1
|
Gholizadeh N, Rokni GR, Zaresharifi S, Gheisari M, Tabari MAK, Zoghi G. Revolutionizing non-melanoma skin cancer treatment: Receptor tyrosine kinase inhibitors take the stage. J Cosmet Dermatol 2024; 23:2793-2806. [PMID: 38812406 DOI: 10.1111/jocd.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Innovative treatments for non-melanoma skin cancers (NMSCs) are required to enhance patient outcomes. AIMS This review examines the effectiveness and safety of receptor tyrosine kinase inhibitors (RTKIs). METHODS A comprehensive review was conducted on the treatment potential of several RTKIs, namely cetuximab, erlotinib, gefitinib, panitumumab, and lapatinib. RESULTS The findings indicate that these targeted therapies hold great promise for the treatment of NMSCs. However, it is crucial to consider relapse rates and possible adverse effects. Further research is needed to improve treatment strategies, identify patient groups that would benefit the most, and assess the long-term efficacy and safety, despite the favorable results reported in previous studies. Furthermore, it is crucial to investigate the potential benefits of integrating RTKIs with immunotherapy and other treatment modalities to enhance the overall efficacy of therapy for individuals with NMSC. CONCLUSIONS Targeted therapies for NMSCs may be possible with the use of RTKIs. The majority of studies focused on utilizing epidermal growth factor receptor inhibitors as the primary class of RTKIs for the treatment of NMSC. Other RTKIs were only employed in experimental investigations. Research indicates that RTKIs could potentially serve as a suitable alternative for elderly patients who are unable to undergo chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirin Zaresharifi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghazal Zoghi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Hosseini TM, Park SJ, Guo T. The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers (Basel) 2024; 16:2904. [PMID: 39199674 PMCID: PMC11352924 DOI: 10.3390/cancers16162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) manifests through the complex interactions of UV-induced DNA damage, genetic mutations, and alterations in the tumor microenvironment. A high mutational burden is present in cSCC, as well as both cSCC precursors and normal skin, making driver genes difficult to differentiate. Despite this, several key driver genes have been identified, including TP53, the NOTCH family, CDKN2A, PIK3CA, and EGFR. In addition to mutations, the tumor microenvironment and the manipulation and evasion of the immune system play a critical role in cSCC progression. Novel therapeutic approaches, such as immunotherapy and EGFR inhibitors, have been used to target these dysregulations, and have shown promise in treating advanced cSCC cases, emphasizing the need for targeted interventions considering both genetic and microenvironmental factors for improved patient outcomes.
Collapse
Affiliation(s)
- Tara M. Hosseini
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Soo J. Park
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otolaryngology-Head & Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Upreti A, Padula SL, Weaver JM, Wagner BD, Kneller AM, Petulla AL, Lachke SA, Robinson ML. A Transcriptomics Analysis of the Regulation of Lens Fiber Cell Differentiation in the Absence of FGFRs and PTEN. Cells 2024; 13:1222. [PMID: 39056803 PMCID: PMC11274593 DOI: 10.3390/cells13141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of β-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Jacob M. Weaver
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Allison M. Kneller
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Anthony L. Petulla
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| |
Collapse
|
4
|
Suzuki T, Nakanishi Y, Tanino T, Nishimaki-Watanabe H, Kobayashi H, Ohni S, Tang X, Hakamada K, Masuda S. Immunohistochemical and molecular profiles of heterogeneous components of metaplastic breast cancer: a squamous cell carcinomatous component was distinct from a spindle cell carcinomatous component. Discov Oncol 2024; 15:95. [PMID: 38564036 PMCID: PMC10987432 DOI: 10.1007/s12672-024-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Metaplastic breast carcinoma (MBC), a category of breast cancer, includes different histological types, which are occasionally mixed and heterogeneous. Considering the heterogeneity of cancer cells in a tumour mass has become highly significant, not only from a biological aspect but also for clinical management of recurrence. This study aimed to analyse the immunohistochemical and molecular profiles of each MBC component of a tumour mass. Twenty-five MBC tumours were histologically evaluated, and the most frequent MBC component (c) was squamous cell carcinoma (SCC), followed by spindle cell carcinoma (SpCC). A total of 69 components of MBC and non-MBC in formalin-fixed paraffin-embedded sections were examined for 7 markers by immunohistochemistry. SCC(c) were significantly PTEN negative and CK14 positive, and SpCC(c) were significantly E-cadherin negative and vimentin positive. Multivariate analyses revealed that immunohistochemical profiles of normal/intraductal (IC)(c), no special type (NST)(c), and MBC(c) differed; moreover, SCC(c) and SpCC(c) were distinctly grouped. PTEN gene mutation was detected only in SCC(c) (2/7), but not in SpCC(c). Next-generation sequence analyses for 2 cases with tumours containing SCC(c) demonstrated that PTEN gene mutation increased progressively from IC(c) to NST(c) to SCC(c). In conclusion, the immunohistochemical and molecular profiles of the SCC(c) of MBC are distinct from those of the SpCC(c).
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Tomoyuki Tanino
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Haruna Nishimaki-Watanabe
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Hiroko Kobayashi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Xiaoyan Tang
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Georgescu SR, Tocut SM, Matei C, Ene CD, Nicolae I, Tampa M. A Panel of Potential Serum Markers Related to Angiogenesis, Antioxidant Defense and Hypoxia for Differentiating Cutaneous Squamous Cell Carcinomas from Actinic Keratoses. J Pers Med 2024; 14:103. [PMID: 38248804 PMCID: PMC10820834 DOI: 10.3390/jpm14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) arising from the malignant proliferation of epidermal keratinocytes is the second most common skin cancer. Actinic keratosis (AK), which is considered cSCC in situ, may progress into invasive tumors. Currently, there are no serum markers that can differentiate cSCC from AK. The aim of our study was to assess angiogenesis and oxidative stress in patients with cSCC and patients with AK and find reliable serum markers useful in the diagnosis of cSCC. We have determined the serum levels of a group of proangiogenic factors (MMP-2, MMP-9, VEGF, FGF2), the total antioxidative status/capacity (TAS/TAC), ImAnOx, a marker of oxidative stress, and HIF-1 alpha, an indicator of hypoxia. We have identified higher serum levels of MMP-2. MMP-9, VEGF, FGF2 and HIF-1 alpha and lower levels of ImAnOx in cSCC patients compared to AK patients and controls. There were no statistically significant differences between AK patients and controls. We have found positive correlations between proangiogenic markers and HIF-1 alpha and negative correlations between proangiogenic markers and ImAnOx. Our results suggest that MMP-2, MMP-9, VEGF, FGF2, ImAnOx and HIF-1 may be promising markers for differentiating AK from cSCC, and there is a link between angiogenesis, oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Sandra Milena Tocut
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel;
- Department of Internal Medicine, “Wolfson Medical Center”, 61 Halochamim Street, 58100 Holon, Israel
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
| | - Corina Daniela Ene
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
6
|
Yu S, Ye J, Wang Y, Lu T, Liu Y, Liu N, Zhang J, Lu F, Ma D, Gale RP, Ji C. DNA damage to bone marrow stromal cells by antileukemia drugs induces chemoresistance in acute myeloid leukemia via paracrine FGF10-FGFR2 signaling. J Biol Chem 2022; 299:102787. [PMID: 36509141 PMCID: PMC9860495 DOI: 10.1016/j.jbc.2022.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). The bone marrow microenvironment (BMM) plays a complex role in protecting leukemia cells from chemotherapeutics, and the mechanisms involved are not fully understood. Antileukemia drugs kill AML cells directly but also damage the BMM. Here, we determined antileukemia drugs induce DNA damage in bone marrow stromal cells (BMSCs), resulting in resistance of AML cell lines to adriamycin and idarubicin killing. Damaged BMSCs induced an inflammatory microenvironment through NF-κB; suppressing NF-κB with small molecule inhibitor Bay11-7082 attenuated the prosurvival effects of BMSCs on AML cell lines. Furthermore, we used an ex vivo functional screen of 507 chemokines and cytokines to identify 44 proteins secreted from damaged BMSCs. Fibroblast growth factor-10 (FGF10) was most strongly associated with chemoresistance in AML cell lines. Additionally, expression of FGF10 and its receptors, FGFR1 and FGFR2, was increased in AML patients after chemotherapy. FGFR1 and FGFR2 were also widely expressed by AML cell lines. FGF10-induced FGFR2 activation in AML cell lines operates by increasing P38 MAPK, AKT, ERK1/2, and STAT3 phosphorylation. FGFR2 inhibition with small molecules or gene silencing of FGFR2 inhibited proliferation and reverses drug resistance of AML cells by inhibiting P38 MAPK, AKT, and ERK1/2 signaling pathways. Finally, release of FGF10 was mediated by β-catenin signaling in damaged BMSCs. Our data indicate FGF10-FGFR2 signaling acts as an effector of damaged BMSC-mediated chemoresistance in AML cells, and FGFR2 inhibition can reverse stromal protection and AML cell chemoresistance in the BMM.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yingqiao Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Ting Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Robert Peter Gale
- Haematology Section, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China,For correspondence: Chunyan Ji
| |
Collapse
|
7
|
Zingg D, Bhin J, Yemelyanenko J, Kas SM, Rolfs F, Lutz C, Lee JK, Klarenbeek S, Silverman IM, Annunziato S, Chan CS, Piersma SR, Eijkman T, Badoux M, Gogola E, Siteur B, Sprengers J, de Klein B, de Goeij-de Haas RR, Riedlinger GM, Ke H, Madison R, Drenth AP, van der Burg E, Schut E, Henneman L, van Miltenburg MH, Proost N, Zhen H, Wientjens E, de Bruijn R, de Ruiter JR, Boon U, de Korte-Grimmerink R, van Gerwen B, Féliz L, Abou-Alfa GK, Ross JS, van de Ven M, Rottenberg S, Cuppen E, Chessex AV, Ali SM, Burn TC, Jimenez CR, Ganesan S, Wessels LFA, Jonkers J. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature 2022; 608:609-617. [PMID: 35948633 PMCID: PMC9436779 DOI: 10.1038/s41586-022-05066-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1–9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1–E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies. Truncation of exon 18 of FGFR2 (FGFR2ΔE18) is a potent driver mutation in mice and humans, and FGFR-targeted therapy should be considered for patients with cancer expressing stable FGFR2ΔE18 variants.
Collapse
Affiliation(s)
- Daniel Zingg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia Yemelyanenko
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Frank Rolfs
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Stefano Annunziato
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Chang S Chan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Bjørn Siteur
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bim de Klein
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Richard R de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gregory M Riedlinger
- Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.,Department of Pathology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Hua Ke
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | | | - Anne Paulien Drenth
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ellen Wientjens
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ute Boon
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Bastiaan van Gerwen
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luis Féliz
- Incyte Biosciences International, Morges, Switzerland
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA.,Upstate University Hospital, Upstate Medical University, Syracuse, NY, USA
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands.,Hartwig Medical Foundation, Amsterdam, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, The Netherlands. .,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
9
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
11
|
Thakur MA, Khandelwal AR, Gu X, Rho O, Carbajal S, Kandula RA, DiGiovanni J, Nathan CAO. Inhibition of Fibroblast Growth Factor Receptor Attenuates Ultraviolet B-Induced Skin Carcinogenesis. J Invest Dermatol 2022; 142:2873-2884.e7. [PMID: 35551922 DOI: 10.1016/j.jid.2022.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Altered FGFR signaling has been shown to play a role in a number of cancers. However, the role of FGFR signaling in the development and progression of ultraviolet B-induced (UVB) induced cutaneous squamous cell carcinoma (cSCC) remains unclear. In the current study, the effect of UVB radiation on FGFR activation and its downstream signaling in mouse skin epidermis was examined. In addition, the impact of FGFR inhibition on UVB-induced signaling and skin carcinogenesis was also investigated. Exposure of mouse dorsal skin to UVB significantly increased phosphorylation of FGFRs in the epidermis as well as activation of downstream signaling pathways, including AKT/mTOR, STATs and MAPK. Topical application of the pan-FGFR inhibitor AZD4547 to mouse skin prior to exposure to UVB significantly inhibited FGFR phosphorylation as well as mTORC1, STAT3 and MAPK activation (i.e., phosphorylation). Moreover, AZD4547 pretreatment significantly inhibited UVB-induced epidermal hyperplasia and hyperproliferation and reduced infiltration of mast cells and macrophages into the dermis. AZD4547 treatment also significantly inhibited mRNA expression of inflammatory genes in the epidermis. Finally, mice treated topically with AZD4547 prior to UVB exposure showed decreased cSCC incidence and increased survival rate. Collectively, the current data supports the hypothesis that inhibition of FGFR in epidermis may provide a new strategy to prevent and/or treat UVB-induced cSCC.
Collapse
Affiliation(s)
- Megha A Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Steve Carbajal
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Rima A Kandula
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA; LiveStrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, LA, USA.
| |
Collapse
|
12
|
Hausott B, Glueckert R, Schrott-Fischer A, Klimaschewski L. Signal Transduction Regulators in Axonal Regeneration. Cells 2022; 11:cells11091537. [PMID: 35563843 PMCID: PMC9104247 DOI: 10.3390/cells11091537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
13
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
14
|
Abstract
There has been a drastic increase in the incidence of nonmelanoma (NMSC), including squamous, basal cell, and melanoma skin cancers worldwide. Most cases of skin cancer can be treated effectively with surgery; fewer than 10% of cases are advanced and may require additional therapies. A better understanding of the biology of skin cancer will help contribute to better prognostic information and identification of possible new therapeutic targets. Herein, the authors review the biology and pathogenesis of both NMSC and melanoma, focusing on critical cell signaling pathways mediating the disease and current therapeutic strategies targeted to underlying genetic pathways.
Collapse
|
15
|
Huang X, Liang X, Zhou Y, Li H, Du H, Suo Y, Liu W, Jin R, Chai B, Duan R, Li H, Li Q. CDH1 is Identified as A Therapeutic Target for Skin Regeneration after Mechanical Loading. Int J Biol Sci 2021; 17:353-367. [PMID: 33390855 PMCID: PMC7757047 DOI: 10.7150/ijbs.51309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Rationale: Mechanical stimuli in the microenvironment are considered key regulators of cell function. Clinically, mechanical force (tissue expander) is widely used to regenerate skin for post-burn or trauma repair, implying that mechanical stretching can promote skin cell regeneration and proliferation. However, the underlying mechanism remains unknown. Methods: Microarray analysis was utilized to detect the hub gene. The expression of Cdh1 as examined in cells and tissues by western blot, q-PCR and immunohistochemistry staining respectively. Biological roles of Cdh1 was revealed by a series of functional in vitro and in vivo studies. Results: Microarray analysis identified Cdh1 as a hub gene related to skin regeneration during rat cutaneous mechanical loading. In vitro studies suggested that both mechanical loading and Cdh1 interference induced keratinocyte dedifferentiation and enhanced stemness, promoting cell proliferation and prevent apoptosis. Furthermore, the forkhead box O1/Krüppel-like factor 4 (FOXO1/KLF4) pathway was activated and contributed to the keratinocyte dedifferentiation. In vivo studies showed that mechanical loading and Cdh1 interference facilitated epidermal dedifferentiation and promoted dermal collagen deposition, and that Cdh1 overexpression could block such influence. Conclusions: In this study, we show that E-cadherin (CDH1), a well-known cell-cell adhesion molecule, plays a crucial role in mechanical stretch-induced skin cell regeneration and proliferation. We have shown for the first time the process by which mechanical stress is transmitted to the epidermis and induces a downstream signaling pathway to induce epidermal cells to differentiate. These findings demonstrate that Cdh1-induced keratinocyte dedifferentiation is a crucial event in mechanical stretch-mediated skin regeneration and that Cdh1 may serve as a potential therapeutic target for promoting skin regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haizhou Li
- a Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Qingfeng Li
- a Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| |
Collapse
|
16
|
Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten. Dev Biol 2020; 467:1-13. [PMID: 32858001 DOI: 10.1016/j.ydbio.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.
Collapse
|
17
|
Kisacam MA, Kocamuftuoglu GO, Ozan IE, Yaman M, Ozan ST. Calcium Fructoborate Prevents Skin Cancer Development in Balb-c Mice. Biol Trace Elem Res 2020; 196:131-144. [PMID: 31529243 DOI: 10.1007/s12011-019-01897-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
Tumor microenvironment, genetic, and non-genetic factors are responsible for the atypical metabolic feature of cancer cells. Aberrant activity of PI3K/Akt pathway, increased glycolytic flux, and decreased intracellular pH gradient are the leading causes of this feature. Calcium Fructoborate (CaFB), a sugar-borate ester, has major benefits for human health. The aim of this study was to explore the implication of CaFB on experimentally induced skin cancer in vivo. According to the treatment, 92 female Balb-c mice are divided into six groups: control, CaFB (3 mg/kg/day), 7,12-Dimethylbenz(a)anthracene (DMBA)+12-O-tetradecanoylphorbol-13-acetate (TPA) (97.5 nmol DMBA, 6.5 nmol TPA), T1: CaFB+DMBA+TPA (3 mg/kg/day CaFB together with DMBA), T2: DMBA+CaFB+TPA (3 mg/kg/day CaFB together with TPA), T3: DMBA+TPA+CaFB (3 mg/kg/day CaFB after tumor formation). Topical DMBA and TPA application resulted in a significant increase in the protein levels, immunoreactivity, and mRNA expression of HRAS, HIF1α, Akt, and PTEN (p < 0.05). Moreover, an increase in the number of TUNEL-positive cells was observed in DMBA-TPA group compared with the control group (p < 0.05). CaFB application reduced the protein levels, immunoreactivity, and mRNA expressions of HRAS, HIF1α, Akt, and PTEN and also decreased the number of TUNEL-positive cells. Recent evidence obtained from our study validated that CaFB treatment may have skin cancer-preventing effect.
Collapse
Affiliation(s)
- Mehmet Ali Kisacam
- Faculty of Veterinary Medicine, Department of Biochemistry, Mustafa Kemal University, 31060, Hatay, Turkey.
| | - Gonca Ozan Kocamuftuoglu
- Faculty of Veterinary Medicine, Department of Biochemistry, Mehmet Akif Ersoy University, 15030, Burdur, Turkey
| | - Ibrahim Enver Ozan
- Faculty of Medicine, Department of Histology and Embryology, Firat University, 23200, Elazig, Turkey
| | - Mehmet Yaman
- Faculty of Science, Department of Chemistry, Firat University, 23200, Elazig, Turkey
| | - Sema Temizer Ozan
- Faculty of Veterinary Medicine, Department of Biochemistry, Firat University, 23200, Elazig, Turkey
| |
Collapse
|
18
|
Di Nardo L, Pellegrini C, Di Stefani A, Del Regno L, Sollena P, Piccerillo A, Longo C, Garbe C, Fargnoli MC, Peris K. Molecular genetics of cutaneous squamous cell carcinoma: perspective for treatment strategies. J Eur Acad Dermatol Venereol 2020; 34:932-941. [PMID: 31747091 DOI: 10.1111/jdv.16098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents 20% of all skin cancers. Although primary cSCCs can be successfully treated with surgery, a subset of highly aggressive lesions may progress to advanced disease, representing a public healthcare problem with significant cancer-related morbidity and mortality. A complex network of genes (TP53, CDKN2A, NOTCH1 and NOTCH2, EGFR and TERT) and molecular pathways (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) have been shown to play an important role in the pathogenesis of cSCC. The epigenetic regulation of TP53 and CDKN2A is an attractive therapeutic target for the treatment of cSCC, as well as NOTCH-activating agents capable to restore its tumour-suppressor function. EGFR inhibitors including both monoclonal antibodies (cetuximab and panitumumab) and tyrosine kinase inhibitors (erlotinib, gefitinib and dasatinib) have been used in clinical trials for the treatment of advanced cSCC, achieving only partial clinical benefit. Recently, an immune-modulatory drug (cemiplimab) has been introduced for the treatment of advanced cSCC with good clinical results and a favourable safety profile, while other PD1/PD-L1 inhibitors, either as monotherapy or in combination with targeted therapies, are currently under investigation. This review focuses on molecular findings involved in the pathogenesis of cSCC and their implications for the future development of new treatment strategies. In addition, current and ongoing treatments on targeted therapies and/or immunotherapy are illustrated.
Collapse
Affiliation(s)
- L Di Nardo
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - C Pellegrini
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - A Di Stefani
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - L Del Regno
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - P Sollena
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - A Piccerillo
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - C Longo
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Garbe
- Centre for Dermatooncology, Department of Dermatology, Eberhard-Karls University, Tuebingen, Germany
| | - M C Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - K Peris
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
19
|
Zhou Y, Li H, Liang X, Du H, Suo Y, Chen H, Liu W, Duan R, Huang X, Li Q. The CCN1 (CYR61) protein promotes skin growth by enhancing epithelial-mesenchymal transition during skin expansion. J Cell Mol Med 2019; 24:1460-1473. [PMID: 31828970 PMCID: PMC6991652 DOI: 10.1111/jcmm.14828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
The skin expansion technique is widely used to induce skin growth for large-scale skin deformity reconstruction. However, the capacity for skin expansion is limited and searching for ways to improve the expansion efficiency is a challenge. In this study, we aimed to explore the possible mechanism of skin expansion and to find a potential therapeutic target on promoting skin growth. We conducted weighted gene coexpression network analysis (WGCNA) of microarray data generated from rat skin expansion and found CCN1 (CYR61) to be the central hub gene related to epithelial-mesenchymal transition (EMT). CCN1 up-regulation was confirmed in human and rat expanded skin and also in mechanically stretched rat keratinocytes, together with acquired mesenchymal phenotype. After CCN1 stimulation on keratinocytes, cell proliferation was promoted and partial EMT was induced by activating β-catenin pathway. Treatment of CCN1 protein could significantly increase the flap thickness, improve the blood supply and restore the structure in a rat model of skin expansion, whereas inhibition of CCN1 through shRNA interference could dramatically reduce the efficiency of skin expansion. Our findings demonstrate that CCN1 plays a crucial role in skin expansion and that CCN1 may serve as a potential therapeutic target to promote skin growth and improve the efficiency of skin expansion.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyu Du
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Suo
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Wenhui Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Duan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Padula SL, Anand D, Hoang TV, Chaffee BR, Liu L, Liang C, Lachke SA, Robinson ML. High-throughput transcriptome analysis reveals that the loss of Pten activates a novel NKX6-1/RASGRP1 regulatory module to rescue microphthalmia caused by Fgfr2-deficient lenses. Hum Genet 2019; 138:1391-1407. [PMID: 31691004 DOI: 10.1007/s00439-019-02084-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023]
Abstract
FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.
Collapse
Affiliation(s)
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Thanh V Hoang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blake R Chaffee
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lin Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
21
|
Hoesl C, Fröhlich T, Hundt JE, Kneitz H, Goebeler M, Wolf R, Schneider MR, Dahlhoff M. The transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis. Mol Oncol 2019; 13:2476-2492. [PMID: 31580518 PMCID: PMC6822252 DOI: 10.1002/1878-0261.12579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Over the last few decades, the number of cases of non‐melanoma skin cancer (NMSC) has risen to over 3 million cases every year worldwide. Members of the ERBB receptor family are important regulators of skin development and homeostasis and, when dysregulated, contribute to skin pathogenesis. In this study, we investigated leucine‐rich repeats and immunoglobulin‐like domains 2 (LRIG2), a transmembrane protein involved in feedback loop regulation of the ERBB receptor family during NMSC. LRIG2 was identified to be up‐regulated in various types of squamous cell carcinoma (SCC), but little is known about LRIG2 in cutaneous SCC (cSCC). To investigate the function of LRIG2 in cSCC in vivo, we generated a skin‐specific LRIG2 overexpressing transgenic mouse line (LRIG2‐TG) using the Tet‐Off system. We employed the 7,12‐dimethylbenz(a)anthracene/12‐O‐tetra‐decanoylphorbol‐13‐acetate (DMBA/TPA) two‐stage chemical carcinogenesis model and analyzed the skin during homeostasis and tumorigenesis. LRIG2‐TG mice did not exhibit alterations in skin development or homeostasis but showed an interaction between LRIG2 and thrombospondin‐1, which is often involved in angiogenesis and tumorigenesis. However, during carcinogenesis, transgenic animals showed significantly increased tumor progression and a more rapid development of cSCC. This was accompanied by changes in the ERBB system. After a single TPA application, inflammation of the epidermis was enhanced during LRIG2 overexpression. In human skin samples, LRIG2 expression was identified in the basal layer of the epidermis and in hair follicles of normal skin, but also in cSCC samples. In conclusion, epidermal LRIG2 excess is associated with activated EGFR/ERBB4‐MAPK signaling and accelerated tumor progression in experimentally induced NMSC, suggesting LRIG2 as a potential oncoprotein in skin.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA)Gene CenterLMU MünchenGermany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental DermatologyUniversität zu LübeckGermany
| | - Hermann Kneitz
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Matthias Goebeler
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Ronald Wolf
- Department of Dermatology und AllergologyPhilipps UniversityMarburgGermany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| |
Collapse
|
22
|
Khandelwal AR, Kent B, Hillary S, Alam MM, Ma X, Gu X, DiGiovanni J, Nathan CAO. Fibroblast growth factor receptor promotes progression of cutaneous squamous cell carcinoma. Mol Carcinog 2019; 58:1715-1725. [PMID: 31254372 DOI: 10.1002/mc.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Burton Kent
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Savage Hillary
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Md Maksudul Alam
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xiaohua Ma
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Louisiana
| |
Collapse
|
23
|
Chiang A, Tan CZ, Kuonen F, Hodgkinson LM, Chiang F, Cho RJ, South AP, Tang JY, Chang ALS, Rieger KE, Oro AE, Sarin KY. Genetic Mutations Underlying Phenotypic Plasticity in Basosquamous Carcinoma. J Invest Dermatol 2019; 139:2263-2271.e5. [PMID: 31207229 DOI: 10.1016/j.jid.2019.03.1163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
Basosquamous carcinoma (BSC) is an aggressive skin neoplasm with the features of both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While genetic drivers of BCC and SCC development have been extensively characterized, BSC has not been well studied, and it remains unclear whether these tumors originally derive from BCC or SCC. In addition, it is unknown which molecular pathways mediate the reprogramming of tumor keratinocytes toward basaloid or squamatized phenotypes. We sought to characterize the genomic alterations underlying sporadic BSC to elucidate the derivation of these mixed tumors. We identifed frequent Hedgehog (Hh) pathway mutations in BSCs, implicating Hh deregulation as the primary driving event in BSC. Principal component analysis of BCC and SCC driver genes further demonstrate the genetic similarity between BCC and BSC. In addition, 45% of the BSCs harbor recurrent mutations in the SWI/SNF complex gene, ARID1A, and evolutionary analysis revealed that ARID1A mutations occur after PTCH1 but before SCC driver mutations, indicating that ARID1A mutations may bestow plasticity enabling squamatization. Finally, we demonstrate mitogen-activated protein kinase pathway activation and the loss of Hh signaling associated with the squamatization of BSCs. Overall, these results support the genetic derivation of BSCs from BCCs and highlight potential factors involved in modulating tumor reprogramming between basaloid and squamatized phenotypes.
Collapse
Affiliation(s)
- Audris Chiang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; University of California, Irvine School of Medicine, Irvine, California, USA
| | - Caroline Z Tan
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - François Kuonen
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Luqman M Hodgkinson
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Felicia Chiang
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerri E Rieger
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
24
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
25
|
Kumtornrut C, Yamauchi T, Koike S, Aiba S, Yamasaki K. Androgens modulate keratinocyte differentiation indirectly through enhancing growth factor production from dermal fibroblasts. J Dermatol Sci 2019; 93:150-158. [PMID: 30792099 DOI: 10.1016/j.jdermsci.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The main pathogenesis of acne vulgaris is increase in sebum production and abnormal keratinization of the hair infundibulum. The androgens are involved in acne pathogenesis by modulating sebaceous glands to enhance sebum production. However, the molecular mechanisms of abnormal keratinization of the hair infundibulum are not fully elucidated. OBJECTIVE We hypothesized that the androgens affect the dermal fibroblasts, another androgen receptor-positive cells in the skin, resulting in abnormal keratinization through keratinocyte-fibroblast interaction. METHODS We investigated effects of androgens and estrogens on growth factors expressions by RT-PCR and western blot analysis in human fibroblast (hFB), human keratinocyte (hKC), and fibroblast-keratinocyte co-culture. In vivo, we examined the growth factor expression in acne lesions compared to normal hair follicles by laser-assisted confocal microscope. RESULTS In vitro, androgens but not estrogens significantly increased amphiregulin (AREG), epiregulin (EREG), fibroblast growth factor (FGF) 10, and insulin-like growth factor binding protein (IGFBP) 5 mRNA and protein expressions in human fibroblasts but not in keratinocytes. In vivo, AREG, EREG, FGF10, and IGFBP5 were more abundant in acne lesion compared to normal facial skin. FGF10 suppressed cytokeratin 1 and cytokeratin 10 expression in hKC, which was along with the decreased ratio of cytokeratin 10 against cytokeratin 14 in acne lesions compared to normal facial skin. Also, DHT suppressed cytokeratin 1 and cytokeratin 10, in fibroblast-keratinocyte co-culture similarly to the effect of FGF10 to hKC. CONCLUSION These observations suggested that androgens enhance growth factors production from dermal fibroblasts, and growth factors from fibroblasts alter keratinocyte differentiation in acne lesion.
Collapse
Affiliation(s)
- Chanat Kumtornrut
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan; Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
26
|
Clayton NS, Grose RP. Emerging Roles of Fibroblast Growth Factor 10 in Cancer. Front Genet 2018; 9:499. [PMID: 30405704 PMCID: PMC6207577 DOI: 10.3389/fgene.2018.00499] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Whilst cross-talk between stroma and epithelium is critical for tissue development and homeostasis, aberrant paracrine stimulation can result in neoplastic transformation. Chronic stimulation of epithelial cells with paracrine Fibroblast Growth Factor 10 (FGF10) has been implicated in multiple cancers, including breast, prostate and pancreatic ductal adenocarcinoma. Here, we examine the mechanisms underlying FGF10-induced tumourigenesis and explore novel approaches to target FGF10 signaling in cancer.
Collapse
Affiliation(s)
- Natasha S Clayton
- Centre for Tumour Biology, Barts Cancer Institute, CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Activation of S6 signaling is associated with cell survival and multinucleation in hyperplastic skin after epidermal loss of AURORA-A Kinase. Cell Death Differ 2018; 26:548-564. [PMID: 30050055 DOI: 10.1038/s41418-018-0167-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023] Open
Abstract
The role of mitosis in the progression of precancerous skin remains poorly understood. To address this question, we deleted the mitotic Kinase Aurora-A (Aur-A) in hyperplastic mutant p53 mouse skin as an experimental tool to study the G2/M transition in precancerous keratinocytes and AUR-A's role in this process. Epidermal Aur-A deletion (Aur-AepiΔ) led to marked keratinocyte enlargement, pleomorphism, multinucleation, and attenuated induction of cell death. This phenotype was characteristic of slippage after a stalled mitosis. We also observed altered or impaired epidermal differentiation, indicative of a partial skin barrier defect. The upregulation of mTOR/PI3K signaling was implicated as a mechanism by which keratinocytes may evade cell death after AUR-A deficiency. This was evidenced by the ectopic expression of the pathway readout, p-S6, in the basal layer of Aur-AepiΔ skin and its mitotic upregulation in isolated keratinocytes. We further tested whether our findings were extended to skin carcinoma cells. The chemical inhibition of AUR-A led to a similar mitotic delay, polyploidy/multinucleation, and attenuated cell death in skin cancer cell lines. Moreover, inhibition of mTOR/PI3K signaling ameliorated the effects caused by the deficiency of AUR-A activity but was also associated with the persistence of mitotic p-S6 detection in surviving cancer cells. These results show the induction of multinucleation/polyploidy may be a compensatory state in keratinocytes that allows for cellular survival and maintenance of partial barrier function in face of aberrant cell division or differentiation. Moreover, mTOR/PI3K signaling is active in the mitosis of hyperplastic keratinocytes expressing mutant p53 and is further enhanced by stalled mitosis, indicating a potential resistance mechanism to the use of anti-mitotic drugs in the treatment of skin cancers.
Collapse
|
29
|
Thibodeau ML, Bonakdar M, Zhao E, Mungall KL, Reisle C, Zhang W, Bye MH, Thiessen N, Bleile D, Mungall AJ, Ma YP, Jones MR, Renouf DJ, Lim HJ, Yip S, Ng T, Ho C, Laskin J, Marra MA, Schrader KA, Jones SJM. Whole genome and whole transcriptome genomic profiling of a metastatic eccrine porocarcinoma. NPJ Precis Oncol 2018; 2:8. [PMID: 29872726 PMCID: PMC5871832 DOI: 10.1038/s41698-018-0050-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
Eccrine porocarcinomas (EPs) are rare malignant tumours of the intraepidermic sweat gland duct and most often arise from benign eccrine poromas. Some recurrent somatic genomic events have been identified in these malignancies, but very little is known about the complexity of their molecular pathophysiology. We describe the whole genome and whole transcriptome genomic profiling of a metastatic EP in a 66-year-old male patient with a previous history of localized porocarcinoma of the scalp. Whole genome and whole transcriptome genomic profiling was performed on the metastatic EP. Whole genome sequencing was performed on blood-derived DNA in order to allow a comparison between germline and somatic events. We found somatic copy losses of several tumour suppressor genes including APC, PTEN and CDKN2A, CDKN2B and CDKN1A. We identified a somatic hemizygous CDKN2A pathogenic splice site variant. De novo transcriptome assembly revealed abnormal splicing of CDKN2A p14ARF and p16INK4a. Elevated expression of oncogenes EGFR and NOTCH1 was noted and no somatic mutations were found in these genes. Wnt pathway somatic alterations were also observed. In conclusion, our results suggest that the molecular pathophysiology of malignant EP features high complexity and subtle interactions of multiple key genes. Cell cycle dysregulation and CDKN2A loss of function was found to be a new potential driver in EP tumourigenesis. Moreover, the combination of somatic copy number variants and abnormal gene expression perhaps partly related to epigenetic mechanisms, all likely contribute to the development of this rare malignancy in our patient.
Collapse
Affiliation(s)
- My Linh Thibodeau
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Melika Bonakdar
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Eric Zhao
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Karen L. Mungall
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Caralyn Reisle
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Wei Zhang
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Morgan H. Bye
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Nina Thiessen
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Dustin Bleile
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Yussanne P. Ma
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Martin R. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Daniel J. Renouf
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Howard J. Lim
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9 Canada
| | - Tony Ng
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9 Canada
| | - Cheryl Ho
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Janessa Laskin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Marco A. Marra
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Kasmintan A. Schrader
- Hereditary Cancer Program, Department of Medical Genetics, British Columbia Cancer Agency, 614–750 West Broadway, Vancouver, BC V5Z 1H5 Canada
| | - Steven J. M. Jones
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| |
Collapse
|
30
|
Jiang LP, Shen QS, Yang CP, Chen YB. Establishment of basal cell carcinoma animal model in Chinese tree shrew ( Tupaia belangeri chinensis). Zool Res 2018; 38:180-190. [PMID: 28825448 PMCID: PMC5571474 DOI: 10.24272/j.issn.2095-8137.2017.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer worldwide, with incidence rates continuing to increase. Ultraviolet radiation is the major environmental risk factor and dysregulation of the Hedgehog (Hh) signaling pathway has been identified in most BCCs. The treatment of locally advanced and metastatic BBCs is still a challenge and requires a better animal model than the widely used rodents for drug development and testing. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates, bearing many physiological and biochemical advantages over rodents for characterizing human diseases. Here, we successfully established a Chinese tree shrew BCC model by infecting tail skins with lentiviral SmoA1, an active form of Smoothened (Smo) used to constitutively activate the Hh signaling pathway. The pathological characteristics were verified by immunohistochemical analysis. Interestingly, BCC progress was greatly enhanced by the combined usage of lentiviral SmoA1 and shRNA targeting Chinese tree shrew p53. This work provides a useful animal model for further BCC studies and future drug discoveries.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Qiu-Shuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Cui-Ping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| | - Yong-Bin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| |
Collapse
|
31
|
Shao L, Wang J, Karatas OF, Feng S, Zhang Y, Creighton CJ, Ittmann M. Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 2018; 9:14456-14471. [PMID: 29581856 PMCID: PMC5865682 DOI: 10.18632/oncotarget.24470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. Correlative studies in human prostate cancers reveal a frequent association of the TMPRSS2/ERG (TE) fusion gene with loss of PTEN and studies in mouse models reveal that ERG expression and PTEN loss synergistically promote prostate cancer progression. To determine the mechanism by which ERG overexpression and PTEN loss leads to transformation, we overexpressed the TE fusion gene and knocked down PTEN in an immortalized but non-transformed prostate epithelial cell line. We show that ERG overexpression in combination with PTEN loss can transform these immortalized but non-tumorigenic cells, while either alteration alone was not sufficient to fully transform these cells. Expression microarray analysis revealed extensive changes in gene expression in cells expressing the TE fusion with loss of PTEN. Among these gene expression changes was increased expression of multiple FGF ligands and receptors. We show that activation of fibroblast growth factor receptor signaling plays a key role in transformation induced by TE fusion gene expression in association with PTEN loss. In addition, in vitro and in silico analysis reveals PTEN loss is associated with widespread increases in FGF ligands and receptors in prostate cancer. Inhibitors of FGF receptor signaling are currently entering the clinic and our results suggests that FGF receptor signaling is a therapeutic target in cancers with TE fusion gene expression and PTEN loss.
Collapse
Affiliation(s)
- Longjiang Shao
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Jianghua Wang
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Omer Faruk Karatas
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Shu Feng
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Yiqun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Ittmann
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Wang JK, Guo SJ, Tian BQ, Nie CJ, Wang HL, Wang JL, Hong A, Chen XJ. Association between FGFRs and the susceptibility of digestive and reproductive system cancers in Chinese population. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Garg A, Bansal M, Gotoh N, Feng GS, Zhong J, Wang F, Kariminejad A, Brooks S, Zhang X. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis. PLoS Genet 2017; 13:e1007047. [PMID: 29028795 PMCID: PMC5656309 DOI: 10.1371/journal.pgen.1007047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development. The dry eye disease caused by lacrimal gland dysgenesis is one of the most common ocular ailments. In this study, we show that Shp2 mediates the sequential use of FGF signaling in lacrimal gland development. Our study identifies Alx4 as a novel target of Shp2 signaling and a causal gene for lacrimal gland aplasia in humans. Given this result, there may also be a potential role for Alx4 in guiding pluripotent stem cells to produce lacrimal gland tissue. Finally, our data reveals an Alx4-Fgf10 regulatory unit broadly conserved in the diverse array of terrestrial animals from humans to reptiles, but not in aquatic animals such as amphibians and fish, which sheds light on how the lacrimal gland arose as an evolutionary innovation of terrestrial animals to adapt to their newfound exposure to an airy environment.
Collapse
Affiliation(s)
- Ankur Garg
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mukesh Bansal
- PsychoGenics Inc., Tarrytown, NY, United States of America
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa city, Japan
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jian Zhong
- Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY, United States of America
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States of America
| | | | - Steven Brooks
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
34
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
35
|
Clayton NS, Wilson AS, Laurent EP, Grose RP, Carter EP. Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment. Dev Dyn 2017; 246:493-501. [PMID: 28470714 DOI: 10.1002/dvdy.24514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
It is becoming increasingly evident that multiple cell types within the tumor work together to drive tumour progression and impact on both the response to therapy and the dissemination of tumour cells throughout the body. Fibroblast growth factor signalling (FGF) is perturbed in a number of tumors, serving to drive tumor cell proliferation and migration, but also has a central role in orchestrating the plethora of cells that comprise the tumor microenvironment. This review focuses on how this family of signalling molecules can influence the interactions between tumor cells and their surrounding environment. Unraveling the complexities of FGF signalling between the distinct cell types of a tumor may identify additional opportunities for FGF-targeted compounds in therapy and could help combat drug resistance. Developmental Dynamics 246:493-501, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- N S Clayton
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - A S Wilson
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - E P Laurent
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - R P Grose
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - E P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Ding K, Wu Z, Wang N, Wang X, Wang Y, Qian P, Meng G, Tan S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol Res Pract 2017; 213:467-475. [PMID: 28242043 DOI: 10.1016/j.prp.2017.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Gastric cancer is the second leading cause of cancer-related death in the world. The exact molecular pathways in gastric cancer need for further study. We herein indicated miR-26a performed converse roles on oncogenicity in different gastric cancer cells. In gastric cancer cells MKN-28, miR-26a promoted cell proliferation, migration and invasion. However, in gastric cancer cells AGS, miR-26a reduced cell proliferation and metastasis. PTEN was identified as a direct target of miR-26a. In MKN-28 cells, PTEN was suppressed by miR-26a through 3'-UTR, and PTEN mediated miR-26a promoting oncogenicity including cell proliferation and metastasis. On the other hand, in AGS cells, the expression of PTEN was enhanced by miR-26a, and PTEN mediated miR-26a reducing oncogenicity. The mechanism in AGS cells may be the indirect regulation of PTEN by miR-26a overcame the direct targeting regulation. The model like MKN-28 cells was concordant with patients with a high level of miR-26a and a low level of PTEN and patients with a low level of miR-26a and a high level of PTEN which showed lower overall survival (OS); the model like AGS cells was concordant with patients with both high level of miR-26a and PTEN and both low level of miR-26a and PTEN which showed higher OS. These findings will facilitate a better understanding of the functions and mechanisms about miR-26a, miR-26a and PTEN are potential combined biomarkers in patients with gastric cancer.
Collapse
Affiliation(s)
- Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Nana Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Xiaonan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuejun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Pengxu Qian
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Gang Meng
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
37
|
Zhang H, Deng Y, Zhang Y, Ping Y, Zhao H, Pang L, Zhang X, Wang L, Xu C, Xiao Y, Li X. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types. Nucleic Acids Res 2016; 45:567-582. [PMID: 27899621 PMCID: PMC5314758 DOI: 10.1093/nar/gkw1087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022] Open
Abstract
The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on cancer hallmarks to uncover somatic cooperative events in human cancers. Applying our method to 12 TCGA cancer types, we totally identified 1199 cooperative events with high heterogeneity across human cancers, and then constructed a pan-cancer cooperative alteration network. These cooperative events are associated with genomic alterations of some high-confident cancer drivers, and can trigger the dysfunction of hallmark associated pathways in a co-defect way rather than single alterations. We found that these cooperative events can be used to produce a prognostic classification that can provide complementary information with tissue-of-origin. In a further case study of glioblastoma, using 23 cooperative events identified, we stratified patients into molecularly relevant subtypes with a prognostic significance independent of the Glioma-CpG Island Methylator Phenotype (GCIMP). In summary, our method can be effectively used to discover cancer-driving cooperative events that can be valuable clinical markers for patient stratification.
Collapse
Affiliation(s)
- Hongyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yulan Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
38
|
Mathew G, Hannan A, Hertzler-Schaefer K, Wang F, Feng GS, Zhong J, Zhao JJ, Downward J, Zhang X. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor. Proc Natl Acad Sci U S A 2016; 113:13156-13161. [PMID: 27799550 PMCID: PMC5135310 DOI: 10.1073/pnas.1604450113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.
Collapse
Affiliation(s)
- Grinu Mathew
- Department of Ophthalmology, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Abdul Hannan
- Department of Ophthalmology, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX 77030
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jian Zhong
- Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY 10605
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
39
|
mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nat Commun 2016; 7:13226. [PMID: 27807348 PMCID: PMC5095294 DOI: 10.1038/ncomms13226] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/11/2016] [Indexed: 12/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), a regulator of growth in many tissues, mediates its activity through two multiprotein complexes, mTORC1 or mTORC2. The role of mTOR signalling in skin morphogenesis and epidermal development is unknown. Here we identify mTOR as an essential regulator in skin morphogenesis by epidermis-specific deletion of Mtor in mice (mTOREKO). mTOREKO mutants are viable, but die shortly after birth due to deficits primarily during the early epidermal differentiation programme and lack of a protective barrier development. Epidermis-specific loss of Raptor, which encodes an essential component of mTORC1, confers the same skin phenotype as seen in mTOREKO mutants. In contrast, newborns with an epidermal deficiency of Rictor, an essential component of mTORC2, survive despite a hypoplastic epidermis and disruption in late stage terminal differentiation. These findings highlight a fundamental role for mTOR in epidermal morphogenesis that is regulated by distinct functions for mTORC1 and mTORC2.
Collapse
|
40
|
Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. MATERIALS 2016; 9:ma9060464. [PMID: 28773588 PMCID: PMC5456775 DOI: 10.3390/ma9060464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022]
Abstract
The Ion Torrent Personal Genome Machine (Ion PGM) is a semiconductor-based sequencing technology that is high quality, scalable, and economic. Its applications include genomic sequencing, drug resistance testing, microbial characterization, and targeted sequencing in cancer studies. However, little is known about the application of Ion PGM in cutaneous squamous cell carcinoma (cSCC). We therefore investigated the utility and validity of Ion PGM in cSCC and also gained a better understanding of the underlying molecular biology of cSCC. We detected novel gene mutations (KDR, FGFR2, and EGFR) in two cSCC patients. Moreover, we validated these mutations by pyrosequencing and Sanger sequencing. Our results indicated that the mutation screen using Ion PGM is consistent with traditional sequencing methods. Notably, these identified mutations were present at significantly higher rates in high-risk cSCC. Our results demonstrate a method to detect targetable genes in high-risk cSCC, and suggest that Ion PGM may enable therapeutic decision-making and future potential targets for personalized therapies in cSCC.
Collapse
|
41
|
Khandelwal AR, Rong X, Moore-Medlin T, Ekshyyan O, Abreo F, Gu X, Nathan CAO. Photopreventive Effect and Mechanism of AZD4547 and Curcumin C3 Complex on UVB-Induced Epidermal Hyperplasia. Cancer Prev Res (Phila) 2016; 9:296-304. [PMID: 26862088 DOI: 10.1158/1940-6207.capr-15-0366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
Aggressive cutaneous squamous cell carcinoma (cSCC) of the skin is the second most common type of skin cancer in the United States due to high exposure to ultraviolet B (UVB) radiation. In our previous studies, Curcumin C3 complex (C3), a standardized preparation of three curcumonoids, delayed UVB-induced tumor incidence and inhibited multiplicity. Exposure to UVB activates mTOR and FGFR signaling that play a key role in skin tumorigenesis. The purpose of this study was to investigate the efficacy of C3 complex to afford protection against acute UVB-induced hyperproliferation by targeting the mTOR and FGFR signaling pathways. Pretreatment with C3 complex significantly inhibited UVB-induced FGF-2 induction, FGF-2-induced cell proliferation, progression and colony formation, mTORC1 and mTORC2 activation, and FGFR2 phosphorylation in the promotion-sensitive JB6 cells epithelial cells. Further, FGFR was critical for UVB-induced mTOR activation, suggesting an important role of FGFR2 in UVB-induced mTOR signaling. SKH-1 mice pretreated with C3 (15 mg/kg/b.w.) for 2 weeks followed by a single exposure to UVB (180 mj/cm(2)) significantly attenuated UVB-induced mTORC1, mTORC2, and FGFR2 activation. To further assess the role of FGFR in UVB-induced hyperproliferation, SKH-1 mice were pretreated with AZD4547 (5 mg/kg/b.w.); a selective pan-FGFR kinase inhibitor followed by single exposure to UVB (180 mj/cm(2)). AZD4547 significantly inhibited UVB-induced mTORC1 and mTORC2 activation, epidermal hyperplasia and hyperproliferation. Our studies underscore the importance of FGFR signaling in UVB-induced acute skin changes and the role of FGFR/mTOR signaling in mediating the effects of C3 complex in the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xiaohua Rong
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Oleksandr Ekshyyan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Fleurette Abreo
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana. Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana.
| |
Collapse
|
42
|
Chaffee BR, Hoang TV, Leonard MR, Bruney DG, Wagner BD, Dowd JR, Leone G, Ostrowski MC, Robinson ML. FGFR and PTEN signaling interact during lens development to regulate cell survival. Dev Biol 2016; 410:150-163. [PMID: 26764128 DOI: 10.1016/j.ydbio.2015.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022]
Abstract
Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells.
Collapse
Affiliation(s)
- Blake R Chaffee
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Thanh V Hoang
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Melissa R Leonard
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Devin G Bruney
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Brad D Wagner
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Joseph Richard Dowd
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Gustavo Leone
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael C Ostrowski
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael L Robinson
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
43
|
Tiwari P, Sahay S, Pandey M, Qadri SSYH, Gupta KP. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs. Biochimie 2015; 121:112-22. [PMID: 26655363 DOI: 10.1016/j.biochi.2015.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.
Collapse
Affiliation(s)
- Prakash Tiwari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Satya Sahay
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Manuraj Pandey
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Syed S Y H Qadri
- Pathology Division, National Institute of Nutrition, Hyderabad, India
| | - Krishna P Gupta
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India.
| |
Collapse
|
44
|
Huang J, Yang J, Guan L, Yi S, Du L, Tian H, Guo Y, Zhai F, Lu Z, Li H, Li X, Jiang C. Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds. Protein Expr Purif 2015; 138:7-12. [PMID: 26384708 DOI: 10.1016/j.pep.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 10 (FGF10) is a member of the FGF superfamily. It exhibits diverse biological functions, and is extensively used for fundamental research and clinical applications involving hair growth, tissue repair, and burn wounds. Oil bodies, obtained from oil seeds, have been exploited for a variety of biotechnology applications. The use of oil bodies reduces purification steps and costs associated with the production of heterogonous proteins. Here, recombinant human FGF10 (rhFGF10) was expressed in safflower (Carthamus tinctorius L.) seeds using oilbody-oleosin technology. A plant expression vector, pOTBar-oleosin-rhFGF10, was constructed and introduced into safflower using Agrobacterium tumefaciens transformation, and mature safflower plants were obtained by grafting. Oleosin-rhFGF10 was successfully transformed and expressed in safflower seeds and inherited to the T3 generation. Moreover, MTT assays demonstrated that oil bodies expressed oleosin-FGF10 had a dose-dependent effect on cellular proliferation. In conclusion, this may provide a method of producing oleosin-rhFGF10, and help us meet the increasing pharmacological demands for the protein.
Collapse
Affiliation(s)
- Jian Huang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shanyong Yi
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Linna Du
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
| | - Yongxin Guo
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Feng Zhai
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhen Lu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaokun Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| | - Chao Jiang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
45
|
Jiao J, Zhao X, Liang Y, Tang D, Pan C. FGF1-FGFR1 axis promotes tongue squamous cell carcinoma (TSCC) metastasis through epithelial-mesenchymal transition (EMT). Biochem Biophys Res Commun 2015; 466:327-32. [PMID: 26362179 DOI: 10.1016/j.bbrc.2015.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022]
Abstract
Increasing evidences suggest a close association between tumor metastasis and the inflammatory factors secreted by tumor microenvironment. It has been reported that epithelial mesenchymal-transition (EMT) plays a significant role during multiple types of tumor metastasis and progression induced by inflammatory factor from tumor microenvironment. Previous researches implied that fibroblast growth factor 1 (FGF1) can promote tumor progression and cause poor prognosis in several types of malignant tumors via interacting with its receptor fibroblast growth factor receptor 1 (FGFR1). However, the effects of FGF1-FGFR1 on tongue squamous cell carcinoma (TSCC) are not yet completely understood. In the present study, we evaluated the effects and function of FGF1-FGFR1 axis on TSCC metastasis. In addition, we investigated whether the EMT pathway is involved in these effects, thus modulating the TSCC progression. The expression of FGFR1 was measured both in tongue cancer cell lines and tissues by qRT-PCR and western blot. We found that FGFR1 was up-regulated in TSCC tissues compared to non-neoplastic tongue tissues. Additionally, overexpression of FGFR1 is positively associated with poor differentiation and metastasis potential. Furthermore, the function of FGF1-FGFR1 was examined in TSCC cell line. The results implied that FGF1 can obviously promote Cal27 cells migration and invasion abilities through FGFR1, while the motile and invasive capabilities can be severely attenuated when knockdown the expression of FGFR1 by specific siRNAs. Further investigation results show that FGF1-FGFR1 axis promotes TSCC metastasis by modulating EMT pathway. However, this effect can be inhibited by blocking the FGF1-FGFR1 axis using FGFR1 specific siRNAs. In conclusion, our findings of the present study provide the evidences that FGF1-FGFR1 axis promotes the TSCC metastasis through the EMT pathway.
Collapse
Affiliation(s)
- Jiuyang Jiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yancan Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongxiao Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaobin Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol 2014; 25:221-33. [PMID: 25467007 DOI: 10.1016/j.tcb.2014.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Abbie E Fearon
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK.
| |
Collapse
|