1
|
Son KN, Lee H, Lee SM, Pierre-Jacques D, Shah D, Cologna SM, Aakalu VK. Identifying the crucial binding domain of histatin-1 to recombinant TMEM97 in activating chemotactic migration in human corneal epithelial cells. Biochem Biophys Res Commun 2024; 739:150991. [PMID: 39547121 DOI: 10.1016/j.bbrc.2024.150991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
TMEM97, also known as the sigma-2 receptor, plays a crucial role as an endoplasmic reticular protein involved in various physiological processes such as wound healing, and cholesterol metabolism. Moreover, TMEM97 has been implicated in multiple human diseases including neurodegenerative disorders and cancers. Histatin peptides are endogenous peptides with diverse biological effects, including antimicrobial, immunomodulatory, and wound healing functions. Recent studies have revealed that histatin-1 (Hst1) acts as an endogenous ligand for TMEM97 and is essential for Hst1-induced corneal epithelial migration. In this study, we sought to establish the crucial Hst1 residues that facilitate binding to TMEM97. The purified full-length (FL)-TMEM97 expressed from Escherichia coli exhibited comparable binding affinity, as indicated by the dissociation equilibrium constant (KD) determined by Surface plasmon resonance (SPR), to commercially sourced TMEM97 expressed in mammalian cells. SPR analysis revealed that TMEM97 bound to FL-Hst1 and selected deletion mutants of Hst1. Truncation experiments pinpointed the central region of Hst1 as crucial for its binding to TMEM97, with the loss of residues 15-19 either significantly weakening or completely abolishing the binding interaction. Furthermore, alanine substitution mutant experiments highlighted residues 9-19 as critical for the interaction between TMEM97 and Hst1. Functional assays including migration and signaling were also compared for Hst1 and mutant Hst1. Collectively, these findings underscore the specific binding of Hst1 to TMEM97 and elucidate the critical regions within Hst1 necessary for this interaction which is critically important for the epithelial migration and signaling changes in the ERK and Akt pathways.
Collapse
Affiliation(s)
- Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Hyun Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Sang Min Lee
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | | | - Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
2
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Huang K, Deng H, Wang S, Zhang F, Huang G, Wang L, Liu J, Zhao X, Ren H, Yang G, Lin Z. Melanin-Like Nanomedicine Functions as a Novel RPE Ferroptosis Inhibitor to Ameliorate Retinal Degeneration and Visual Impairment in Dry Age-Related Macular Degeneration. Adv Healthc Mater 2024:e2401613. [PMID: 39129350 DOI: 10.1002/adhm.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Ferrous ion accumulation and lethal oxidative stress mediate irreversible retinal pigment epithelial (RPE) cell ferroptosis and subsequent photoreceptor degeneration, a potential key pathogenic factor in the onset of dry age-related macular degeneration (dAMD), causing irreversible vision loss in the global elderly population. However, currently, no effective interventional treatment strategy exists in clinical practice. Herein, lesion site-targeted melanin-like nanoparticles, named ConA-MelNPs, are designed as a novel ferroptosis inhibitor for retinal degenerative diseases. ConA-MelNPs possessed chelating iron ion characteristics, alleviating severe mitochondrial damage caused by oxidative stress and protecting RPE cells from ferroptosis induced by sodium iodate (NaIO3). In a preclinical dAMD mouse model, a single intravitreal injection of ConA-MelNPs yielded significant responses in electroretinograms and visually-driven optomotor responses in visually impaired mice, resisting the challenge posed by secondary NaIO3-induced injuries, with the long-term sustainability of its therapeutic effect. Mechanistically, ConA-MelNPs achieve a therapeutic effect by interrupting the detrimental cascade involving "RPE cell ferroptosis, lethal oxidative stress, and microglial proinflammatory activation," affording the restoration of retinal homeostasis. The synthesized ConA-MelNPs demonstrated good biosafety, with no detected ophthalmic or systemic side effects. Collectively, ConA-MelNPs are proposed as a promising therapeutic option for atrophic retinal diseases such as dAMD.
Collapse
Affiliation(s)
- Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Haoyue Deng
- Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuang Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Jianyu Liu
- Department of Neurology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Xuli Zhao
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| |
Collapse
|
4
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Hong VM, Rade AD, Yan SM, Bhaskara A, Yousuf MS, Chen M, Martin SF, Liebl DJ, Price TJ, Kolber BJ. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024; 11:ENEURO.0488-23.2024. [PMID: 38866499 PMCID: PMC11228697 DOI: 10.1523/eneuro.0488-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.
Collapse
Affiliation(s)
- Veronica M Hong
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Avaneesh D Rade
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Shen M Yan
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Amulya Bhaskara
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Muhammad Saad Yousuf
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Min Chen
- Department of Mathematical Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080
| | - Stephen F Martin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, Florida 33146
| | - Theodore J Price
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Benedict J Kolber
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
6
|
Li J, Shen H, Guo LW. Transmembrane protein TMEM97 and epigenetic reader BAHCC1 constitute an axis that supports pro-inflammatory cytokine expression. Cell Signal 2024; 116:111069. [PMID: 38290642 PMCID: PMC10997414 DOI: 10.1016/j.cellsig.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Pro-inflammatory cytokine production by the retinal pigment epithelium (RPE) is a key etiology in retinal degenerative diseases, yet the underlying mechanisms are not well understood. TMEM97 is a scarcely studied transmembrane protein recently implicated in retinal degeneration. BAH domain coiled coil 1 (BAHCC1) is a newly discovered histone code reader involved in oncogenesis. A role for TMEM97 and BAHCC1 in RPE inflammation was not known. Here we found that they constitute a novel axis regulating pro-inflammatory cytokine expression in RPE cells. Transcriptomic analysis using a TMEM97-/- ARPE19 human cell line and the validation via TMEM97 loss- and gain-of-function revealed a profound role of TMEM97 in promoting the expression of pro-inflammatory cytokines, notably IL1β and CCL2, and unexpectedly BAHCC1 as well. Moreover, co-immunoprecipitation indicated an association between the TMEM97 and BAHCC1 proteins. While TMEM97 ablation decreased and its overexpression increased NFκB (p50, p52, p65), the master transcription factor for pro-inflammatory cytokines, silencing BAHCC1 down-regulated NFκB and downstream pro-inflammatory cytokines. Furthermore, in an RPE-damage retinal degeneration mouse model, immunofluorescence illustrated down-regulation of IL1β and CCL2 total proteins and suppression of glial activation in the retina of Tmem97-/- mice compared to Tmem97+/+ mice. Thus, TMEM97 is a novel determinant of pro-inflammatory cytokine expression acting via a previously unknown TMEM97- > BAHCC1- > NFκB cascade. SYNOPSIS: Retinal pigment epithelium (RPE) inflammation can lead to blindness. We identify here a previously uncharacterized cascade that underlies RPE cell production of pro-inflammatory cytokines. Specifically, transmembrane protein TMEM97 positively regulates the recently discovered histone code reader BAHCC1, which in turn enhances pro-inflammatory cytokine expression via the transcription factor NFκB.
Collapse
Affiliation(s)
- Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hongtao Shen
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Wang F, Zhong W, Yang Q, Zhao W, Liu X, Rao B, Lin X, Zhang J. Distribution and synaptic organization of substance P-like immunoreactive neurons in the mouse retina. Brain Struct Funct 2023; 228:1703-1724. [PMID: 37481742 DOI: 10.1007/s00429-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Substance P (SP), a neuroprotective peptidergic neurotransmitter, is known to have immunoreactivity (IR) localized to amacrine and/or ganglion cells in a variety of species' retinas, but it has not yet been studied in the mouse retina. Thus, we investigated the distribution and synaptic organization of SP-IR by confocal and electron microscopy immunocytochemistry in the mouse retina. SP-IR was distributed in the inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Most of the SP-IR somas belonged to amacrine cells (2.5% of all) in the INL and their processes stratified into the S1, S3, and S5 layers of the IPL, with the most intense band in the S5 layer. Some SP-IR somas can also be observed in the GCL, which were identified as displaced amacrine cells (82%, 1269/1550) and ganglion cells (18%, 281/1550) by antibodies against AP2α and RBPMS, respectively. Such SP-IR ganglion cells (1.2% of all RGCs) can be further divided into 3 subgroups expressing SP/α-Synuclein (α-Syn), SP/GAD67, and/or SP/GAD67/α-Syn. Possible physiological and pathological roles of these ganglion cells are discussed. Further, electron microscopy evidence demonstrates that SP-IR amacrine cells receive major inputs from other SP-IR amacrine cell processes (146/242 inputs) and output mostly to SP-negative amacrine cell processes (291/673 outputs), suggesting series inhibition among amacrine cells. These results reveal for the first time an explicit distribution, novel ganglion cell features, and synaptic organization of SP-IR in the mouse retina, which is important for the future use of mouse models to study the roles of SP in healthy and diseased (including Parkinson's disease) retinal states.
Collapse
Affiliation(s)
- Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Lizama BN, Kahle J, Catalano SM, Caggiano AO, Grundman M, Hamby ME. Sigma-2 Receptors—From Basic Biology to Therapeutic Target: A Focus on Age-Related Degenerative Diseases. Int J Mol Sci 2023; 24:ijms24076251. [PMID: 37047224 PMCID: PMC10093856 DOI: 10.3390/ijms24076251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by TMEM97, is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein–protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands. These studies demonstrate that S2R modulates key pathways involved in age-related diseases including autophagy, trafficking, oxidative stress, and amyloid-β and α-synuclein toxicity. Furthermore, S2R modulation can ameliorate functional deficits in cell-based and animal models of disease. This review summarizes the current evidence-based understanding of S2R biology and function, and its potential as a therapeutic target for age-related degenerative diseases of the central nervous system, including Alzheimer’s disease, α-synucleinopathies, and dry age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Michael Grundman
- Global R&D Partners, LLC., San Diego, CA 92130, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mary E. Hamby
- Cognition Therapeutics, Inc., Pittsburgh, PA 15203, USA
- Correspondence:
| |
Collapse
|
9
|
Mavlyutov TA, Li J, Liu X, Shen H, Yang H, McCurdy CR, Pattnaik B, Guo LW. Retinal Photoreceptor Protection in an AMD-Related Mouse Model by Selective Sigma-1 or Sigma-2 Receptor Modulation. Genes (Basel) 2022; 13:2386. [PMID: 36553653 PMCID: PMC9778362 DOI: 10.3390/genes13122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The structurally and genetically distinct sigma-1 receptor (S1R) and sigma-2 receptor (S2R) comprise a unique class of drug binding sites. Their alleles are associated with human diseases involving neuronal systems, such as age-related macular degeneration (AMD) characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. Previous studies have suggested neuroprotective benefits for the brain and retina from pharmacological modulation of S1R and/or S2R. However, the effect of such modulation on AMD pathology remains underexplored. Here, we evaluated S1R- or S2R-selective modulation in an AMD-related model of Abca4-/-Rdh8-/- mice with a disrupted visual cycle that predisposes RPE and photoreceptors to illumination-induced damage. For S1R modulation, we used (+)-pentazocine, which is a high-affinity S1R-selective drug. For S2R modulation, we chose CM398, a high-affinity and highly S2R-selective ligand with drug-like properties. Abca4-/-Rdh8-/- mice received a single i.p. injection of (+)-pentazocine or CM398 or vehicle 30 min before illumination. Pretreatment with (+)-pentazocine improved electroretinogram a- and b-waves compared to that with vehicle. Consistently, in another AMD-related mouse model induced by tail-vein injected NaIO3, S1R genetic ablation aggravated photoreceptor loss. In Abca4-/-Rdh8-/- mice, pretreatment with CM398 appeared to partially avert illumination-induced photoreceptor loss and autofluorescent granule formation that signals RPE damage, as revealed by optical coherence tomography. Thus, this study using AMD-related models provides evidence of photoreceptor protection afforded by selective modulation of S1R or S2R.
Collapse
Affiliation(s)
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinying Liu
- Department of Pediatrics, University of Wisconsin, Madison, WI 53705, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Huan Yang
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Bikash Pattnaik
- Department of Pediatrics, University of Wisconsin, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI 53705, USA
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Wang H, Peng Z, Li Y, Sahn JJ, Hodges TR, Chou TH, Liu Q, Zhou X, Jiao S, Porciatti V, Liebl DJ, Martin SF, Wen R. σ 2R/TMEM97 in retinal ganglion cell degeneration. Sci Rep 2022; 12:20753. [PMID: 36456686 PMCID: PMC9715665 DOI: 10.1038/s41598-022-24537-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The sigma 2 receptor (σ2R) was recently identified as an endoplasmic reticulum (ER) membrane protein known as transmembrane protein 97 (TMEM97). Studies have shown that σ2R/TMEM97 binding compounds are neuroprotective, suggesting a role of σ2R/TMEM97 in neurodegenerative processes. To understand the function of σ2R/TMEM97 in neurodegeneration pathways, we characterized ischemia-induced retinal ganglion cell (RGC) degeneration in TMEM97-/- mice and found that RGCs in TMEM97-/- mice are resistant to degeneration. In addition, intravitreal injection of a selective σ2R/TMEM97 ligand DKR-1677 significantly protects RGCs from ischemia-induced degeneration in wildtype mice. Our results provide conclusive evidence that σ2R/TMEM97 plays a role to facilitate RGC death following ischemic injury and that inhibiting the function of σ2R/TMEM97 is neuroprotective. This work is a breakthrough toward elucidating the biology and function of σ2R/TMEM97 in RGCs and likely in other σ2R/TMEM97 expressing neurons. Moreover, these findings support future studies to develop new neuroprotective approaches for RGC degenerative diseases by inhibiting σ2R/TMEM97.
Collapse
Affiliation(s)
- Hua Wang
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhiyou Peng
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - James J Sahn
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Timothy R Hodges
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Qiong Liu
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Xuezhi Zhou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen F Martin
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Differential Responses to Sigma-1 or Sigma-2 Receptor Ablation in Adiposity, Fat Oxidation, and Sexual Dimorphism. Int J Mol Sci 2022; 23:ijms231810846. [PMID: 36142759 PMCID: PMC9506228 DOI: 10.3390/ijms231810846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Obesity is increasing at epidemic rates across the US and worldwide, as are its co-morbidities, including type-2 diabetes and cardiovascular disease. Thus, targeted interventions to reduce the prevalence of obesity are of the utmost importance. The sigma-1 receptor (S1R) and sigma-2 receptor (S2R; encoded by Tmem97) belong to the same class of drug-binding sites, yet they are genetically distinct. There are multiple ongoing clinical trials focused on sigma receptors, targeting diseases ranging from Alzheimer’s disease through chronic pain to COVID-19. However, little is known regarding their gene-specific role in obesity. In this study, we measured body composition, used a comprehensive laboratory-animal monitoring system, and determined the glucose and insulin tolerance in mice fed a high-fat diet. Compared to Sigmar1+/+ mice of the same sex, the male and female Sigmar1−/− mice had lower fat mass (17% and 12% lower, respectively), and elevated lean mass (16% and 10% higher, respectively), but S1R ablation had no effect on their metabolism. The male Tmem97−/− mice exhibited 7% lower fat mass, 8% higher lean mass, increased volumes of O2 and CO2, a decreased respiratory exchange ratio indicating elevated fatty-acid oxidation, and improved insulin tolerance, compared to the male Tmem97+/+ mice. There were no changes in any of these parameters in the female Tmem97−/− mice. Together, these data indicate that the S1R ablation in male and female mice or the S2R ablation in male mice protects against diet-induced adiposity, and that S2R ablation, but not S1R deletion, improves insulin tolerance and enhances fatty-acid oxidation in male mice. Further mechanistic investigations may lead to translational strategies to target differential S1R/S2R regulations and sexual dimorphism for precision treatments of obesity.
Collapse
|
12
|
Identification of Human Retinal Organoid Cell Differentiation-Related Genes via Single-Cell Sequencing Data Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9717599. [PMID: 35979045 PMCID: PMC9377943 DOI: 10.1155/2022/9717599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study the development process of the human retina, we analyzed the development track of main cell types and transitional cell populations, identifying the retinal organoid cell differentiation-related genes (RDRGs). Methods. Single-cell RNA sequencing data (scRNA-Seq) of human retinal organoids were downloaded from Gene Expression Omnibus (GEO) database in this study. Data were processed with quality analysis and analysis of variance. Principal component analysis and
-distributed stochastic neighbor embedding were used to conduct dimension reduction analysis and type annotation for the screened data. Marker genes and RDRGs were identified by differential analysis. Cell differentiation characteristics were determined by trajectory analysis. Enrichment pathways were analyzed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG), and functional modules were obtained by protein-protein interaction (PPI) network analysis. Results. iPSCs were mainly located at the root of differentiation trajectory, while neurons and astrocytes were distributed in different branches, respectively. Meanwhile, 220 RDRGs were obtained. They were involved in the biological functions related to vision and visual development, as well as significantly enriched in signaling pathways associated with retinal vascular development and retinal neuroregulation. Protein-protein interaction network construction and functional subnetwork analysis were conducted on RDRGs, and two functional submodules were obtained. The enrichment analysis presented that the two submodules played a vital role in retinal development, visual perception, and cell respiration. Conclusions. This study identified RDRGs and revealed the biological functions involved in these genes, which are expected to provide evidence for researching retinal development and diseases.
Collapse
|