Qi H, Cao M, Chen Y, Li X, Wang Y, Dai X, Duan X, Lu J. KNTC1 functions as a potential biomarker and oncogene regulating proliferation, migration and apoptosis in gastric cancer.
Int Immunopharmacol 2024;
143:113257. [PMID:
39362011 DOI:
10.1016/j.intimp.2024.113257]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND
As one of the most prevalent cancers, gastric cancer (GC) exhibits a remarkably high morbidity and mortality rate. To date, effective diagnostic and prognostic markers and therapeutic targets for GC are still lacking. Kinetochore associated 1 (KNTC1) is one of the proteins involved in chromosome segregation. However, the diagnostic and prognostic value of KNTC1 and its biological function in GC remain unknown.
METHODS
In this study, Gene Expression Omnibus (GEO) datasets were utilized to identify differentially expressed genes (DEGs). Prognostic and diagnostic value were assessed by Kaplan-Meier plotter and receiver operating characteristic (ROC) curve. The expression of KNTC1 was verified by q-PCR, immunohistochemistry (IHC) and Western blotting. Subsequently, KNTC1 knockdown was employed to investigate its effect on GC cells. Gene set enrichment analysis (GSEA) revealed a pathway regulated by KNTC1, which was further verified by Western blotting.
RESULTS
Four highly expressed genes (ESPL1, RAD54L, KNTC1, TACC3) were identified as biomarkers for GC diagnosis and prognosis. Notably, the value of KNTC1 as a biomarker for GC was newly revealed. Single-cell and immune analyses revealed that KNTC1 contributed to the suppression of the GC immune microenvironment. In clinical samples, we demonstrated high expression of KNTC1 in GC tissues. KNTC1 knockdown suppressed proliferation and migration while promoting apoptosis of GC cells. Additionally, KNTC1 may affect GC cells by regulating the PI3K/Akt/mTOR pathway.
CONCLUSIONS
KNTC1 acts as a potential diagnostic and prognostic marker for GC. It may promote proliferation and migration while inhibiting apoptosis of GC cells via the PI3K/Akt/mTOR pathway.
Collapse