1
|
Dahlgren C, Forsman H, Sundqvist M, Björkman L, Mårtensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol 2024; 116:1334-1351. [PMID: 39056275 DOI: 10.1093/jleuko/qiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
In human peripheral blood, the neutrophil granulocytes (neutrophils) are the most abundant white blood cells. These professional phagocytes are rapidly recruited from the bloodstream to inflamed tissues by chemotactic factors that signal danger. Neutrophils, which express many receptors that are members of the large family of G protein-coupled receptors (GPCRs), are critical for the elimination of pathogens and inflammatory insults, as well as for the resolution of inflammation leading to tissue repair. Danger signaling molecular patterns such as the N-formylated peptides that are formed during bacterial and mitochondrial protein synthesis and recognized by formyl peptide receptors (FPRs) and free fatty acids recognized by free fatty acid receptors (FFARs) regulate neutrophil functions. Short peptides and short-chain fatty acids activate FPR1 and FFA2R, respectively, while longer peptides and fatty acids activate FPR2 and GPR84, respectively. The activation profiles of these receptors include the release of reactive oxygen species (ROS) generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activation of the oxidase and the production of ROS are processes that are regulated by proinflammatory mediators, including tumor necrosis factor α and granulocyte/macrophage colony-stimulating factor. The receptors have signaling and functional similarities, although there are also important differences, not only between the two closely related neutrophil FPRs, but also between the FPRs and the FFARs. In neutrophils, these receptors never walk alone, and additional mechanistic insights into the regulation of the GPCRs and the novel regulatory mechanisms underlying the activation of NADPH oxidase advance our understanding of the role of receptor transactivation in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| |
Collapse
|
2
|
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres MJ, Bordas-Murphy H, Schulz ME, Pearson PJ, Freed JK. Necessary Role of Ceramides in the Human Microvascular Endothelium During Health and Disease. Circ Res 2024; 134:81-96. [PMID: 38037825 PMCID: PMC10766100 DOI: 10.1161/circresaha.123.323445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Elevated plasma ceramides and microvascular dysfunction both independently predict adverse cardiac events. Despite the known detrimental effects of ceramide on the microvasculature, evidence suggests that activation of the shear-sensitive, ceramide-forming enzyme NSmase (neutral sphingomyelinase) elicits formation of vasoprotective nitric oxide (NO). Here, we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults (non-coronary artery disease [CAD]) and patients diagnosed with CAD. METHODS Human arterioles were dissected from discarded surgical adipose tissue (n=166), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO and mitochondrial hydrogen peroxide (H2O2) production were measured in arterioles using fluorescence microscopy. H2O2 fluorescence was assessed in isolated human umbilical vein endothelial cells. RESULTS Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to NOX-2 (NADPH-oxidase 2)-dependent H2O2-mediated flow-induced dilation. Endothelial dysfunction was prevented by treatment with sphingosine-1-phosphate (S1P) and partially prevented by C2-ceramide and an agonist of S1P-receptor 1 (S1PR1); the inhibition of the S1P/S1PR1 signaling axis induced endothelial dysfunction via NOX-2. Ceramide increased NO production in arterioles from non-CAD adults, an effect that was diminished with inhibition of S1P/S1PR1/S1P-receptor 3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired the overall ability to induce mitochondrial H2O2 production and subsequently dilate to flow, an effect not restored with exogenous S1P. Acute ceramide administration to arterioles from patients with CAD promoted H2O2 as opposed to NO production, an effect dependent on S1P-receptor 3 signaling. CONCLUSION These data suggest that despite differential downstream signaling between health and disease, NSmase-mediated ceramide formation is necessary for proper functioning of the human microvascular endothelium. Therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Boran Katunaric
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Zachary Zirgibel
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Brian Lindemer
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Maria J. Jaramillo-Torres
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Henry Bordas-Murphy
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Mary E. Schulz
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Paul J. Pearson
- Department of Surgery, Division of Cardiothoracic Surgery (P.J.P.), Medical College of Wisconsin, Milwaukee, WI
| | - Julie K. Freed
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|