1
|
Ren L, Okimura K, Ishikawa A, Kon N, Shimba S, Yoshimura T. The role of circadian clock gene Arntl in the winter depression-like behavior in melatonin-proficient female CBA/N mice. Biochem Biophys Res Commun 2024; 734:150790. [PMID: 39369541 DOI: 10.1016/j.bbrc.2024.150790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Seasonal affective disorder (SAD), also known as winter depression, is a subtype of depression typically manifesting in winter. Typical symptoms of SAD, such as an increased need for sleep and carbohydrate cravings associated with increased appetite and weight, are distinct from those of major depression, and the underlying mechanisms of SAD remain unclear. Although laboratory mice are generally considered non-seasonal animals, we observed depression-like behaviors in melatonin-proficient female CBA/N mice maintained under winter-mimicking conditions. Transcriptome analysis of the brains of CBA/N mice maintained under winter- and summer-mimicking conditions revealed changes in the expression of circadian clock genes, including Arntl (also known as Bmal1). We generated Arntl-deficient, melatonin-proficient CBA/N mice using the speed congenic method to examine the role of Arntl in depressive behavior. The tail suspension test in these mice revealed a depressive phenotype. These results suggested that the circadian clock gene Arntl may be involved in winter depression-like behavior.
Collapse
Affiliation(s)
- Liang Ren
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Akira Ishikawa
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
2
|
Zhu J, Yu H, Xie L, Shuai D, Huang Z, Chen Y, Ni C, Jia C, Rong X, Zhang L, Chu M. A novel format of TNF-α binding affibody molecule ameliorate coronary artery endothelial injury in a mouse model of Kawasaki disease. Int J Biol Macromol 2024; 281:136255. [PMID: 39366611 DOI: 10.1016/j.ijbiomac.2024.136255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Kawasaki disease (KD) is a disease characterized by systemic immune vasculitis that often involves coronary arteries and can result in long-term cardiovascular sequelae. Different strategies for treatment of KD-and KD-induced coronary artery lesions are currently under investigation, including passive immunization with anti-TNFα monoclonal antibodies (mAbs). Herein, we examine the potential therapeutic capabilities of a novel type of TNFα-targeting agent based on an affibody molecule possessing fundamentally different properties than mAbs. Using phage display technology, we successfully screened and obtained three TNF-α binding affibody molecules and confirmed their high binding affinity and specificity for recombinant and native TNF-α by surface plasmon resonance (SPR), confocal double immunofluorescence and coimmunoprecipitation assays. Moreover, by binding to TNF-α, the affibody molecules could effectively neutralize TNFα-induced L929 cytotoxicity. To increase the targeting properties and serum half-life, one preferred affibody molecule ZTNF-α263 was redesigned to assemble drugs with bivalent TNFα binding with added specificity for serum albumin (ZTNF-α263-ABD035-ZTNF-α263, hereinafter denoted ZTAT). We further determined its binding ability, TNF-α signal blocking and neutralizing capacity, serum half-life and immunogenicity. Most importantly, our study provides strong evidence that the engineered ZTAT protein was therapeutically effective against KD induced-endothelial injury, as judged by both in vitro and in vivo assessments. These data suggested that because of the flexibility inherent, low-molecular weight anti-TNFα affibody construct ZTAT, can be developed into a potent therapeutic agent that can be produced and purified cost-effectively.
Collapse
Affiliation(s)
- Jinshun Zhu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huan Yu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Longzhi Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dujuan Shuai
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixian Huang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufei Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Ni
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xing Rong
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Maoping Chu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Korf HW. Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine. Cell Tissue Res 2024:10.1007/s00441-024-03913-7. [PMID: 39264444 DOI: 10.1007/s00441-024-03913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
| |
Collapse
|
4
|
Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, Guo Y, Wang L, Li Y, Dai Z. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne) 2024; 15:1443051. [PMID: 39253586 PMCID: PMC11381305 DOI: 10.3389/fendo.2024.1443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.
Collapse
Affiliation(s)
- Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
5
|
Korf HW, von Gall C. Mouse Models in Circadian Rhythm and Melatonin Research. J Pineal Res 2024; 76:e12986. [PMID: 38965880 DOI: 10.1111/jpi.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Abstract
Traditional textbook physiology has ascribed unitary functions to hormones from the anterior and posterior pituitary gland, mainly in the regulation of effector hormone secretion from endocrine organs. However, the evolutionary biology of pituitary hormones and their receptors provides evidence for a broad range of functions in vertebrate physiology. Over the past decade, we and others have discovered that thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotropic hormone, prolactin, oxytocin and arginine vasopressin act directly on somatic organs, including bone, adipose tissue and liver. New evidence also indicates that pituitary hormone receptors are expressed in brain regions, nuclei and subnuclei. These studies have prompted us to attribute the pathophysiology of certain human diseases, including osteoporosis, obesity and neurodegeneration, at least in part, to changes in pituitary hormone levels. This new information has identified actionable therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Shinomiya A, Adachi D, Shimmura T, Tanikawa M, Hiramatsu N, Ijiri S, Naruse K, Sakaizumi M, Yoshimura T. Variation in responses to photoperiods and temperatures in Japanese medaka from different latitudes. ZOOLOGICAL LETTERS 2023; 9:16. [PMID: 37480068 PMCID: PMC10362753 DOI: 10.1186/s40851-023-00215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.
Collapse
Affiliation(s)
- Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Present Address: Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| | - Daisuke Adachi
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Aichi, Nagoya, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- Present Address: Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Miki Tanikawa
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Aichi, Nagoya, Japan
| | - Naoshi Hiramatsu
- Aquaculture Biology, Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Shigeho Ijiri
- Aquaculture Biology, Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Mitsuru Sakaizumi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Niigata, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Aichi, Nagoya, Japan.
| |
Collapse
|
8
|
Fröhlich E, Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int J Mol Sci 2023; 24:11699. [PMID: 37511458 PMCID: PMC10380753 DOI: 10.3390/ijms241411699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci 2023; 1525:61-69. [PMID: 37199228 PMCID: PMC10524199 DOI: 10.1111/nyas.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.
Collapse
Affiliation(s)
- Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Sims
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rauf Latif
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yelena Ginzburg
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Terry F. Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
10
|
Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen. PLoS One 2023; 18:e0278013. [PMID: 36791094 PMCID: PMC9931110 DOI: 10.1371/journal.pone.0278013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
To better adapt to seasonal environmental changes, physiological processes and behaviors are regulated seasonally. The gut microbiome interacts with the physiology, behavior, and even the diseases of host animals, including humans and livestock. Seasonal changes in gut microbiome composition have been reported in several species under natural environments. Dietary content significantly affects the composition of the microbiome, and, in the natural environment, the diet varies between different seasons. Therefore, understanding the seasonal regulatory mechanisms of the gut microbiome is important for understanding the seasonal adaptation strategies of animals. Herein, we examined the effects of changing day length and temperature, which mimic summer and winter conditions, on the gut microbiome of laboratory mice. Principal coordinate analysis and analysis of the composition of microbiomes of 16S rRNA sequencing data demonstrated that the microbiomes of the cecum and large intestine showed significant differences between summer and winter mimicking conditions. Similar to previous studies, a daily rhythm was observed in the composition of the microbiome. Furthermore, the phylogenetic investigation of communities by reconstruction of unobserved states predicted seasonal changes in several metabolic pathways. Changing day length and temperature can affect the composition of the gut microbiome without changing dietary contents.
Collapse
Affiliation(s)
- Shoko Matsumoto
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Liang Ren
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masayuki Iigo
- Department of Applied Biological Chemistry, Utsunomiya University, Utsunomiya, Japan
| | - Atsushi Murai
- Laboratory of Animal Nutrition, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
11
|
Seasonal Adaptation: Geographic Photoperiod-Temperature Patterns Explain Genetic Variation in the Common Vole Tsh Receptor. Genes (Basel) 2023; 14:genes14020292. [PMID: 36833219 PMCID: PMC9957289 DOI: 10.3390/genes14020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The vertebrate photoperiodic neuroendocrine system uses the photoperiod as a proxy to time the annual rhythms in reproduction. The thyrotropin receptor (TSHR) is a key protein in the mammalian seasonal reproduction pathway. Its abundance and function can tune sensitivity to the photoperiod. To investigate seasonal adaptation in mammals, the hinge region and the first part of the transmembrane domain of the Tshr gene were sequenced for 278 common vole (Microtus arvalis) specimens from 15 localities in Western Europe and 28 localities in Eastern Europe. Forty-nine single nucleotide polymorphisms (SNPs; twenty-two intronic and twenty-seven exonic) were found, with a weak or lack of correlation with pairwise geographical distance, latitude, longitude, and altitude. By applying a temperature threshold to the local photoperiod-temperature ellipsoid, we obtained a predicted critical photoperiod (pCPP) as a proxy for the spring onset of local primary food production (grass). The obtained pCPP explains the distribution of the genetic variation in Tshr in Western Europe through highly significant correlations with five intronic and seven exonic SNPs. The relationship between pCPP and SNPs was lacking in Eastern Europe. Thus, Tshr, which plays a pivotal role in the sensitivity of the mammalian photoperiodic neuroendocrine system, was targeted by natural selection in Western European vole populations, resulting in the optimized timing of seasonal reproduction.
Collapse
|
12
|
Tortonese DJ. Hypophysial angiogenesis decodes annual time and underlies physiological adaptation to seasonal changes in the environment. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:939-951. [PMID: 35844178 PMCID: PMC9796326 DOI: 10.1002/jez.2639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023]
Abstract
Adaptation to annual changes in the environment is controlled by hypophysial hormones. In temperate zones, photoperiod is the primary external cue that regulates annual biological cycles and is translated by the pattern of melatonin secretion acting primarily in the hypophysial pars tuberalis. Angiogenic mechanisms within this tissue contribute to decode the melatonin signal through alternative splicing of the vascular endothelial growth factor A (VEGF-A) gene in both the pars tuberalis and the capillary loops of the infundibulum. The resulting melatonin-evoked differential productions of VEGF-A isoforms will induce seasonal remodeling of the vascular connection between the hypothalamus and hypophysis, and act as paracrine messengers in the pars distalis to generate the required seasonal endocrine response. Specifically, the long melatonin signal in winter upregulates antiangiogenic VEGF-A isoforms, which will reduce the number of vascular loops and the density of VEGF receptors in endocrine and folliculo-stellate (FS) cells, inhibit prolactin secretion, and stimulate FSH. In contrast, the short melatonin signal in summer upregulates proangiogenic VEGF-A isoforms that will increase the number of vascular loops and the density of VEGF receptors in endocrine and FS cells, stimulate prolactin secretion, and suppress FSH. A similar system has been identified in long day seasonal breeders, revealing that this is a conserved mechanism of adaptation across species. Thus, an angiogenesis-based, intrahypophysial system for annual time measurement controls local microvascular plasticity and conveys the photoperiodic signal readout from the melatonin sensitive pars tuberalis to the endocrine cells of the pars distalis to regulate seasonal adaptation to the environment.
Collapse
Affiliation(s)
- Domingo J. Tortonese
- Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
13
|
Pérez JH. Light receptors in the avian brain and seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:985-993. [PMID: 36052512 DOI: 10.1002/jez.2652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Detection and transduction of photic cues by nonvisual photoreceptors, located in the deep brain, is a critical component of timing seasonal reproduction in birds. However, the precise identity of the photoreceptors responsible for detection of salient photic cues remains uncertain and debated. Here I review of the existing evidence for each of the three candidate photoreceptive opsins: Vertebrate Ancient Opsin, Melanopsin, and Neuropsin, including localization, action spectrum, and data from experimental manipulation of opsin expression. These findings are compared to an updated list of key criteria established in the literature as a litmus for classifying an opsin as the "breeding photoreceptor." Integrating evidence for each of the candidate photoreceptors with respect to these criteria reveals support for all three opsins in regulation of seasonal reproduction. Taken together these findings strongly suggest that transduction of seasonal photoperiodic information involves the activity of multiple photoreceptor types and populations functioning in concert. This review also highlights the need to shift attention from simply identifying "the breeding photoreceptor" to a more integrative approach aiming to parse the contribution of specific photoreceptor populations within the brain.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Biology, The University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
14
|
Boginskaya I, Safiullin R, Tikhomirova V, Kryukova O, Nechaeva N, Bulaeva N, Golukhova E, Ryzhikov I, Kost O, Afanasev K, Kurochkin I. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022; 10:biomedicines10061389. [PMID: 35740411 PMCID: PMC9219671 DOI: 10.3390/biomedicines10061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.
Collapse
Affiliation(s)
- Irina Boginskaya
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
- Correspondence:
| | - Robert Safiullin
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Victoria Tikhomirova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Olga Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Natalia Nechaeva
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| | - Naida Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Elena Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Ilya Ryzhikov
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Olga Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Konstantin Afanasev
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
| | - Ilya Kurochkin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| |
Collapse
|
15
|
Fekete C. Pars tuberalis as a key regulator of neuroendocrine functions. Nat Rev Endocrinol 2022; 18:332. [PMID: 35361916 DOI: 10.1038/s41574-022-00667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
16
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Misaki R, Iwasaki M, Takechi H, Yamano-Adachi N, Ohashi T, Kajiura H, Fujiyama K. Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter. Cytotechnology 2022; 74:163-179. [PMID: 35185292 PMCID: PMC8817005 DOI: 10.1007/s10616-021-00501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/11/2021] [Indexed: 02/03/2023] Open
Abstract
Although antibodies have attracted attention as next-generation biopharmaceuticals, the costs of purifying the products and of arranging the environment for cell cultivation are high. Therefore, there is a need to increase antibody efficacy and improve product quality as much as possible. Since antibodies are glycoproteins, their glycan structures have been found to affect the function of antibodies. Especially, afucosylation of the N-linked glycan in the Fc region is known to significantly increase antibody-dependent cellular cytotoxicity. In this study, we established a double-mutant ΔGMDΔGFT in which GDP-mannose 4,6-dehydratase and GDP-fucose transporter were knocked out in Chinese hamster ovary cells, a platform for biopharmaceutical protein production. By adapting ΔGMDΔGFT cells to serum-free medium and constructing suspension-cultured cells, we established host CHO cells with no detected fucosylated glycans and succeeded in production of afucosylated antibodies. We also demonstrated that, in culture in the presence of serum, fucosylation occurs due to contamination from serum components. Furthermore, we found that afucosylation of glycans does not affect cell growth after adaptation to serum-free medium as compared to wild-type CHO cells growth and does not significantly affect the expression levels of other endogenous fucose metabolism-related enzyme genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00501-3.
Collapse
Affiliation(s)
- Ryo Misaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Masashi Iwasaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroki Takechi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
- MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Wu Z, Xi Z, Xiao Y, Zhao X, Li J, Feng N, Hu L, Zheng R, Zhang N, Wang S, Huang T. TSH-TSHR axis promotes tumor immune evasion. J Immunother Cancer 2022; 10:e004049. [PMID: 35101946 PMCID: PMC8804696 DOI: 10.1136/jitc-2021-004049] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hormones are identified as key biological variables in tumor immunity. However, previous researches mainly focused on the immune effect of steroid hormones, while the roles that thyroid-stimulating hormone (TSH) played in the antitumor response were far from clear. METHODS The source of TSH was determined using single-cell transcriptomic, histologic, quantitative PCR, and ELISA analysis. The influence of TSH on tumor proliferation, invasion, and immune evasion was evaluated in multiple cell lines of thyroid cancer, glioma, and breast cancer. Then transcriptomic sequencing and cellular experiments were used to identify signaling pathways. TSH receptor (TSHR) inhibitor was injected into homograft mouse tumor models with or without anti-programmed cell death protein-1 antibody. RESULTS Monocyte-derived dendritic cells (moDCs) highly expressed TSHα and TSHβ2 and were the primary source of TSH in the tumor microenvironment. TSH released by moDCs promoted proliferation and invasion of tumors with high TSHR expressions, such as thyroid cancers and glioma. TSH also induced tumor programmed death-ligand 1 (PD-L1) expression through the TSHR-AC-PKA-JNK-c-JUN pathway. TSHR inhibitors reversed tumor immune evasion by inhibiting PD-L1 expression in tumor and myeloid cells and enhancing Teff activation. CONCLUSIONS TSH-TSHR axis promotes tumor evasion in thyroid cancers and glioma. TSH suppression therapy is an effective therapeutic strategy for combination in immune checkpoint blockades.
Collapse
Affiliation(s)
- Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiexiao Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Nan Feng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Longqing Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Renjing Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ning Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
19
|
Fukushita M, Watanabe N, Yoshimura Noh J, Yoshihara A, Matsumoto M, Suzuki N, Yoshimura R, Sugino K, Ito K. A case of macro-TSH consisting of IgA-bound TSH. Endocr J 2021; 68:1241-1246. [PMID: 34039782 DOI: 10.1507/endocrj.ej21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An asymptomatic, 68-year-old Japanese man visited our hospital for further examination of subclinical hypothyroidism. At the first visit, the serum TSH level was markedly elevated (36.6 μIU/mL), but the serum level of free T4 was within the reference interval. Thyroid dysfunction due to dietary iodine excess was initially suspected. However, even after iodine restriction, his thyroid function tests were the same as at the first visit, which suggested false elevation of the TSH level. The TSH levels were compared among three different measurement systems, which showed a similar tendency of TSH elevation above the reference interval, but the different TSH elevation levels among the measurement methods suggested the existence of some interfering substance. Neither serial dilution of the patient's serum nor polyethylene glycol and protein G precipitation tests showed any significant changes in the recovery rate. IgG-bound macro-TSH was ruled out. The TSH peak on gel filtration chromatography was located at a molecular size greater than IgA, which suggested the presence of IgA-bound TSH. After precipitation with Jacalin, which binds specifically to IgA, the TSH level decreased from 30.7 μIU/mL to 2.01 μIU/mL, within the reference interval. Thus, IgA-bound macro-TSH was identified. Macro-TSH is a rare condition in which an immunoglobulin-bound, high-molecular-weight form of TSH results in a false elevation of the serum TSH level. When there is a discrepancy between the results of thyroid function tests and clinical symptoms, and macro-TSH is suspected, it is necessary to know that not only IgG-bound TSH but also IgA-bound TSH could be the cause.
Collapse
Affiliation(s)
- Miho Fukushita
- Department of Internal Medicine, Ito Hospital, Tokyo, Japan
| | | | | | - Ai Yoshihara
- Department of Internal Medicine, Ito Hospital, Tokyo, Japan
| | | | - Nami Suzuki
- Department of Internal Medicine, Ito Hospital, Tokyo, Japan
| | - Ran Yoshimura
- Department of Internal Medicine, Ito Hospital, Tokyo, Japan
| | | | - Koichi Ito
- Department of Surgery, Ito Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Pérez JH, Krause JS, Bishop VR, Reid AMA, Sia M, Wingfield JC, Meddle SL. Seasonal differences in hypothalamic thyroid-stimulating hormone β, gonadotropin-releasing hormone-I and deiodinase expression between migrant and resident subspecies of white-crowned sparrow (Zonotrichia leucophrys). J Neuroendocrinol 2021; 33:e13032. [PMID: 34463408 DOI: 10.1111/jne.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Across taxa, the seasonal transition between non-breeding and breeding states is controlled by localised thyroid hormone signalling in the deep brain via reciprocal switching of deiodinase enzyme expression from type 3 (DIO3) to type 2 (DIO2). This reciprocal switch is considered to be mediated by increasing thyroid-stimulating hormone β (TSHβ) release from the pars tuberalis, which occurs in response to a change in photoperiod. Although well characterised in a handful of model organisms in controlled laboratory settings, this pathway remains largely unexplored in free-living animals under natural environmental conditions. In this comparative gene expression study, we investigated hypothalamic thyroid hormone signalling in two seasonally breeding subspecies of white-crowned sparrow (Zonotrichia leucophrys), across the entirety of their annual cycles. The migratory Gambel's (Z. l. gambelii) and resident Nuttall's (Z. l. nuttalii) subspecies differ with respect to timing of reproduction, as well as life history stage and migratory strategies. Although DIO3 mRNA expression was elevated and DIO2 mRNA expression was reduced in the wintering period in both subspecies, DIO2 peaked in both subspecies prior to the onset of reproduction. However, there was differential timing between subspecies in peak DIO2 expression. Intriguingly, seasonal modulation of TSHβ mRNA was only observed in migrants, where expression was elevated at the start of breeding, consistent with observations from other highly photoperiodic species. There was no correlation between TSHβ, DIO2 and gonadotropin-releasing hormone-I mRNA or reproductive metrics in residents. Based on these observed differences, we discuss potential implications for our understanding of how changes in medial basal hypothalamic gene expression mediates initiation of seasonal reproduction.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, USA
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Jesse S Krause
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Valerie R Bishop
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Angus M A Reid
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Michael Sia
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
| | - Simone L Meddle
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
21
|
Wu K, Zhou Y, Ke S, Huang J, Gao X, Li B, Lin X, Liu X, Liu X, Ma L, Wang L, Wu L, Wu L, Xie C, Xu J, Wang Y, Liu L. Lifestyle is associated with thyroid function in subclinical hypothyroidism: a cross-sectional study. BMC Endocr Disord 2021; 21:112. [PMID: 34049544 PMCID: PMC8161919 DOI: 10.1186/s12902-021-00772-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Few studies have focused on the association between lifestyle and subclinical hypothyroidism (SCH). The purpose of this study was to investigate the association between lifestyle and thyroid function in SCH. METHODS This study was a part of a community-based and cross-sectional study, the Epidemiological Survey of Thyroid Diseases in Fujian Province, China. A total of 159 participants with SCH (81 males and 78 females) and 159 euthyroid (87 males and 72 females) participants without any missing data were included in the analysis. General information and lifestyle information including sleep, exercise, diet and smoking habits of the participants was collected by questionnaire and Pittsburgh sleep quality index scale (PSQI) was collected. Thyroid stimulating hormone (TSH), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid globulin antibody (TgAb) and urine iodine concentration (UIC) were tested. Thyroid homeostasis parameter thyroid' s secretory capacity (SPINA-GT), Jostel's TSH index (TSHI), thyrotroph T4 sensitivity index (TTSI) were calculated. Logistic regression and multiple linear regression were performed to assess associations. RESULTS Compared with euthyroid subjects, patients with SCH were more likely to have poor overall sleep quality (15.1 vs.25.8 %, P = 0.018) and l less likely to stay up late on weekdays (54.7 vs. 23.9 % P < 0.001). In SCH group, exercise was the influencing factor of TSH (β= -0.224, P = 0.004), thyroid secretory capacity (β = 0.244, P = 0.006) and thyrotropin resistance (β = 0.206, P = 0.009). Iodine excess was the influencing factor of thyroid secretory capacity (β = 0.209, P = 0.001) and pituitary thyroid stimulating function (β = 0.167, P = 0.034). Smoking was the influencing factor of pituitary thyroid stimulating function (β = 0.161, P = 0.040). Staying up late on weekends was the influencing factor of thyroid secretory capacity (β = 0.151, P = 0.047). After adjusting for possible confounders, logistic regression showed that those with poor overall sleep quality assessed by PSQI and iodine excess had an increased risk of SCH (OR 2.159, 95 %CI 1.186-3.928, P = 0.012 and OR 2.119, 95 %CI 1.008-4.456, P = 0.048, respectively). CONCLUSIONS Lifestyle including sleep, smoking, diet and exercise was closely related to thyroid function especially thyroid homeostasis in SCH.
Collapse
Affiliation(s)
- Kejun Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Yu Zhou
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, 350122, Fuzhou, Fujian, China
| | - Sujie Ke
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Jingze Huang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xuelin Gao
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Beibei Li
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xiaoying Lin
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xiaohong Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xiaoying Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Li Ma
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Linxi Wang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Li Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Lijuan Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Chengwen Xie
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Junjun Xu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Yanping Wang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, 29 Xinquan Road, Fujian, 350001, Fuzhou, China.
| |
Collapse
|
22
|
Olson-Manning CF. Elaboration of the Corticosteroid Synthesis Pathway in Primates through a Multistep Enzyme. Mol Biol Evol 2021; 37:2257-2267. [PMID: 32196091 DOI: 10.1093/molbev/msaa080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible evolutionary outcomes following duplication neglect specifics about the enzyme, pathway context, and cellular constraints. To illuminate the mechanisms that shape the evolution of biochemical pathways, I functionally characterize the consequences of gene duplication of an enzyme family that performs multiple subsequent enzymatic reactions (a multistep enzyme) in the corticosteroid pathway in primates. The products of the corticosteroid pathway (aldosterone and cortisol) are steroid hormones that regulate metabolism and stress response in tetrapods. These steroid hormones are synthesized by a multistep enzyme Cytochrome P450 11B (CYP11B) that performs subsequent steps on different carbon atoms of the steroid derivatives. Through ancestral state reconstruction and in vitro characterization, I find that the primate ancestor of the CYP11B1 and CYP11B2 paralogs had moderate ability to synthesize both cortisol and aldosterone. Following duplication in Old World primates, the CYP11B1 homolog specialized on the production of cortisol, whereas its paralog, CYP11B2, maintained its ability to perform multiple subsequent steps as in the ancestral pathway. Unlike CYP11B1, CYP11B2 could not specialize on the production of aldosterone because it is constrained to perform earlier steps in the corticosteroid synthesis pathway to achieve the final product aldosterone. These results suggest that enzyme function, pathway context, along with tissue-specific regulation, both play a role in shaping potential outcomes of metabolic network elaboration.
Collapse
Affiliation(s)
- Carrie F Olson-Manning
- Department of Biology, Augustana University, Sioux Falls, SD.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
23
|
Dardente H, Migaud M. Thyroid hormone and hypothalamic stem cells in seasonal functions. VITAMINS AND HORMONES 2021; 116:91-131. [PMID: 33752829 DOI: 10.1016/bs.vh.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Seasonal rhythms are a pervasive feature of most living organisms, which underlie yearly timeliness in breeding, migration, hibernation or weight gain and loss. To achieve this, organisms have developed inner timing devices (circannual clocks) that endow them with the ability to predict then anticipate changes to come, usually using daylength as the proximate cue. In Vertebrates, daylength interpretation involves photoperiodic control of TSH production by the pars tuberalis (PT) of the pituitary, which governs a seasonal switch in thyroid hormone (TH) availability in the neighboring hypothalamus. Tanycytes, specialized glial cells lining the third ventricle (3V), are responsible for this TH output through the opposite, PT-TSH-driven, seasonal control of deiodinases 2/3 (Dio 2/3). Tanycytes comprise a photoperiod-sensitive stem cell niche and TH is known to play major roles in cell proliferation and differentiation, which suggests that seasonal control of tanycyte proliferation may be involved in the photoperiodic synchronization of seasonal rhythms. Here we review our current knowledge of the molecular and neuroendocrine pathway linking photoperiodic information to seasonal changes in physiological functions and discuss the potential implication of tanycytes, TH and cell proliferation in seasonal timing.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France.
| | - Martine Migaud
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
24
|
Photoperiodic regulation of dopamine signaling regulates seasonal changes in retinal photosensitivity in mice. Sci Rep 2021; 11:1843. [PMID: 33469071 PMCID: PMC7815869 DOI: 10.1038/s41598-021-81540-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
At high latitudes, approximately 10% of people suffer from depression during the winter season, a phenomenon known as seasonal affective disorder (SAD). Shortened photoperiod and/or light intensity during winter season are risk factors for SAD, and bright light therapy is an effective treatment. Interestingly, reduced retinal photosensitivity along with the mood is observed in SAD patients in winter. However, the molecular basis underlying seasonal changes in retinal photosensitivity remains unclear, and pharmacological intervention is required. Here we show photoperiodic regulation of dopamine signaling and improvement of short day–attenuated photosensitivity by its pharmacological intervention in mice. Electroretinograms revealed dynamic seasonal changes in retinal photosensitivity. Transcriptome analysis identified short day-mediated suppression of the Th gene, which encodes tyrosine hydroxylase, a rate-limiting enzyme for dopamine biosynthesis. Furthermore, pharmacological intervention in dopamine signaling through activation of the cAMP signaling pathway rescued short day–attenuated photosensitivity, whereas dopamine receptor antagonists decreased photosensitivity under long-day conditions. Our results reveal molecular basis of seasonal changes in retinal photosensitivity in mammals. In addition, our findings provide important insights into the pathogenesis of SAD and offer potential therapeutic interventions.
Collapse
|
25
|
Querat B. Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front Endocrinol (Lausanne) 2021; 12:731966. [PMID: 34671318 PMCID: PMC8522476 DOI: 10.3389/fendo.2021.731966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
The glycoprotein hormones (GPH) are heterodimers composed of a common α subunit and a specific β subunit. They act by activating specific leucine-rich repeat G protein-coupled receptors. However, individual subunits have been shown to elicit responses in cells devoid of the receptor for the dimeric hormones. The α subunit is involved in prolactin production from different tissues. The human chorionic gonadotropin β subunit (βhCG) plays determinant roles in placentation and in cancer development and metastasis. A truncated form of the thyrotropin (TSH) β subunit is also reported to have biological effects. The GPH α- and β subunits are derived from precursor genes (gpa and gpb, respectively), which are expressed in most invertebrate species and are still represented in vertebrates as GPH subunit paralogs (gpa2 and gpb5, respectively). No specific receptor has been found for the vertebrate GPA2 and GPB5 even if their heterodimeric form is able to activate the TSH receptor in mammals. Interestingly, GPA and GPB are phylogenetically and structurally related to cysteine-knot growth factors (CKGF) and particularly to a group of antagonists that act independently on any receptor. This review article summarizes the observed actions of individual GPH subunits and presents the current hypotheses of how these actions might be induced. New approaches are also proposed in light of the evolutionary relatedness with antagonists of the CKGF family of proteins.
Collapse
|
26
|
Ertek S. Molecular economy of nature with two thyrotropins from different parts of the pituitary: pars tuberalis thyroid-stimulating hormone and pars distalis thyroid-stimulating hormone. Arch Med Sci 2021; 17:189-195. [PMID: 33488871 PMCID: PMC7811323 DOI: 10.5114/aoms/102476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/01/2019] [Indexed: 11/19/2022] Open
Abstract
Thyrotropin (TSH) is classically known to be regulated by negative feedback from thyroid hormones and stimulated by thyrotropin-releasing hormone (TRH) from the hypothalamus. At the end of the 1990s, studies showed that thyrotroph cells from the pars tuberalis (PT) did not have TRH receptors and their TSH regulation was independent from TRH stimulation. Instead, PT-thyrotroph cells were shown to have melatonin-1 (MT-1) receptors and melatonin secretion from the pineal gland stimulates TSH-β subunit formation in PT. Electron microscopy examinations also revealed some important differences between PT and pars distalis (PD) thyrotrophs. PT-TSH also have low bioactivity in the peripheral circulation. Studies showed that they have different glycosylations and PT-TSH forms macro-TSH complexes in the periphery and has a longer half-life. Photoperiodism affects LH levels in animals via decreased melatonin causing increased TSH-β subunit expression and induction of deiodinase-2 (DIO-2) in the brain. Mammals need a light stimulus carried into the suprachiasmatic nucleus (which is a circadian clock) and then transferred to the pineal gland to synthesize melatonin, but birds have deep brain receptors and they are stimulated directly by light stimuli to have increased PT-TSH, without the need for melatonin. Photoperiodic regulations via TSH and DIO 2/3 also have a role in appetite, seasonal immune regulation, food intake and nest-making behaviour in animals. Since humans have no clear seasonal breeding period, such studies as recent ''domestication locus'' studies in poultry are interesting. PT-TSH that works like a neurotransmitter in the brain may become an important target for future studies about humans.
Collapse
Affiliation(s)
- Sibel Ertek
- Department of Endocrinology and Metabolic Diseases, Memorial Ankara Hospital, Ankara, Turkey
| |
Collapse
|
27
|
Korf HW, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:227-251. [PMID: 34225932 DOI: 10.1016/b978-0-12-820107-7.00015-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Center for Anatomy and Brain Research, Institute for Anatomy, Düsseldorf, Germany.
| | - Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Chen J, Okimura K, Yoshimura T. Light and Hormones in Seasonal Regulation of Reproduction and Mood. Endocrinology 2020; 161:5879749. [PMID: 32738138 PMCID: PMC7442225 DOI: 10.1210/endocr/bqaa130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).
Collapse
Affiliation(s)
- Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Ohba K, Maekawa M, Iwahara K, Suzuki Y, Matsushita A, Sasaki S, Oki Y, Nakamura H. Abnormal thyroid hormone response to TRH in a case of macro-TSH and the cut-off value for screening cases of inappropriate TSH elevation. Endocr J 2020; 67:125-130. [PMID: 31645528 DOI: 10.1507/endocrj.ej19-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 74-year-old asymptomatic Japanese man with suspected thyroid dysfunction was referred to our hospital. He had an elevated TSH (53.8 mIU/L; reference interval: 0.5-5.0) despite a free T4 (FT4) level (1.4 ng/dL; reference interval: 0.9-1.6). Further analysis revealed macro-TSH. A notable finding was that a 500-μg TRH stimulation test revealed a blunted free T3 (FT3) response despite a prolonged TSH response. Macro-TSH typically presents with inappropriately marked elevation of serum TSH levels compared with other thyroid hormones, as exhibited in our case. However, the level of TSH elevation that might differentiate macro-TSH from subclinical hypothyroidism is poorly known. We retrospectively analyzed 8,183 concurrent measurements of TSH and FT4 in individuals previously examined in our hospital to define the cut-off value for screening cases of inappropriate TSH elevation. FT4 values were rounded off to one decimal place, and the 97.5th percentile of TSH against each FT4 value was calculated. The data of our patient and that of 30 cases of macro-TSH extracted from the English literature were then assessed. When the approximate curve obtained from the 97.5th percentile of TSH values was defined as the cut-off value [Log10TSH = 0.700 + 1.549/{1 + (FT4/0.844)6.854}], 25 of the 31 (80.6%) macro-TSH cases were identified. In conclusion, we report for the first time a case of macro-TSH demonstrating an abnormal FT3 response to TRH. A cut-off value of TSH adjusted to the FT4 level may be a good method of screening for inappropriate TSH elevation (or inappropriate hyperthyrotropinemia) including those caused by macro-TSH.
Collapse
Affiliation(s)
- Kenji Ohba
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kunihiro Iwahara
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasuhide Suzuki
- Department of Laboratory Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Oki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hirotoshi Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Internal Medicine, Kuma Hospital, Kobe, Hyogo 650-0011, Japan
| |
Collapse
|
30
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
31
|
Ikegami K, Refetoff S, Van Cauter E, Yoshimura T. Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol 2019; 15:590-600. [PMID: 31406343 PMCID: PMC7288350 DOI: 10.1038/s41574-019-0237-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Circadian rhythmicity is an approximately 24-h cell-autonomous period driven by transcription-translation feedback loops of specific genes, which are referred to as 'circadian clock genes'. In mammals, the central circadian pacemaker, which is located in the hypothalamic suprachiasmatic nucleus, controls peripheral circadian clocks. The circadian system regulates virtually all physiological processes, which are further modulated by changes in the external environment, such as light exposure and the timing of food intake. Chronic circadian disruption caused by shift work, travel across time zones or irregular sleep-wake cycles has long-term consequences for our health and is an important lifestyle factor that contributes to the risk of obesity, type 2 diabetes mellitus and cancer. Although the hypothalamic-pituitary-thyroid axis is under the control of the circadian clock via the suprachiasmatic nucleus pacemaker, daily TSH secretion profiles are disrupted in some patients with hypothyroidism and hyperthyroidism. Disruption of circadian rhythms has been recognized as a perturbation of the endocrine system and of cell cycle progression. Expression profiles of circadian clock genes are abnormal in well-differentiated thyroid cancer but not in the benign nodules or a healthy thyroid. Therefore, the characterization of the thyroid clock machinery might improve the preoperative diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago School of Medicine, Chicago, IL, USA
- Department of Paediatrics and Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Eve Van Cauter
- Department of Medicine, The University of Chicago School of Medicine, Chicago, IL, USA
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
32
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
33
|
Gizaw ST, Gaunitz S, Novotny MV. Highly Sensitive O-Glycan Profiling for Human Serum Proteins Reveals Gender-Dependent Changes in Colorectal Cancer Patients. Anal Chem 2019; 91:6180-6189. [PMID: 30983323 PMCID: PMC6602050 DOI: 10.1021/acs.analchem.9b00822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A newly developed microscale protocol for profiling serum O-glycans has been validated here with multiple serum samples obtained from different cohorts of colorectal cancer patients. The simultaneous cleavage and permethylation steps in this procedure preserve the integrity of released minor O-glycans, so that 39 O-linked oligosaccharides could be reliably recorded in a profile. This is far more detected components than shown in any previous studies. The analytical results were further subjected to a battery of statistical tests. Our O-glycan compositions compare favorably with the previous results obtained with solid tumors and cancer cell lines, suggesting that smaller circulatory mucins protruding into the blood circulation may be one source of O-glycans that we observe in the serum samples. While the control vs cancer statistical comparisons generally agree with the expected glycosylation trends, the comparisons of male vs female subjects have led to some surprising results for which we do not have a ready explanation due to lack of any literature describing hormonal control of O-glycosylation. Our results thus underscore the necessity of applying new analytical technologies to clinically interesting sample sets.
Collapse
Affiliation(s)
- Solomon T. Gizaw
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
34
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
35
|
Fleming MS, Maugars G, Lafont AG, Rancon J, Fontaine R, Nourizadeh-Lillabadi R, Weltzien FA, Yebra-Pimentel ES, Dirks R, McCormick SD, Rousseau K, Martin P, Dufour S. Functional divergence of thyrotropin beta-subunit paralogs gives new insights into salmon smoltification metamorphosis. Sci Rep 2019; 9:4561. [PMID: 30872608 PMCID: PMC6418267 DOI: 10.1038/s41598-019-40019-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Smoltification is a metamorphic event in salmon life history, which initiates downstream migration and pre-adapts juvenile salmon for seawater entry. While a number of reports concern thyroid hormones and smoltification, few and inconclusive studies have addressed the potential role of thyrotropin (TSH). TSH is composed of a α-subunit common to gonadotropins, and a β-subunit conferring hormone specificity. We report the presence and functional divergence of duplicated TSH β-subunit paralogs (tshβa and tshβb) in Atlantic salmon. Phylogeny and synteny analyses allowed us to infer that they originated from teleost-specific whole genome duplication. Expression profiles of both paralogs in the pituitary were measured by qPCR throughout smoltification in Atlantic salmon from the endangered Loire-Allier population raised in a conservation hatchery. This revealed a striking peak of tshβb expression in April, concomitant with downstream migration initiation, while tshβa expression remained relatively constant. In situ hybridization showed two distinct pituitary cell populations, tshβa cells in the anterior adenohypophysis, and tshβb cells near to the pituitary stalk, a location comparable to the pars tuberalis TSH cells involved in seasonal physiology and behaviour in birds and mammals. Functional divergence of tshβ paralogs in Atlantic salmon supports a specific role of tshβb in smoltification.
Collapse
Affiliation(s)
- Mitchell S Fleming
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris, Cedex 05, France
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Gersende Maugars
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris, Cedex 05, France
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Anne-Gaëlle Lafont
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris, Cedex 05, France
| | - Jocelyn Rancon
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Romain Fontaine
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | | | - Finn-Arne Weltzien
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | | | - Ron Dirks
- Future Genomics Technologies B.V, 2333 BE, Leiden, Netherlands
| | - Stephen D McCormick
- US Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | - Karine Rousseau
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris, Cedex 05, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris, Cedex 05, France.
| |
Collapse
|
36
|
Helfer G, Barrett P, Morgan PJ. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol 2019; 31:e12680. [PMID: 30585661 DOI: 10.1111/jne.12680] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Animals have evolved diverse seasonal variations in physiology and reproduction to accommodate yearly changes in environmental and climatic conditions. These changes in physiology are initiated by changes in photoperiod (daylength) and are mediated through melatonin, which relays photoperiodic information to the pars tuberalis of the pituitary gland. Melatonin drives thyroid-stimulating hormone transcription and synthesis in the pars tuberalis, which, in turn, regulates thyroid hormone and retinoic acid synthesis in the tanycytes lining the third ventricle of the hypothalamus. Seasonal variation in central thyroid hormone signalling is conserved among photoperiodic animals. Despite this, different species adopt divergent phenotypes to cope with the same seasonal changes. A common response amongst different species is increased hypothalamic cell proliferation/neurogenesis in short photoperiod. That cell proliferation/neurogenesis may be important for seasonal timing is based on (i) the neurogenic potential of tanycytes; (ii) the fact that they are the locus of striking seasonal morphological changes; and (iii) the similarities to mechanisms involved in de novo neurogenesis of energy balance neurones. We propose that a decrease in hypothalamic thyroid hormone and retinoic acid signalling initiates localised neurodegeneration and apoptosis, which leads to a reduction in appetite and body weight. Neurodegeneration induces compensatory cell proliferation from the neurogenic niche in tanycytes and new cells are born under short photoperiod. Because these cells have the potential to differentiate into a number of different neuronal phenotypes, this could provide a mechanistic basis to explain the seasonal regulation of energy balance, as well as reproduction. This cycle can be achieved without changes in thyroid hormone/retinoic acid and explains recent data obtained from seasonal animals held in natural conditions. However, thyroid/retinoic acid signalling is required to synchronise the cycles of apoptosis, proliferation and differentiation. Thus, hypothalamic neurogenesis provides a framework to explain diverse photoperiodic responses.
Collapse
Affiliation(s)
- Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Perry Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
37
|
Rodríguez E, Guerra M, Peruzzo B, Blázquez JL. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 2019; 31:e12690. [PMID: 30697830 DOI: 10.1111/jne.12690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
Tanycytes are located at the base of the brain and retain characteristics from their developmental origins, such as radial glial cells, throughout their life span. With transport mechanisms and modulation of tight junction proteins, tanycytes form a bridge connecting the cerebrospinal fluid with the external limiting basement membrane. They also retain the powers of self-renewal and can differentiate to generate neurones and glia. Similar to radial glia, they are a heterogeneous family with distinct phenotypes. Although the four subtypes so far distinguished display distinct characteristics, further research is likely to reveal new subtypes. In this review, we have re-visited the work of the pioneers in the field, revealing forgotten work that is waiting to inspire new research with today's cutting-edge technologies. We have conducted a systematic ultrastructural study of α-tanycytes that resulted in a wealth of new information, generating numerous questions for future study. We also consider median eminence pituicytes, a closely-related cell type to tanycytes, and attempt to relate pituicyte fine morphology to molecular and functional mechanism. Our rationale was that future research should be guided by a better understanding of the early pioneering work in the field, which may currently be overlooked when interpreting newer data or designing new investigations.
Collapse
Affiliation(s)
- Esteban Rodríguez
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Montserrat Guerra
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Bruno Peruzzo
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Luis Blázquez
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
38
|
Abstract
Organisms use changes in photoperiod for seasonal reproduction to maximize the survival of their offspring. Birds have sophisticated seasonal mechanisms and are therefore excellent models for studying these phenomena. Birds perceive light via deep-brain photoreceptors and long day–induced thyroid-stimulating hormone (TSH, thyrotropin) in the pars tuberalis of the pituitary gland (PT), which cause local thyroid hormone activation within the mediobasal hypothalamus. The local bioactive thyroid hormone controls seasonal gonadotropin-releasing hormone secretion and subsequent gonadotropin secretion. In mammals, the eyes are believed to be the only photoreceptor organ, and nocturnal melatonin secretion triggers an endocrine signal that communicates information about the photoperiod to the PT to regulate TSH. In contrast, in Salmonidae fish the input pathway to the neuroendocrine output pathway appears to be localized in the saccus vasculosus. Thus, comparative analysis is an effective way to uncover the universality and diversity of fundamental traits in various organisms.
Collapse
Affiliation(s)
- Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
39
|
GUH YJ, TAMAI TK, YOSHIMURA T. The underlying mechanisms of vertebrate seasonal reproduction. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:343-357. [PMID: 31406058 PMCID: PMC6766453 DOI: 10.2183/pjab.95.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 06/01/2023]
Abstract
Animals make use of changes in photoperiod to adapt their physiology to the forthcoming breeding season. Comparative studies have contributed to our understanding of the mechanisms of seasonal reproduction in vertebrates. Birds are excellent models for studying these phenomena because of their rapid and dramatic responses to changes in photoperiod. Deep brain photoreceptors in birds perceive and transmit light information to the pars tuberalis (PT) in the pituitary gland, where the thyroid-stimulating hormone (TSH) is produced. This PT-TSH locally increases the level of the bioactive thyroid hormone T3 via the induction of type 2 deiodinase production in the mediobasal hypothalamus, and an increased T3 level, in turn, controls seasonal gonadotropin-releasing hormone secretion. In mammals, the eyes are the only photoreceptive structure, and nocturnal melatonin secretion encodes day-length information and regulates the PT-TSH signaling cascade. In Salmonidae, the saccus vasculosus plays a pivotal role as a photoperiodic sensor. Together, these studies have uncovered the universality and diversity of fundamental traits in vertebrates.
Collapse
Affiliation(s)
- Ying-Jey GUH
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takako K TAMAI
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Takashi YOSHIMURA
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Laboratory of Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Fröhlich E, Wahl R. The forgotten effects of thyrotropin-releasing hormone: Metabolic functions and medical applications. Front Neuroendocrinol 2019; 52:29-43. [PMID: 29935915 DOI: 10.1016/j.yfrne.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany; Center for Medical Research, Medical University Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Richard Wahl
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany.
| |
Collapse
|
41
|
Zhu H, Liu X, Hu M, Lei M, Chen Z, Ying S, Yu J, Dai Z, Shi Z. Endocrine and molecular regulation mechanisms of the reproductive system of Hungarian White geese investigated under two artificial photoperiodic programs. Theriogenology 2019; 123:167-176. [DOI: 10.1016/j.theriogenology.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022]
|
42
|
Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 2018; 127:145-152. [PMID: 29800653 DOI: 10.1016/j.freeradbiomed.2018.05.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Selenoprotein T (SELENOT, SELT) is a thioredoxin-like enzyme anchored at the endoplasmic reticulum (ER) membrane, whose primary structure is highly conserved during evolution. SELENOT is abundant in embryonic tissues and its activity is essential during development since its gene knockout in mice is lethal early during embryogenesis. Although its expression is repressed in most adult tissues, SELENOT remains particularly abundant in endocrine organs such as the pituitary, pancreas, thyroid and testis, suggesting an important role of this selenoprotein in hormone production. Our recent studies showed indeed that SELENOT plays a key function in insulin and corticotropin biosynthesis and release by regulating ER proteostasis. Although SELENOT expression is low or undetectable in most cerebral structures, its gene conditional knockout in brain provokes anatomical alterations that impact mice behavior. This suggests that SELENOT also plays an important role in brain development and function. In addition, SELENOT is induced after injury in brain or liver and exerts a cytoprotective effect. Thus, the data gathered during the last ten years of intense investigation of this newly discovered thioredoxin-like enzyme point to an essential function during development and in adult endocrine organs or lesioned brain, most likely by regulating ER redox circuits that control homeostasis and survival of cells with intense metabolic activity.
Collapse
Affiliation(s)
- Youssef Anouar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France.
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| |
Collapse
|
43
|
Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int J Mol Sci 2018; 19:E2792. [PMID: 30227620 PMCID: PMC6163523 DOI: 10.3390/ijms19092792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/08/2023] Open
Abstract
The key proteins responsible for hormone synthesis in the thyroid are glycosylated. Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans, the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the thyroid gland is an intensively studied field of research, providing new data helpful in understanding the role of the sugar component in thyroid protein biology and disorders.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
44
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
45
|
Saeui CT, Nairn AV, Galizzi M, Douville C, Gowda P, Park M, Dharmarha V, Shah SR, Clarke A, Austin M, Moremen KW, Yarema KJ. Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes. PLoS One 2018; 13:e0195812. [PMID: 29847599 PMCID: PMC5976204 DOI: 10.1371/journal.pone.0195812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
In this report we use 'high-flux' tributanoyl-modified N-acetylmannosamine (ManNAc) analogs with natural N-acetyl as well as non-natural azido- and alkyne N-acyl groups (specifically, 1,3,4-O-Bu3ManNAc, 1,3,4-O-Bu3ManNAz, and 1,3,4-O-Bu3ManNAl respectively) to probe intracellular sialic acid metabolism in the near-normal MCF10A human breast cell line in comparison with earlier stage T-47D and more advanced stage MDA-MB-231 breast cancer lines. An integrated view of sialic acid metabolism was gained by measuring intracellular sialic acid production in tandem with transcriptional profiling of genes linked to sialic acid metabolism. The transcriptional profiling showed several differences between the three lines in the absence of ManNAc analog supplementation that helps explain the different sialoglycan profiles naturally associated with cancer. Only minor changes in mRNA transcript levels occurred upon exposure to the compounds confirming that metabolic flux alone can be a key determinant of sialoglycoconjugate display in breast cancer cells; this result complements the well-established role of genetic control (e.g., the transcription of STs) of sialylation abnormalities ubiquitously associated with cancer. A notable result was that the different cell lines produced significantly different levels of sialic acid upon exogenous ManNAc supplementation, indicating that feedback inhibition of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE)-generally regarded as the 'gatekeeper' enzyme for titering flux into sialic acid biosynthesis-is not the only regulatory mechanism that limits production of this sugar. A notable aspect of our metabolic glycoengineering approach is its ability to discriminate cell subtype based on intracellular metabolism by illuminating otherwise hidden cell type-specific features. We believe that this strategy combined with multi-dimensional analysis of sialic acid metabolism will ultimately provide novel insights into breast cancer subtypes and provide a foundation for new methods of diagnosis.
Collapse
Affiliation(s)
- Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alison V. Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Christopher Douville
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Prateek Gowda
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marian Park
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vrinda Dharmarha
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sagar R. Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Amelia Clarke
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melissa Austin
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Anti-angiogenic VEGFAxxxb transcripts are not expressed in the medio-basal hypothalamus of the seasonal sheep. PLoS One 2018; 13:e0197123. [PMID: 29746548 PMCID: PMC5944957 DOI: 10.1371/journal.pone.0197123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated Vegfa expression in the pars tuberalis (PT) of the pituitary and medio-basal hypothalamus (MBH) of sheep, across seasons and reproductive states. It has recently been proposed that season impacts alternative splicing of Vegfa mRNA in the PT, which shifts the balance between angiogenic VEGFAxxx and anti-angiogenic VEGFAxxxb isoforms (with xxx the number of amino acids of the mature VEGFA proteins) to modulate seasonal breeding. Here, we used various RT-PCR methodologies and analysis of RNAseq datasets to investigate seasonal variation in expression and splicing of the ovine Vegfa gene. Collectively, we identify 5 different transcripts for Vegfa within the ewe PT/MBH, which correspond to splicing events previously described in mouse and human. All identified transcripts encode angiogenic VEGFAxxx isoforms, with no evidence for alternative splicing within exon 8. These findings led us to investigate in detail how "Vegfaxxxb-like" PCR products could be generated by RT-PCR and misidentified as endogenous transcripts, in sheep and human HEK293 cells. In conclusion, our findings do not support the existence of anti-angiogenic VEGFAxxxb isoforms in the ovine PT/MBH and shed new light on the interpretation of prior studies, which claimed to identify Vegfaxxxb isoforms by RT-PCR.
Collapse
|
47
|
Shimmura T, Nakayama T, Shinomiya A, Yoshimura T. Seasonal changes in color perception. Gen Comp Endocrinol 2018; 260:171-174. [PMID: 29288672 DOI: 10.1016/j.ygcen.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 01/25/2023]
Abstract
In temperate zones, organisms experience dynamic fluctuations in environment including changes in color. To cope with such seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception has been believed to be fixed throughout life, there is increasing evidence for the alteration in opsin gene expression induced by environmental stimuli in a number of animals. Very recently, dynamic seasonal plasticity in color perception has been reported in the seasonally breeding medaka fish. Interestingly, seasonal changes in human color perception have also been reported. Therefore, plasticity of color perception, induced by environmental stimuli, might be a common phenomenon across various species.
Collapse
Affiliation(s)
- Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - Tomoya Nakayama
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
48
|
Lomet D, Cognié J, Chesneau D, Dubois E, Hazlerigg D, Dardente H. The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Cell Mol Life Sci 2018; 75:905-919. [PMID: 28975373 PMCID: PMC11105383 DOI: 10.1007/s00018-017-2667-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/16/2023]
Abstract
Thyroid hormone (TH) directs seasonal breeding through reciprocal regulation of TH deiodinase (Dio2/Dio3) gene expression in tanycytes in the ependymal zone of the medio-basal hypothalamus (MBH). Thyrotropin secretion by the pars tuberalis (PT) is a major photoperiod-dependent upstream regulator of Dio2/Dio3 gene expression. Long days enhance thyrotropin production, which increases Dio2 expression and suppresses Dio3 expression, thereby heightening TH signaling in the MBH. Short days appear to exert the converse effect. Here, we combined endocrine profiling and transcriptomics to understand how photoperiod and TH control the ovine reproductive status through effects on hypothalamic function. Almost 3000 genes showed altered hypothalamic expression between the breeding- and non-breeding seasons, showing gene ontology enrichment for cell signaling, epigenetics and neural plasticity. In contrast, acute switching from a short (SP) to a long photoperiod (LP) affected the expression of a much smaller core of 134 LP-responsive genes, including a canonical group previously linked to photoperiodic synchronization. Reproductive switch-off at the end of the winter breeding season was completely blocked by thyroidectomy (THX), despite a very modest effect on the hypothalamic transcriptome. Only 49 genes displayed altered expression between intact and THX ewes, including less than 10% of the LP-induced gene set. Neuroanatomical mapping showed that many LP-induced genes were expressed in the PT, independently of the TH status. In contrast, TH-sensitive seasonal genes were principally expressed in the ependymal zone. These data highlight the distinctions between seasonal remodeling effects, which appear to be largely independent of TH, and TH-dependent localised effects which are permissive for transition to the non-breeding state.
Collapse
Affiliation(s)
- Didier Lomet
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Juliette Cognié
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Didier Chesneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 34094, Montpellier, France
| | - David Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
49
|
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258:236-243. [PMID: 28511899 DOI: 10.1016/j.ygcen.2017.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Wood S, Loudon A. The pars tuberalis: The site of the circannual clock in mammals? Gen Comp Endocrinol 2018; 258:222-235. [PMID: 28669798 DOI: 10.1016/j.ygcen.2017.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Accurate timing and physiological adaptation to anticipate seasonal changes are an essential requirement for an organism's survival. In contrast to all other environmental cues, photoperiod offers a highly predictive signal that can be reliably used to activate a seasonal adaptive programme at the correct time of year. Coupled to photoperiod sensing, it is apparent that many organisms have evolved innate long-term timekeeping systems, allowing reliable anticipation of forthcoming environmental changes. The fundamental biological processes giving rise to innate long-term timing, with which the photoperiod-sensing pathway engages, are not known for any organism. There is growing evidence that the pars tuberalis (PT) of the pituitary, which acts as a primary transducer of photoperiodic input, may be the site of the innate long-term timer or "circannual clock". Current research has led to the proposition that the PT-specific thyrotroph may act as a seasonal calendar cell, driving both hypothalamic and pituitary endocrine circuits. Based on this research we propose that the mechanistic basis for the circannual rhythm appears to be deeply conserved, driven by a binary switching cell based accumulator, analogous to that proposed for development. We review the apparent conservation of function and pathways to suggest that these broad principles may apply across the vertebrate lineage and even share characteristics with processes driving seasonal adaptation in plants.
Collapse
Affiliation(s)
- Shona Wood
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - Andrew Loudon
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|