1
|
Ilyin NP, Shevlyakov AD, Boyko GA, Moskalenko AM, Ikrin AN, Galstyan DS, Kolesnikova TO, Katolikova NV, Chekrygin SA, Lim LW, Yang L, De Abreu MS, Yenkoyan KB, Kalueff AV, Demin KA. Neurotranscriptomic and behavioral effects of ISRIB, and its therapeutic effects in the traumatic brain injury model in zebrafish. Brain Res 2025; 1848:149329. [PMID: 39537125 DOI: 10.1016/j.brainres.2024.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a global medical concern and has a lasting impact on brain activity with high risks of mortality. Current treatments are inadequate for repairing damaged brain cells or correcting cognitive and behavioral disabilities in TBI patients. Mounting evidence links TBI to the activation of the Integrated Stress Response (ISR) signaling in the brain. A novel small molecule, ISRIB, is an effective inhibitor of the ISR pathway, offering potential advantages for brain health. Here, we investigated how ISRIB affects brain transcriptome and behavior in zebrafish TBI model evoked by telencephalic brain injury. Overall, while TBI diminished memory and social behavior in zebrafish, administering ISRIB post-injury markedly reduced these behavioral deficits, and modulated brain gene expression, rescuing TBI-activated pathways related to inflammation and brain cell development. Collectively, this supports the role of brain ISR in TBI, and suggests potential utility of ISRIB for the treatment of TBI-related states.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Galina A Boyko
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Chekrygin
- Core Facility Center "Center Bio-Bank", Saint Petersburg University, St. Petersburg, Russia
| | - Lee Wei Lim
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, M. Heratsi Yerevan State Medical University, Yerevan, Armenia; Biochemistry Department, M. Heratsi Yerevan State Medical University, Yerevan, Armenia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
2
|
Yu Z, Shi H, Zhang J, Ma C, He C, Yang F, Zhao L. ROLE OF MICROGLIA IN SEPSIS-ASSOCIATED ENCEPHALOPATHY PATHOGENESIS: AN UPDATE. Shock 2024; 61:498-508. [PMID: 38150368 DOI: 10.1097/shk.0000000000002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, which is characterized by cognitive dysfunction, a poor prognosis, and high incidences of morbidity and mortality. Substantial levels of systemic inflammatory factors induce neuroinflammatory responses during sepsis, ultimately disrupting the central nervous system's (CNS) homeostasis. This disruption results in brain dysfunction through various underlying mechanisms, contributing further to SAE's development. Microglia, the most important macrophage in the CNS, can induce neuroinflammatory responses, brain tissue injury, and neuronal dysregulation, resulting in brain dysfunction. They serve an important regulatory role in CNS homeostasis and can be activated through multiple pathways. Consequently, activated microglia are involved in several pathogenic mechanisms related to SAE and play a crucial role in its development. This article discusses the role of microglia in neuroinflammation, dysfunction of neurotransmitters, disruption of the blood-brain barrier, abnormal control of cerebral blood flow, mitochondrial dysfunction, and reduction in the number of good bacteria in the gut as main pathogenic mechanisms of SAE and focuses on studies targeting microglia to ameliorate SAE to provide a theoretical basis for targeted microglial therapy for SAE.
Collapse
Affiliation(s)
| | - Hui Shi
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Jingjing Zhang
- Department of Central Laboratory, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Chunhan Ma
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Chen He
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Lina Zhao
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Kim HY, Ashim J, Park S, Kim W, Ji S, Lee SW, Jung YR, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Shin JM, Lee SJ, Yu W, Park JK, Choi SK. A preliminary study about the potential risks of the UV-weathered microplastic: The proteome-level changes in the brain in response to polystyrene derived weathered microplastics. ENVIRONMENTAL RESEARCH 2023; 233:116411. [PMID: 37354929 DOI: 10.1016/j.envres.2023.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
The growing use of plastic materials has resulted in a constant increase in the risk associated with microplastics (MPs). Ultra-violet (UV) light and wind break down modify MPs in the environment into smaller particles known as weathered MPs (WMPs) and these processes increase the risk of MP toxicity. The neurotoxicity of weathered polystyrene-MPs remains unclear. Therefore, it is important to understand the risks posed by WMPs. We evaluated the chemical changes of WMPs generated under laboratory-synchronized environmentally mimetic conditions and compared them with virgin MPs (VMPs). We found that WMP had a rough surface, slight yellow color, reduced molecular weight, and structural alteration compared with those of VMP. Next, 2 μg of ∼100 μm in size of WMP and VMP were orally administered once a day for one week to C57BL/6 male mice. Proteomic analysis revealed that the WMP group had significantly increased activation of immune and neurodegeneration-related pathways compared with that of the VMP group. Consistently, in in vitro experiments, the human brain-derived microglial cell line (HMC-3) also exhibited a more severe inflammatory response to WMP than to VMP. These results show that WMP is a more profound inflammatory factor than VMP. In summary, our findings demonstrate the toxicity of WMPs and provide theoretical insights into their potential risks to biological systems and even humans in the ecosystem.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Janbolat Ashim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wansoo Kim
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Sangho Ji
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Seoung-Woo Lee
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Yi-Rang Jung
- Department of Companion Animal Health Management, Daegu Health College, Daegu, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Young-Jae Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Mi Kyung Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | | | - Jung Min Shin
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Department of Brain Sciences, DGIST, Daegu, Republic of Korea.
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Çetin G, Studencka-Turski M, Venz S, Schormann E, Junker H, Hammer E, Völker U, Ebstein F, Krüger E. Immunoproteasomes control activation of innate immune signaling and microglial function. Front Immunol 2022; 13:982786. [PMID: 36275769 PMCID: PMC9584546 DOI: 10.3389/fimmu.2022.982786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.
Collapse
Affiliation(s)
- Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Schormann
- Institute of Biochemistry, Charité – University Medicine Berlin, Berlin, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Elke Krüger,
| |
Collapse
|
5
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
6
|
Targeting PERK mediated endoplasmic reticulum stress attenuates neuroinflammation and alleviates lipopolysaccharide-induced depressive-like behavior in male mice. Int Immunopharmacol 2022; 111:109092. [PMID: 35940075 DOI: 10.1016/j.intimp.2022.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a key role in the development of depression-like behaviors.Endoplasmic reticulum (ER) stress,defined as accumulation of unfolded proteins in the ER,is suggested tocollaboratewithinflammation process to drive sustained neuroinflammation. Protein kinase R-like endoplasmic reticulum kinase (PERK) is ofparticularly attractive target because it plays key rolein the regulation of ER stress-induced neuroinflammation, however, little isknown whether PERKmediatedER stress is implicated in LPS-induced depression-like behaviors.Thus, we aimed to evaluate the induction of PERK pathwayin mice with depression-like behaviors induced by LPS, as well as the alterations in depression-like behaviorsfollowing the blocking of PERK pathway.We found that LPS challenges resulted in enhanced PERK in the hippocampus, with no alteration in the prefrontal cortex. Importantly, we found that PERKinhibitorISRIB reducedthe proinflammatory responsesof microglia in the context of acute LPS-induced brain inflammation, and subsequent the preserved hippocampal neurogenesis, and improvement in depression-like behavioroutcomes following LPS challenges.It was also worth mentioning thatISRIB treatmentreduced the peripheral pro-inflammatory cytokines includingIL-1β, IL-6 and IL-18. Thus, targetingPERK mediated Endoplasmic reticulum stress may be a promising antidepressant and anti-inflammatory candidate drug for the alleviation of neuroinflammationmediated depression, and PERKinhibitorISRIBmay havebenefits for combating major depressive disorder.
Collapse
|
7
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|