1
|
Poullennec KG, Jnoff E, Abendroth J, Bhuma N, Calmiano M, Calmus L, Cardenas A, Courade JP, Delatour C, Hall A, de Haro T, Delker SL, Demaude T, Gaikwad N, Ghavate D, Gholap AR, Kierkowicz M, Le Mestre R, Van Hijfte N, Verheijden S, Vernerova K, De Wever V, Waghmode N. Discovery of UCB9386: A Potent, Selective, and Brain-Penetrant Nuak1 Inhibitor Suitable for In Vivo Pharmacological Studies. J Med Chem 2024; 67:20879-20910. [PMID: 39588908 DOI: 10.1021/acs.jmedchem.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Nuak1 (NUAK family SnF1-like kinase-1) is a serine-threonine kinase and a member of the AMPK family. Interest in Nuak1 has increased over the years due to the role it plays in several biological processes, from tumor cell invasion and proliferation to Tau stabilization. Nuak1 is expressed in many cancer cell lines and many reports describe this target as an oncogene, the inhibition of which is hypothesized to be valuable for treating various cancer types including glioma. We report here the discovery of Nuak1 inhibitors originating from HTS hit 9 with excellent selectivity and the subsequent medicinal chemistry optimization program, supported by structural information from the first crystal structures of a Nuak1 chimeric protein which provided insights into the binding modes of our compounds. These efforts yielded a nanomolar cell potent, highly selective and brain penetrant Nuak1 inhibitor UCB9386 (56) suitable for in vivo pharmacological studies for central nervous system (CNS) disorders.
Collapse
Affiliation(s)
| | - Eric Jnoff
- Chemin du Foriest, UCB, 1420 Braine l'Alleud, Belgium
| | - Jan Abendroth
- UCB Seattle, Bainbridge Island, Washington 98110, United States
| | - Naresh Bhuma
- Illumina Centre, 19 Granta Park, Great Abingdon CB21 6DF, United Kingdom
| | | | - Laurent Calmus
- NovAliX, 240 Parc d'Affaires des Portes, 27100 Val-de-Reuil, France
| | | | | | | | - Adrian Hall
- Chemin du Foriest, UCB, 1420 Braine l'Alleud, Belgium
| | | | | | | | - Nilesh Gaikwad
- Sai Life Sciences Ltd, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, India
| | - Dnyaneshwar Ghavate
- Sai Life Sciences Ltd, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, India
| | - Atul R Gholap
- Sai Life Sciences Ltd, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, India
| | | | - Régis Le Mestre
- Minoryx Therapeutics, Avenue Jean Mermoz 32, 6041 Charleroi, Belgium
| | | | - Simon Verheijden
- Janssen Research and Development, Antwerpseweg 15, 2340 Beerse, Belgium
| | | | | | | |
Collapse
|
2
|
Skalka GL, Whyte D, Lubawska D, Murphy DJ. NUAK: never underestimate a kinase. Essays Biochem 2024; 68:295-307. [PMID: 38939918 DOI: 10.1042/ebc20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
NUAK1 and NUAK2 belong to a family of kinases related to the catalytic α-subunits of the AMP-activated protein kinase (AMPK) complexes. Despite canonical activation by the tumour suppressor kinase LKB1, both NUAKs exhibit a spectrum of activities that favour tumour development and progression. Here, we review similarities in structure and function of the NUAKs, their regulation at gene, transcript and protein level, and discuss their phosphorylation of specific downstream targets in the context of the signal transduction pathways and biological activities regulated by each or both NUAKs.
Collapse
Affiliation(s)
- George L Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | - Declan Whyte
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | | | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| |
Collapse
|
3
|
Taylor LW, Simzer EM, Pimblett C, Lacey-Solymar OTT, McGeachan RI, Meftah S, Rose JL, Spires-Jones MP, Holt K, Catterson JH, Koch H, Liaquat I, Clarke JH, Skidmore J, Smith C, Booker SA, Brennan PM, Spires-Jones TL, Durrant CS. p-tau Ser356 is associated with Alzheimer's disease pathology and is lowered in brain slice cultures using the NUAK inhibitor WZ4003. Acta Neuropathol 2024; 147:7. [PMID: 38175261 PMCID: PMC10766794 DOI: 10.1007/s00401-023-02667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.
Collapse
Affiliation(s)
- Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth M Simzer
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire Pimblett
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Henner Koch
- Department of Neurology, Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Colin Smith
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Zai CC, Squassina A, Tiwari AK, Pisanu C, Pinna M, Pinna F, Meloni A, Paribello P, Carpiniello B, Tondo L, Frye MA, Biernacka JM, Coombes BJ, Kennedy JL, Manchia M. A genome-wide association study of antidepressant-induced mania. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110800. [PMID: 37236419 DOI: 10.1016/j.pnpbp.2023.110800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Antidepressant-induced mania (AIM) is a side effect of antidepressant treatment that is characterized by mania or hypomania after the start of medication. It is likely polygenic, but its genetic component remains largely unexplored. We aim to conduct the first genome-wide association study of AIM in 814 bipolar disorder patients of European ancestry. We report no significant findings from our single-marker or gene-based analyses. Our polygenic risk score analyses also did not yield significant results with bipolar disorder, antidepressant response, or lithium response. Our suggestive findings on the hypothalamic-pituitary-adrenal axis and the opioid system in AIM require independent replications.
Collapse
Affiliation(s)
- Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, United States of America.
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy
| | - Marco Pinna
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; Lucio Bini Mood Disorders Center, Cagliari, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Leonardo Tondo
- Lucio Bini Mood Disorders Center, Cagliari, Italy; McLean Hospital-Harvard Medical School, Boston, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; McLean Hospital-Harvard Medical School, Boston, USA
| |
Collapse
|
5
|
Zhao Z, Brooks D, Guo Y, Geisbrecht ER. Identification of CryAB as a target of NUAK kinase activity in Drosophila muscle tissue. Genetics 2023; 225:iyad167. [PMID: 37713608 PMCID: PMC10627272 DOI: 10.1093/genetics/iyad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphorylation reactions performed by protein kinases are one of the most studied post-translational modifications within cells. Much is understood about conserved residues within protein kinase domains that perform catalysis of the phosphotransfer reaction, yet the identity of the target substrates and downstream biological effects vary widely among cells, tissues, and organisms. Here, we characterize key residues essential for NUAK kinase activity in Drosophila melanogaster myogenesis and homeostasis. Creation of a NUAK kinase-dead mutation using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 results in lethality at the embryo to larval transition, while loss of NUAK catalytic function later in development produces aggregation of the chaperone protein αB-crystallin/CryAB in muscle tissue. Yeast 2-hybrid assays demonstrate a physical interaction between NUAK and CryAB. We further show that a phospho-mimetic version of NUAK promotes the phosphorylation of CryAB and this post-translational modification occurs at 2 previously unidentified phosphosites that are conserved in the primary sequence of human CryAB. Mutation of these serine residues in D. melanogaster NUAK abolishes CryAB phosphorylation, thus, proving their necessity at the biochemical level. These studies together highlight the importance of kinase activity regulation and provide a platform to further explore muscle tissue proteostasis.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| |
Collapse
|