of osteoarthritis by regulating miR-591/IRAK3 axis. J Orthop Surg Res 2021; 16:170. [PMID: 33658057 PMCID: PMC7927261 DOI: 10.1186/s13018-021-02323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. METHODS The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. RESULTS Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. CONCLUSION Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.
Collapse
Affiliation(s)
- Jizhe Yu
- Department of Orthopaedics, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China
| | - Yushuang Qin
- Department of Nuclear Medicine, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China
| | - Naxin Zhou
- Department of Orthopaedics, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China.
| |
Collapse
|