1
|
Li T, Zeng F, Li Y, Li H, Wu J. The Integrator complex: an emerging complex structure involved in the regulation of gene expression by targeting RNA polymerase II. Funct Integr Genomics 2024; 24:192. [PMID: 39424688 DOI: 10.1007/s10142-024-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The Integrator complex is a multisubunit complex that participates in the processing of small nuclear RNA molecules in eukaryotic cells by cleaving the 3' end. In protein-coding genes, Integrator is a key regulator of promoter-proximal pausing, release, and recruitment of RNA polymerase II. Research on Integrator has revealed its critical role in the regulation of gene expression and RNA processing. Dysregulation of the Integrator complex has been implicated in a variety of human diseases including cancer and developmental disorders. Therefore, understanding the structure and function of the Integrator complex is critical to uncovering the mechanisms of gene expression and developing potential therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Tingyue Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fulei Zeng
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hu Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiayuan Wu
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
2
|
Li Z, Gilbert C, Peng H, Pollet N. Discovery of numerous novel Helitron-like elements in eukaryote genomes using HELIANO. Nucleic Acids Res 2024; 52:e79. [PMID: 39119924 PMCID: PMC11417382 DOI: 10.1093/nar/gkae679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Helitron-like elements (HLEs) are widespread eukaryotic DNA transposons employing a rolling-circle transposition mechanism. Despite their prevalence in fungi, animals, and plant genomes, identifying Helitrons remains a formidable challenge. We introduce HELIANO, a software for annotating and classifying autonomous and non-autonomous HLE sequences from whole genomes. HELIANO overcomes several limitations of existing tools in speed and accuracy, demonstrated through benchmarking and its application to the complex genomes of frogs (Xenopus tropicalis and Xenopus laevis) and rice (Oryza sativa), where it uncovered numerous previously unidentified HLEs. In an extensive analysis of 404 eukaryote genomes, we found HLEs widely distributed across phyla, with exceptions in specific taxa. HELIANO's application led to the discovery of numerous new HLEs in land plants and identified 20 protein domains captured by certain autonomous HLE families. A comprehensive phylogenetic analysis further classified HLEs into two primary clades, HLE1 and HLE2, and revealed nine subgroups, some of which are enriched within specific taxa. The future use of HELIANO promises to improve the global analysis of HLEs across genomes, significantly advancing our understanding of this fascinating transposon superfamily.
Collapse
Affiliation(s)
- Zhen Li
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Haoran Peng
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Harami GM, Pálinkás J, Kovács ZJ, Jezsó B, Tárnok K, Harami-Papp H, Hegedüs J, Mahmudova L, Kucsma N, Tóth S, Szakács G, Kovács M. Redox-dependent condensation and cytoplasmic granulation by human ssDNA-binding protein-1 delineate roles in oxidative stress response. iScience 2024; 27:110788. [PMID: 39286502 PMCID: PMC11403420 DOI: 10.1016/j.isci.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) plays central roles in DNA repair. Here, we show that purified hSSB1 undergoes redox-dependent liquid-liquid phase separation (LLPS) in the presence of single-stranded DNA or RNA, features that are distinct from those of LLPS by bacterial SSB. hSSB1 nucleoprotein droplets form under physiological ionic conditions in response to treatment modeling cellular oxidative stress. hSSB1's intrinsically disordered region is indispensable for LLPS, whereas all three cysteine residues of the oligonucleotide/oligosaccharide-binding fold are necessary to maintain redox-sensitive droplet formation. Proteins interacting with hSSB1 show selective enrichment inside hSSB1 droplets, suggesting tight content control and recruitment functions for the condensates. While these features appear instrumental for genome repair, we detected cytoplasmic hSSB1 condensates in various cell lines colocalizing with stress granules upon oxidative stress, implying extranuclear function in cellular stress response. Our results suggest condensation-linked roles for hSSB1, linking genome repair and cytoplasmic defense.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
- HUN-REN-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Bálint Jezsó
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - József Hegedüs
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Lamiya Mahmudova
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| | - Nóra Kucsma
- HUN-REN Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Szilárd Tóth
- HUN-REN Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Gergely Szakács
- HUN-REN Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Wien, Austria
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
- HUN-REN-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
4
|
Fianu I, Ochmann M, Walshe JL, Dybkov O, Cruz JN, Urlaub H, Cramer P. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 2024; 629:219-227. [PMID: 38570683 PMCID: PMC11062913 DOI: 10.1038/s41586-024-07269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Moritz Ochmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James L Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Joseph Neos Cruz
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
5
|
Kovács ZJ, Harami GM, Pálinkás J, Kuljanishvili N, Hegedüs J, Harami‐Papp H, Mahmudova L, Khamisi L, Szakács G, Kovács M. DNA-dependent phase separation by human SSB2 (NABP1/OBFC2A) protein points to adaptations to eukaryotic genome repair processes. Protein Sci 2024; 33:e4959. [PMID: 38511671 PMCID: PMC10955726 DOI: 10.1002/pro.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Single-stranded DNA binding proteins (SSBs) are ubiquitous across all domains of life and play essential roles via stabilizing and protecting single-stranded (ss) DNA as well as organizing multiprotein complexes during DNA replication, recombination, and repair. Two mammalian SSB paralogs (hSSB1 and hSSB2 in humans) were recently identified and shown to be involved in various genome maintenance processes. Following our recent discovery of the liquid-liquid phase separation (LLPS) propensity of Escherichia coli (Ec) SSB, here we show that hSSB2 also forms LLPS condensates under physiologically relevant ionic conditions. Similar to that seen for EcSSB, we demonstrate the essential contribution of hSSB2's C-terminal intrinsically disordered region (IDR) to condensate formation, and the selective enrichment of various genome metabolic proteins in hSSB2 condensates. However, in contrast to EcSSB-driven LLPS that is inhibited by ssDNA binding, hSSB2 phase separation requires single-stranded nucleic acid binding, and is especially facilitated by ssDNA. Our results reveal an evolutionarily conserved role for SSB-mediated LLPS in the spatiotemporal organization of genome maintenance complexes. At the same time, differential LLPS features of EcSSB and hSSB2 point to functional adaptations to prokaryotic versus eukaryotic genome metabolic contexts.
Collapse
Affiliation(s)
- Zoltán J. Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gábor M. Harami
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - János Pálinkás
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Natalie Kuljanishvili
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - József Hegedüs
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Hajnalka Harami‐Papp
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lamiya Mahmudova
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lana Khamisi
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gergely Szakács
- HUN‐REN Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapestHungary
- Center for Cancer ResearchMedical University of ViennaWienAustria
| | - Mihály Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
6
|
Barbhuiya T, Beard S, Shah ET, Mason S, Bolderson E, O’Byrne K, Guddat LW, Richard DJ, Adams MN, Gandhi NS. Targeting the hSSB1-INTS3 Interface: A Computational Screening Driven Approach to Identify Potential Modulators. ACS OMEGA 2024; 9:8362-8373. [PMID: 38405517 PMCID: PMC10882649 DOI: 10.1021/acsomega.3c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.
Collapse
Affiliation(s)
- Tabassum
Khair Barbhuiya
- Centre
for Genomics and Personalised Health, and School of Chemistry and
Physics, Faculty of Science, Queensland
University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
| | - Sam Beard
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Esha T. Shah
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Steven Mason
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Bolderson
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Ken O’Byrne
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Luke W. Guddat
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Derek J. Richard
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Neha S. Gandhi
- Centre
for Genomics and Personalised Health, and School of Chemistry and
Physics, Faculty of Science, Queensland
University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
7
|
Long Q, Sebesta M, Sedova K, Haluza V, Alagia A, Liu Z, Stefl R, Gullerova M. The phosphorylated trimeric SOSS1 complex and RNA polymerase II trigger liquid-liquid phase separation at double-strand breaks. Cell Rep 2023; 42:113489. [PMID: 38039132 DOI: 10.1016/j.celrep.2023.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Double-strand breaks (DSBs) are the most severe type of DNA damage. Previously, we demonstrated that RNA polymerase II (RNAPII) phosphorylated at the tyrosine 1 (Y1P) residue of its C-terminal domain (CTD) generates RNAs at DSBs. However, the regulation of transcription at DSBs remains enigmatic. Here, we show that the damage-activated tyrosine kinase c-Abl phosphorylates hSSB1, enabling its interaction with Y1P RNAPII at DSBs. Furthermore, the trimeric SOSS1 complex, consisting of hSSB1, INTS3, and c9orf80, binds to Y1P RNAPII in response to DNA damage in an R-loop-dependent manner. Specifically, hSSB1, as a part of the trimeric SOSS1 complex, exhibits a strong affinity for R-loops, even in the presence of replication protein A (RPA). Our in vitro and in vivo data reveal that the SOSS1 complex and RNAPII form dynamic liquid-like repair compartments at DSBs. Depletion of the SOSS1 complex impairs DNA repair, underscoring its biological role in the R-loop-dependent DNA damage response.
Collapse
Affiliation(s)
- Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | - Katerina Sedova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Vojtech Haluza
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zhichao Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Stefl
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
8
|
Schuurs ZP, Martyn AP, Soltau CP, Beard S, Shah ET, Adams MN, Croft LV, O’Byrne KJ, Richard DJ, Gandhi NS. An Exploration of Small Molecules That Bind Human Single-Stranded DNA Binding Protein 1. BIOLOGY 2023; 12:1405. [PMID: 37998004 PMCID: PMC10669474 DOI: 10.3390/biology12111405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Alexander P. Martyn
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Carl P. Soltau
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Sam Beard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Esha T. Shah
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Mark N. Adams
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- Cancer Services, Princess Alexandra Hospital—Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
9
|
El‐Kamand S, Adams MN, Matthews JM, Du Plessis M, Crossett B, Connolly A, Breen N, Dudley A, Richard DJ, Gamsjaeger R, Cubeddu L. The molecular details of a novel phosphorylation-dependent interaction between MRN and the SOSS complex. Protein Sci 2023; 32:e4782. [PMID: 37705456 PMCID: PMC10521234 DOI: 10.1002/pro.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead-associated domain of Nbs1 interacts with INTS3 via phosphorylation-dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3.
Collapse
Affiliation(s)
- Serene El‐Kamand
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Mark N. Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthTranslational Research Institute, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jacqueline M. Matthews
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | | | - Ben Crossett
- Sydney Mass SpectrometryUniversity of SydneySydneyNew South WalesAustralia
| | - Angela Connolly
- Sydney Mass SpectrometryUniversity of SydneySydneyNew South WalesAustralia
| | - Natasha Breen
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Alexander Dudley
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthTranslational Research Institute, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Roland Gamsjaeger
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Liza Cubeddu
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Xu C, Li C, Chen J, Xiong Y, Qiao Z, Fan P, Li C, Ma S, Liu J, Song A, Tao B, Xu T, Xu W, Chi Y, Xue J, Wang P, Ye D, Gu H, Zhang P, Wang Q, Xiao R, Cheng J, Zheng H, Yu X, Zhang Z, Wu J, Liang K, Liu YJ, Lu H, Chen FX. R-loop-dependent promoter-proximal termination ensures genome stability. Nature 2023; 621:610-619. [PMID: 37557913 PMCID: PMC10511320 DOI: 10.1038/s41586-023-06515-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.
Collapse
Affiliation(s)
- Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Xiong
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhibin Qiao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Pengyu Fan
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuangyu Ma
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Bolin Tao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pu Wang
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yan-Jun Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhang Q, Hao R, Chen H, Zhou G. SOSSB1 and SOSSB2 mutually regulate protein stability through competitive binding of SOSSA. Cell Death Discov 2023; 9:319. [PMID: 37640700 PMCID: PMC10462637 DOI: 10.1038/s41420-023-01619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Human single-stranded DNA-binding protein homologs hSSB1 (SOSSB1) and hSSB2 (SOSSB2) make a vital impact on maintaining genome stability as the B subunits of the sensor of single-stranded DNA complex (SOSS). However, whether and how SOSSB1 and SOSSB2 modulate mutual expression is unclear. This study, demonstrated that the depletion of SOSSB1 in cells enhances the stability of the SOSSB2 protein, and conversely, SOSSB2 depletion enhances the stability of the SOSSB1 protein. The levels of SOSSB1 and SOSSB2 proteins are mutually regulated through their competitive binding with SOSSA which associates with the highly conservative OB-fold domain in SOSSB1 and SOSSB2. The destabilized SOSSB1 and SOSSB2 proteins can be degraded via the proteasome pathway. Additionally, the simultaneous loss of SOSSB1 and SOSSB2 aggravates homologous recombination (HR)-mediated DNA repair defects, enhances cellular radiosensitivity and promotes cell apoptosis. In conclusion, in this study, we showed that SOSSB1 and SOSSB2 positively regulate HR repair and the interaction between SOSSA and SOSSB1 or SOSSB2 prevents the degradation of SOSSB1 and SOSSB2 proteins via the proteasome pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Rongjiao Hao
- School of Life Sciences, Hebei University, Baoding City, Hebei Province, 071002, P.R. China
| | - Hongxia Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| | - Gangqiao Zhou
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, P.R. China.
- School of Life Sciences, Hebei University, Baoding City, Hebei Province, 071002, P.R. China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, P.R. China.
| |
Collapse
|
12
|
Adams MN, Croft LV, Urquhart A, Saleem MAM, Rockstroh A, Duijf PHG, Thomas PB, Ferguson GP, Najib IM, Shah ET, Bolderson E, Nagaraj S, Williams ED, Nelson CC, O'Byrne KJ, Richard DJ. hSSB1 (NABP2/OBFC2B) modulates the DNA damage and androgen-induced transcriptional response in prostate cancer. Prostate 2023; 83:628-640. [PMID: 36811381 PMCID: PMC10953336 DOI: 10.1002/pros.24496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.
Collapse
Affiliation(s)
- Mark N. Adams
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Laura V. Croft
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Aaron Urquhart
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | | | - Anja Rockstroh
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Centre for Data ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Patrick B. Thomas
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Queensland Bladder Cancer InitiativeWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Genevieve P. Ferguson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Idris Mohd Najib
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Esha T. Shah
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Emma Bolderson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Shivashankar Nagaraj
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Elizabeth D. Williams
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Queensland Bladder Cancer InitiativeWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Colleen C. Nelson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Kenneth J. O'Byrne
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
- Cancer ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Derek J. Richard
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| |
Collapse
|
13
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
14
|
Wagner EJ, Tong L, Adelman K. Integrator is a global promoter-proximal termination complex. Mol Cell 2023; 83:416-427. [PMID: 36634676 PMCID: PMC10866050 DOI: 10.1016/j.molcel.2022.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 01/13/2023]
Abstract
Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Sabath K, Jonas S. Take a break: Transcription regulation and RNA processing by the Integrator complex. Curr Opin Struct Biol 2022; 77:102443. [PMID: 36088798 DOI: 10.1016/j.sbi.2022.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
The metazoan-specific Integrator complex is a >1.5 MDa machinery that interacts with RNA polymerase II (RNAP2) to attenuate coding gene transcription by early termination close to transcription start sites. Using a highly related mechanism, Integrator also performs the initial 3'-end processing step for many non-coding RNAs. Its transcription regulation functions are essential for cell differentiation and response to external stimuli. Recent studies revealed that the complex incorporates phosphatase PP2A to counteract phosphorylation reactions that are required for transcription elongation. Structures of Integrator bound to RNAP2 explain the basis for its recruitment to promoter proximal RNAP2 by recognition of its paused state. Furthermore, several studies indicate that Integrator's cleavage activity is regulated at multiple levels through activators, modifications, and small molecules.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Switzerland.
| |
Collapse
|
16
|
Lin MH, Jensen MK, Elrod ND, Huang KL, Welle KA, Wagner EJ, Tong L. Inositol hexakisphosphate is required for Integrator function. Nat Commun 2022; 13:5742. [PMID: 36180473 PMCID: PMC9525679 DOI: 10.1038/s41467-022-33506-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Integrator is a multi-subunit protein complex associated with RNA polymerase II (Pol II), with critical roles in noncoding RNA 3'-end processing and transcription attenuation of a broad collection of mRNAs. IntS11 is the endonuclease for RNA cleavage, as a part of the IntS4-IntS9-IntS11 Integrator cleavage module (ICM). Here we report a cryo-EM structure of the Drosophila ICM, at 2.74 Å resolution, revealing stable association of an inositol hexakisphosphate (IP6) molecule. The IP6 binding site is located in a highly electropositive pocket at an interface among all three subunits of ICM, 55 Å away from the IntS11 active site and generally conserved in other ICMs. We also confirmed IP6 association with the same site in human ICM. IP6 binding is not detected in ICM samples harboring mutations in this binding site. Such mutations or disruption of IP6 biosynthesis significantly reduced Integrator function in snRNA 3'-end processing and mRNA transcription attenuation. Our structural and functional studies reveal that IP6 is required for Integrator function in Drosophila, humans, and likely other organisms.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Madeline K Jensen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Kevin A Welle
- Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA.
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
17
|
hSSB2 (NABP1) is required for the recruitment of RPA during the cellular response to DNA UV damage. Sci Rep 2021; 11:20256. [PMID: 34642383 PMCID: PMC8511049 DOI: 10.1038/s41598-021-99355-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.
Collapse
|
18
|
Pfleiderer MM, Galej WP. Emerging insights into the function and structure of the Integrator complex. Transcription 2021; 12:251-265. [PMID: 35311473 PMCID: PMC9006982 DOI: 10.1080/21541264.2022.2047583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
The Integrator was originally discovered as a specialized 3'-end processing endonuclease complex required for maturation of RNA polymerase II (RNAPII)-dependent small nuclear RNAs (snRNAs). Since its discovery, Integrator's spectrum of substrates was significantly expanded to include non-polyadenylated long noncoding RNAs (lncRNA), enhancer RNAs (eRNAs), telomerase RNA (tertRNA), several Herpesvirus transcripts, and messenger RNAs (mRNAs). Recently emerging transcriptome-wide studies reveled an important role of the Integrator in protein-coding genes, where it contributes to gene expression regulation through promoter-proximal transcription attenuation. These new functional data are complemented by several structures of Integrator modules and higher-order complexes, providing mechanistic insights into Integrator-mediated processing events. In this work, we summarize recent progress in our understanding of the structure and function of the Integrator complex.
Collapse
|
19
|
Jia Y, Cheng Z, Bharath SR, Sun Q, Su N, Huang J, Song H. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair. Cell Discov 2021; 7:66. [PMID: 34400606 PMCID: PMC8368002 DOI: 10.1038/s41421-021-00283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
SOSS1 is a single-stranded DNA (ssDNA)-binding protein complex that plays a critical role in double-strand DNA break (DSB) repair. SOSS1 consists of three subunits: INTS3, SOSSC, and hSSB1, with INTS3 serving as a scaffold to stabilize this complex. Moreover, the integrator complex subunit 6 (INTS6) participates in the DNA damage response through direct binding to INTS3, but how INTS3 interacts with INTS6, thereby impacting DSB repair, is not clear. Here, we determined the crystal structure of the C-terminus of INTS3 (INTS3c) in complex with the C-terminus of INTS6 (INTS6c) at a resolution of 2.4 Å. Structural analysis revealed that two INTS3c subunits dimerize and interact with INTS6c via conserved residues. Subsequent biochemical analyses confirmed that INTS3c forms a stable dimer and INTS3 dimerization is important for recognizing the longer ssDNA. Perturbation of INTS3c dimerization and disruption of the INTS3c/INTS6c interaction impair the DSB repair process. Altogether, these results unravel the underappreciated role of INTS3 dimerization and the molecular basis of INTS3/INTS6 interaction in DSB repair.
Collapse
Affiliation(s)
- Yu Jia
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore City, Singapore
| | - Qiangzu Sun
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nannan Su
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Haiwei Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore City, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore City, Singapore.
| |
Collapse
|
20
|
Li J, Ma X, Banerjee S, Baruah S, Schnicker NJ, Roh E, Ma W, Liu K, Bode AM, Dong Z. Structural basis for multifunctional roles of human Ints3 C-terminal domain. J Biol Chem 2021; 296:100112. [PMID: 33434574 PMCID: PMC7948952 DOI: 10.1074/jbc.ra120.016393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/06/2022] Open
Abstract
Proper repair of damaged DNA is critical for the maintenance of genome stability. A complex composed of Integrator subunit 3 (Ints3), single-stranded DNA-binding protein 1 (SSB1), and SSB-interacting protein 1 (SSBIP1) is required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ataxia-telangiectasia mutated (ATM)-dependent signaling pathways. It is known that in this complex the Ints3 N-terminal domain scaffolds SSB1 and SSBIP1. However, the molecular basis for the function of the Ints3 C-terminal domain remains unclear. Here, we present the crystal structure of the Ints3 C-terminal domain, uncovering a HEAT-repeat superhelical fold. Using structure and mutation analysis, we show that the C-terminal domain exists as a stable dimer. A basic groove and a cluster of conserved residues on two opposite sides of the dimer bind single-stranded RNA/DNA (ssRNA/ssDNA) and Integrator complex subunit 6 (Ints6), respectively. Dimerization is required for nucleic acid binding, but not for Ints6 binding. Additionally, in vitro experiments using HEK 293T cells demonstrate that Ints6 interaction is critical for maintaining SSB1 protein level. Taken together, our findings establish the structural basis of a multifunctional Ints3 C-terminal module, allowing us to propose a novel mode of nucleic acid recognition by helical repeat protein and paving the way for future mechanistic studies.
Collapse
Affiliation(s)
- Jian Li
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xinli Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, Illinois, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA; Department of Cosmetic Science, Kwangju Women's University, Gwangju, Republic of Korea
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Oliveira MT, Ciesielski GL. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins. Methods Mol Biol 2021; 2281:1-21. [PMID: 33847949 DOI: 10.1007/978-1-0716-1290-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | | |
Collapse
|
22
|
Zheng H, Qi Y, Hu S, Cao X, Xu C, Yin Z, Chen X, Li Y, Liu W, Li J, Wang J, Wei G, Liang K, Chen FX, Xu Y. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science 2020; 370:370/6520/eabb5872. [DOI: 10.1126/science.abb5872] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jie Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Lawson T, El-Kamand S, Boucher D, Duong DC, Kariawasam R, Bonvin AMJJ, Richard DJ, Gamsjaeger R, Cubeddu L. The structural details of the interaction of single-stranded DNA binding protein hSSB2 (NABP1/OBFC2A) with UV-damaged DNA. Proteins 2019; 88:319-326. [PMID: 31443132 DOI: 10.1002/prot.25806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.
Collapse
Affiliation(s)
- Teegan Lawson
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Didier Boucher
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Duc Cong Duong
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Derek J Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Lawson T, El-Kamand S, Kariawasam R, Richard DJ, Cubeddu L, Gamsjaeger R. A Structural Perspective on the Regulation of Human Single-Stranded DNA Binding Protein 1 (hSSB1, OBFC2B) Function in DNA Repair. Comput Struct Biotechnol J 2019; 17:441-446. [PMID: 30996823 PMCID: PMC6451162 DOI: 10.1016/j.csbj.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Single-stranded DNA binding (SSB) proteins are essential to protect singe-stranded DNA (ssDNA) that exists as a result of several important DNA repair pathways in living cells. In humans, besides the well-characterised Replication Protein A (RPA) we have described another SSB termed human SSB1 (hSSB1, OBFC2B) and have shown that this protein is an important player in the maintenance of the genome. In this review we define the structural and biophysical details of how hSSB1 interacts with both DNA and other essential proteins. While the presence of the oligonucleotide/oligosaccharide (OB) domain ensures ssDNA binding by hSSB1, it has also been shown to self-oligomerise as well as interact with and being modified by several proteins highlighting the versatility that hSSB1 displays in the context of DNA repair. A detailed structural understanding of these processes will likely lead to the designs of tailored hSSB1 inhibitors as anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Teegan Lawson
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol 2019; 86:121-128. [DOI: 10.1016/j.semcdb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
|
26
|
Biochemical characterization of INTS3 and C9ORF80, two subunits of hNABP1/2 heterotrimeric complex in nucleic acid binding. Biochem J 2018; 475:45-60. [PMID: 29150435 PMCID: PMC5748837 DOI: 10.1042/bcj20170351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/01/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Human nucleic acid-binding protein 1 and 2 (hNABP1 and hNABP2, also known as hSSB2 and hSSB1 respectively) form two separate and independent complexes with two identical proteins, integrator complex subunit 3 (INTS3) and C9ORF80. We and other groups have demonstrated that hNABP1 and 2 are single-stranded (ss) DNA- and RNA-binding proteins, and function in DNA repair; however, the function of INTS3 and C9OFR80 remains elusive. In the present study, we purified recombinant proteins INTS3 and C9ORF80 to near homogeneity. Both proteins exist as a monomer in solution; however, C9ORF80 exhibits anomalous behavior on SDS–PAGE and gel filtration because of 48% random coil present in the protein. Using electrophoretic mobility shift assay (EMSA), INTS3 displays higher affinity toward ssRNA than ssDNA, and C9ORF80 binds ssDNA but not ssRNA. Neither of them binds dsDNA, dsRNA, or RNA : DNA hybrid. INTS3 requires minimum of 30 nucleotides, whereas C9OFR80 requires 20 nucleotides for its binding, which increased with the increasing length of ssDNA. Interestingly, our GST pulldown results suggest that the N-terminus of INTS3 is involved in protein–protein interaction, while EMSA implies that the C-terminus is required for nucleic acid binding. Furthermore, we purified the INTS3–hNABP1/2–C9ORF80 heterotrimeric complex. It exhibits weaker binding compared with the individual hNABP1/2; interestingly, the hNABP1 complex prefers ssDNA, whereas hNABP2 complex prefers ssRNA. Using reconstituted heterotrimeric complex from individual proteins, EMSA demonstrates that INTS3, but not C9ORF80, affects the nucleic acid-binding ability of hNABP1 and hNABP2, indicating that INTS3 might regulate hNABP1/2's biological function, while the role of C9ORF80 remains unknown.
Collapse
|
27
|
Touma C, Adams MN, Ashton NW, Mizzi M, El-Kamand S, Richard DJ, Cubeddu L, Gamsjaeger R. A data-driven structural model of hSSB1 (NABP2/OBFC2B) self-oligomerization. Nucleic Acids Res 2017; 45:8609-8620. [PMID: 28609781 PMCID: PMC5737504 DOI: 10.1093/nar/gkx526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.
Collapse
Affiliation(s)
- Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Michael Mizzi
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Croft LV, Ashton NW, Paquet N, Bolderson E, O'Byrne KJ, Richard DJ. hSSB1 associates with and promotes stability of the BLM helicase. BMC Mol Biol 2017; 18:13. [PMID: 28506294 PMCID: PMC5433028 DOI: 10.1186/s12867-017-0090-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/05/2017] [Indexed: 01/03/2023] Open
Abstract
Background Maintenance of genome stability is critical in human cells. Mutations in or loss of genome stability pathways can lead to a number of pathologies including cancer. hSSB1 is a critical DNA repair protein functioning in the repair and signalling of stalled DNA replication forks, double strand DNA breaks and oxidised DNA lesions. The BLM helicase is central to the repair of both collapsed DNA replication forks and double strand DNA breaks by homologous recombination. Results In this study, we demonstrate that hSSB1 and BLM helicase form a complex in cells and the interaction is altered in response to ionising radiation (IR). BLM and hSSB1 also co-localised at nuclear foci following IR-induced double strand breaks and stalled replication forks. We show that hSSB1 depleted cells contain less BLM protein and that this deficiency is due to proteasome mediated degradation of BLM. Consequently, there is a defect in recruitment of BLM to chromatin in response to ionising radiation-induced DSBs and to hydroxyurea-induced stalled and collapsed replication forks. Conclusions Our data highlights that BLM helicase and hSSB1 function in a dynamic complex in cells and that this complex is likely required for BLM protein stability and function. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura V Croft
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
29
|
Kariawasam R, Touma C, Cubeddu L, Gamsjaeger R. Backbone (1)H, (13)C and (15)N resonance assignments of the OB domain of the single stranded DNA-binding protein hSSB1 (NABP2/OBFC2B) and chemical shift mapping of the DNA-binding interface. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:297-300. [PMID: 27193589 DOI: 10.1007/s12104-016-9687-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Single-stranded DNA-binding proteins (SSBs) are highly important in DNA metabolism and play an essential role in all major DNA repair pathways. SSBs are generally characterised by the presence of an oligonucleotide binding (OB) fold which is able to recognise single-stranded DNA (ssDNA) with high affinity. We discovered two news SSBs in humans (hSSB1 and hSSB2) that both contain a single OB domain followed by a divergent spacer region and a charged C-terminus. We have extensively characterised one of these, hSSB1 (NABP2/OBFC2B), in numerous important DNA processing events such as, in DNA double-stranded break repair and in the response to oxidative DNA damage. Although the structure of hSSB1 bound to ssDNA has recently been determined using X-ray crystallography, the detailed atomic level mechanism of the interaction of hSSB1 with ssDNA in solution has not been established. In this study we report the solution-state backbone chemical shift assignments of the OB domain of hSSB1. In addition, we have utilized NMR to map the DNA-binding interface of hSSB1, revealing major differences between recognition of ssDNA under physiological conditions and in the recently determined crystal structure. Our NMR data in combination with further biophysical and biochemical experiments will allow us to address these discrepancies and shed light onto the structural basis of DNA-binding by hSSB1 in solution.
Collapse
Affiliation(s)
- Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
30
|
Touma C, Kariawasam R, Gimenez AX, Bernardo RE, Ashton NW, Adams MN, Paquet N, Croll TI, O'Byrne KJ, Richard DJ, Cubeddu L, Gamsjaeger R. A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution. Nucleic Acids Res 2016; 44:7963-73. [PMID: 27387285 PMCID: PMC5027503 DOI: 10.1093/nar/gkw617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus. Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Adrian X Gimenez
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ray E Bernardo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Tristan I Croll
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia School of Molecular Biosciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia School of Molecular Biosciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress. Sci Rep 2016; 6:27446. [PMID: 27273218 PMCID: PMC4897654 DOI: 10.1038/srep27446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosylase (hOGG1) to damaged DNA. Here we demonstrate that following oxidative stress, hSSB1 is stabilized as an oligomer which is required for hSSB1 to function in the removal of 8-oxoguanine. Monomeric hSSB1 shows a decreased affinity for oxidized DNA resulting in a cellular 8-oxoguanine-repair defect and in the absence of ATM signaling initiation. While hSSB1 oligomerization is important for the removal of 8-oxoguanine from the genome, it is not required for the repair of double-strand DNA-breaks by homologous recombination. These findings demonstrate a novel hSSB1 regulatory mechanism for the repair of damaged DNA.
Collapse
|
33
|
Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1170-9. [PMID: 26884156 DOI: 10.1073/pnas.1516674113] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1-a recently identified human SSB that promotes DNA resection during homologous recombination-supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells.
Collapse
|
34
|
Vidhyasagar V, He Y, Guo M, Ding H, Talwar T, Nguyen V, Nwosu J, Katselis G, Wu Y. C-termini are essential and distinct for nucleic acid binding of human NABP1 and NABP2. Biochim Biophys Acta Gen Subj 2015; 1860:371-83. [PMID: 26550690 DOI: 10.1016/j.bbagen.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Human Nucleic Acid Binding Protein 1 and 2 (hNABP1 and 2; also known as hSSB2 and 1, respectively) are two newly identified single-stranded (ss) DNA binding proteins (SSB). Both NABP1 and NABP2 have a conserved oligonucleotide/oligosaccharide-binding (OB)-fold domain and a divergent carboxy-terminal domain, the functional importance of which is unknown. METHODS Recombinant hNABP1/2 proteins were purified using affinity and size exclusion chromatography and their identities confirmed by mass spectrometry. Oligomerization state was checked by sucrose gradient centrifugation. Secondary structure was determined by circular dichroism spectroscopy. Nucleic acid binding ability was examined by EMSA and ITC. RESULTS Both hNABP1 and hNABP2 exist as monomers in solution; however, hNABP2 exhibits anomalous behavior. CD spectroscopy revealed that the C-terminus of hNABP2 is highly disordered. Deletion of the C-terminal tail diminishes the DNA binding ability and protein stability of hNABP2. Although both hNABP1 and hNABP2 prefer to bind ssDNA than double-stranded (ds) DNA, hNABP1 has a higher affinity for ssDNA than hNABP2. Unlike hNABP2, hNABP1 protein binds and multimerizes on ssDNA with the C-terminal tail responsible for its multimerization. Both hNABP1 and hNABP2 are able to bind single-stranded RNA, with hNABP2 having a higher affinity than hNABP1. CONCLUSIONS Biochemical evidence suggests that the C-terminal region of NABP1 and NABP2 is essential for their functionality and may lead to different roles in DNA and RNA metabolism. GENERAL SIGNIFICANCE This is the first report demonstrating the regulation and functional properties of the C-terminal domain of hNABP1/2, which might be a general characteristic of OB-fold proteins.
Collapse
Affiliation(s)
- Venkatasubramanian Vidhyasagar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yujiong He
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Manhong Guo
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hao Ding
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Tanu Talwar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Vi Nguyen
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jessica Nwosu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - George Katselis
- Department of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada; Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
35
|
Wu Y, Chen H, Lu J, Zhang M, Zhang R, Duan T, Wang X, Huang J, Kang T. Acetylation-dependent function of human single-stranded DNA binding protein 1. Nucleic Acids Res 2015; 43:7878-87. [PMID: 26170237 PMCID: PMC4652753 DOI: 10.1093/nar/gkv707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/01/2015] [Indexed: 12/26/2022] Open
Abstract
Human single-stranded DNA binding protein 1 (hSSB1) plays a critical role in responding to DNA damage and maintaining genome stability. However, the regulation of hSSB1 remains poorly studied. Here, we determined that hSSB1 acetylation at K94 mediated by the acetyltransferase p300 and the deacetylases SIRT4 and HDAC10 impaired its ubiquitin-mediated degradation by proteasomes. Moreover, we demonstrated that the hSSB1-K94R mutant had reduced cell survival in response to DNA damage by radiation or chemotherapy drugs. Furthermore, the p300/CBP inhibitor C646 significantly enhanced the sensitivity of cancer cells to chemotherapy drugs, and a positive correlation between hSSB1 and p300 level was observed in clinical colorectal cancer samples. Acetylation, a novel regulatory modification of hSSB1, is crucial for its function under both physiological and pathological conditions. This finding supports the notion that the combination of chemotherapy drugs with acetylation inhibitors may benefit cancer patients.
Collapse
Affiliation(s)
- Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hongxia Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinping Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Meifang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tingmei Duan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China Dalian Medical University, Dalian, China
| | - Xin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
36
|
Skaar JR, Ferris AL, Wu X, Saraf A, Khanna KK, Florens L, Washburn MP, Hughes SH, Pagano M. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res 2015; 25:288-305. [PMID: 25675981 PMCID: PMC4349240 DOI: 10.1038/cr.2015.19] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/22/2014] [Accepted: 12/25/2014] [Indexed: 02/08/2023] Open
Abstract
Complexes containing INTS3 and either NABP1 or NABP2 were initially characterized in DNA damage responses, but their biochemical function remained unknown. Using affinity purifications and HIV Integration targeting-sequencing (HIT-Seq), we find that these complexes are part of the Integrator complex, which binds RNA Polymerase II and regulates specific target genes. Integrator cleaves snRNAs as part of their processing to their mature form in a mechanism that is intimately coupled with transcription termination. However, HIT-Seq reveals that Integrator also binds to the 3' end of replication-dependent histones and promoter proximal regions of genes with polyadenylated transcripts. Depletion of Integrator subunits results in transcription termination failure, disruption of histone mRNA processing, and polyadenylation of snRNAs and histone mRNAs. Furthermore, promoter proximal binding of Integrator negatively regulates expression of genes whose transcripts are normally polyadenylated. Integrator recruitment to all three gene classes is DSIF-dependent, suggesting that Integrator functions as a termination complex at DSIF-dependent RNA Polymerase II pause sites.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Andrea L Ferris
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anita Saraf
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4006, Australia
| | - Laurence Florens
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
| | - Michael P Washburn
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michele Pagano
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
- Howard Hughes Medical Institute, 522 First Avenue New York, NY 10016, USA
| |
Collapse
|
37
|
The structural basis of DNA binding by the single-stranded DNA-binding protein from Sulfolobus solfataricus. Biochem J 2015; 465:337-46. [DOI: 10.1042/bj20141140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present the 3D solution structure of the canonical SSB from the crenarchaeote Sulfolobus solfataricus bound to single-stranded DNA and compare this structure with human homologues.
Collapse
|