1
|
Jassinskaja M, Ghosh S, Watral J, Davoudi M, Claesson Stern M, Daher U, Eldeeb M, Zhang Q, Bryder D, Hansson J. A complex interplay of intra- and extracellular factors regulates the outcome of fetal- and adult-derived MLL-rearranged leukemia. Leukemia 2024; 38:1115-1130. [PMID: 38555405 PMCID: PMC11073998 DOI: 10.1038/s41375-024-02235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, YO10 5DD, York, UK
| | - Sudip Ghosh
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Joanna Watral
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Melina Claesson Stern
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ugarit Daher
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mohamed Eldeeb
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Qinyu Zhang
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - David Bryder
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.
| |
Collapse
|
2
|
Waraky A, Östlund A, Nilsson T, Weichenhan D, Lutsik P, Bähr M, Hey J, Tunali G, Adamsson J, Jacobsson S, Morsy MHA, Li S, Fogelstrand L, Plass C, Palmqvist L. Aberrant MNX1 expression associated with t(7;12)(q36;p13) pediatric acute myeloid leukemia induces the disease through altering histone methylation. Haematologica 2024; 109:725-739. [PMID: 37317878 PMCID: PMC10905087 DOI: 10.3324/haematol.2022.282255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Certain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data. Importantly, this leukemia was only induced in immune incompetent mice using fetal but not adult hematopoietic stem and progenitor cells. The restriction in transforming capacity to cells from fetal liver is in alignment with t(7;12)(q36;p13) AML being mostly seen in infants. Expression of MNX1 led to increased histone 3 lysine 4 mono-, di- and trimethylation, reduction in H3K27me3, accompanied with changes in genome-wide chromatin accessibility and genome expression, likely mediated through MNX1 interaction with the methionine cycle and methyltransferases. MNX1 expression increased DNA damage, depletion of the Lin-/Sca1+/c-Kit+ population and skewing toward the myeloid lineage. These effects, together with leukemia development, were prevented by pre-treatment with the S-adenosylmethionine analog Sinefungin. In conclusion, we have shown the importance of MNX1 in development of AML with t(7;12), supporting a rationale for targeting MNX1 and downstream pathways.
Collapse
Affiliation(s)
- Ahmed Waraky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Anders Östlund
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Tina Nilsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Gürcan Tunali
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Jenni Adamsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Susanna Jacobsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | | | - Susann Li
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg.
| |
Collapse
|
3
|
Li Y, Mendoza-Castrejon J, Patel RM, Casey EB, Denby E, Bryder D, Magee JA. LIN28B promotes differentiation of fully transformed AML cells but is dispensable for fetal leukemia suppression. Leukemia 2024; 38:648-651. [PMID: 38321106 PMCID: PMC10912017 DOI: 10.1038/s41375-024-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Affiliation(s)
- Yanan Li
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jonny Mendoza-Castrejon
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Riddhi M Patel
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Emily B Casey
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Elisabeth Denby
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Jeffrey A Magee
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
5
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
6
|
Eldeeb M, Yuan O, Guzzi N, Thi Ngoc PC, Konturek-Ciesla A, Kristiansen TA, Muthukumar S, Magee J, Bellodi C, Yuan J, Bryder D. A fetal tumor suppressor axis abrogates MLL-fusion-driven acute myeloid leukemia. Cell Rep 2023; 42:112099. [PMID: 36763502 DOI: 10.1016/j.celrep.2023.112099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
MLL-rearrangements (MLL-r) are recurrent genetic events in acute myeloid leukemia (AML) and frequently associate with poor prognosis. In infants, MLL-r can be sufficient to drive transformation. However, despite the prenatal origin of MLL-r in these patients, congenital leukemia is very rare with transformation usually occurring postnatally. The influence of prenatal signals on leukemogenesis, such as those mediated by the fetal-specific protein LIN28B, remains controversial. Here, using a dual-transgenic mouse model that co-expresses MLL-ENL and LIN28B, we investigate the impact of LIN28B on AML. LIN28B impedes the progression of MLL-r AML through compromised leukemia-initiating cell activity and suppression of MYB signaling. Mechanistically, LIN28B directly binds to MYBBP1A mRNA, resulting in elevated protein levels of this MYB co-repressor. Functionally, overexpression of MYBBP1A phenocopies the tumor-suppressor effects of LIN28B, while its perturbation omits it. Thereby, we propose that developmentally restricted expression of LIN28B provides a layer of protection against MYB-dependent AML.
Collapse
Affiliation(s)
- Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey Magee
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
7
|
Pimkova K, Jassinskaja M, Munita R, Ciesla M, Guzzi N, Cao Thi Ngoc P, Vajrychova M, Johansson E, Bellodi C, Hansson J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol 2022; 53:102343. [PMID: 35640380 PMCID: PMC9157258 DOI: 10.1016/j.redox.2022.102343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
Collapse
Affiliation(s)
- K Pimkova
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic.
| | - M Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - R Munita
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Ciesla
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - N Guzzi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - P Cao Thi Ngoc
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - E Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - C Bellodi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - J Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
9
|
Bai H, Zhang Q, Zhang S, Wang J, Luo B, Dong Y, Gao J, Cheng T, Dong F, Ema H. Multiple cells of origin in common with various types of mouse N-Myc acute leukemia. Leuk Res 2022; 117:106843. [DOI: 10.1016/j.leukres.2022.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
10
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
12
|
Abstract
The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
Collapse
|
13
|
Identification of Potential Key lncRNAs in the Context of Mouse Myeloid Differentiation by Systematic Transcriptomics Analysis. Genes (Basel) 2021; 12:genes12050630. [PMID: 33922442 PMCID: PMC8146222 DOI: 10.3390/genes12050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic differentiation is a well-orchestrated process by many regulators such as transcription factor and long non-coding RNAs (lncRNAs). However, due to the large number of lncRNAs and the difficulty in determining their roles, the study of lncRNAs is a considerable challenge in hematopoietic differentiation. Here, through gene co-expression network analysis over RNA-seq data generated from representative types of mouse myeloid cells, we obtained a catalog of potential key lncRNAs in the context of mouse myeloid differentiation. Then, employing a widely used in vitro cell model, we screened a novel lncRNA, named Gdal1 (Granulocytic differentiation associated lncRNA 1), from this list and demonstrated that Gdal1 was required for granulocytic differentiation. Furthermore, knockdown of Cebpe, a principal transcription factor of granulocytic differentiation regulation, led to down-regulation of Gdal1, but not vice versa. In addition, expression of genes involved in myeloid differentiation and its regulation, such as Cebpa, were influenced in Gdal1 knockdown cells with differentiation blockage. We thus systematically identified myeloid differentiation associated lncRNAs and substantiated the identification by investigation of one of these lncRNAs on cellular phenotype and gene regulation levels. This study promotes our understanding of the regulation of myeloid differentiation and the characterization of roles of lncRNAs in hematopoietic system.
Collapse
|
14
|
Jassinskaja M, Pimková K, Arh N, Johansson E, Davoudi M, Pereira CF, Sitnicka E, Hansson J. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep 2021; 34:108894. [PMID: 33761361 DOI: 10.1016/j.celrep.2021.108894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Kristýna Pimková
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Nejc Arh
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Emil Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden; Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Carlos-Filipe Pereira
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
15
|
Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A, Moksa M, Carles A, Bilenky M, Lefort S, Shu J, Wilhelm BT, Weng AP, Hirst M, Eaves CJ. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood 2020; 136:2764-2773. [PMID: 33301029 DOI: 10.1182/blood.2020006374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sylvain Lefort
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jeremy Shu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Brian T Wilhelm
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; and
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
The efficiency of murine MLL-ENL-driven leukemia initiation changes with age and peaks during neonatal development. Blood Adv 2020; 3:2388-2399. [PMID: 31405949 DOI: 10.1182/bloodadvances.2019000554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
MLL rearrangements are translocation mutations that cause both acute lymphoblastic leukemia and acute myeloid leukemia (AML). These translocations can occur as sole clonal driver mutations in infant leukemias, suggesting that fetal or neonatal hematopoietic progenitors may be exquisitely sensitive to transformation by MLL fusion proteins. To test this possibility, we used transgenic mice to induce one translocation product, MLL-ENL, during fetal, neonatal, juvenile and adult stages of life. When MLL-ENL was induced in fetal or neonatal mice, almost all died of AML. In contrast, when MLL-ENL was induced in adult mice, most survived for >1 year despite sustained transgene expression. AML initiation was most efficient when MLL-ENL was induced in neonates, and even transient suppression of MLL-ENL in neonates could prevent AML in most mice. MLL-ENL target genes were induced more efficiently in neonatal progenitors than in adult progenitors, consistent with the distinct AML initiation efficiencies. Interestingly, transplantation stress mitigated the developmental barrier to leukemogenesis. Since fetal/neonatal progenitors were highly competent to initiate MLL-ENL-driven AML, we tested whether Lin28b, a fetal master regulator, could accelerate leukemogenesis. Surprisingly, Lin28b suppressed AML initiation rather than accelerating it. This may explain why MLL rearrangements often occur before birth in human infant leukemia patients, but transformation usually does not occur until after birth, when Lin28b levels decline. Our findings show that the efficiency of MLL-ENL-driven AML initiation changes through the course of pre- and postnatal development, and developmental programs can be manipulated to impede transformation.
Collapse
|
17
|
Eastman AE, Chen X, Hu X, Hartman AA, Pearlman Morales AM, Yang C, Lu J, Kueh HY, Guo S. Resolving Cell Cycle Speed in One Snapshot with a Live-Cell Fluorescent Reporter. Cell Rep 2020; 31:107804. [PMID: 32579930 PMCID: PMC7418154 DOI: 10.1016/j.celrep.2020.107804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cell proliferation changes concomitantly with fate transitions during reprogramming, differentiation, regeneration, and oncogenesis. Methods to resolve cell cycle length heterogeneity in real time are currently lacking. Here, we describe a genetically encoded fluorescent reporter that captures live-cell cycle speed using a single measurement. This reporter is based on the color-changing fluorescent timer (FT) protein, which emits blue fluorescence when newly synthesized before maturing into a red fluorescent protein. We generated a mouse strain expressing an H2B-FT fusion reporter from a universally active locus and demonstrate that faster cycling cells can be distinguished from slower cycling ones on the basis of the intracellular fluorescence ratio between the FT's blue and red states. Using this reporter, we reveal the native cell cycle speed distributions of fresh hematopoietic cells and demonstrate its utility in analyzing cell proliferation in solid tissues. This system is broadly applicable for dissecting functional heterogeneity associated with cell cycle dynamics in complex tissues.
Collapse
Affiliation(s)
- Anna E Eastman
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Xinyue Chen
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Amaleah A Hartman
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | | - Cindy Yang
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
19
|
Basilico S, Wang X, Kennedy A, Tzelepis K, Giotopoulos G, Kinston SJ, Quiros PM, Wong K, Adams DJ, Carnevalli LS, Huntly BJP, Vassiliou GS, Calero-Nieto FJ, Göttgens B. Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nat Commun 2020; 11:1407. [PMID: 32179751 PMCID: PMC7075888 DOI: 10.1038/s41467-020-15220-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hematopoietic Stem Cells/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Inbred C57BL
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Silvia Basilico
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Xiaonan Wang
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alison Kennedy
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Milner Therapeutics Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George Giotopoulos
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pedro M Quiros
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kim Wong
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Brian J P Huntly
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George S Vassiliou
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Fernando J Calero-Nieto
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
20
|
Chen X, Burkhardt DB, Hartman AA, Hu X, Eastman AE, Sun C, Wang X, Zhong M, Krishnaswamy S, Guo S. MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat Commun 2019; 10:5767. [PMID: 31852898 PMCID: PMC6920141 DOI: 10.1038/s41467-019-13666-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2019] [Indexed: 01/16/2023] Open
Abstract
Cancer is a hyper-proliferative disease. Whether the proliferative state originates from the cell-of-origin or emerges later remains difficult to resolve. By tracking de novo transformation from normal hematopoietic progenitors expressing an acute myeloid leukemia (AML) oncogene MLL-AF9, we reveal that the cell cycle rate heterogeneity among granulocyte-macrophage progenitors (GMPs) determines their probability of transformation. A fast cell cycle intrinsic to these progenitors provide permissiveness for transformation, with the fastest cycling 3% GMPs acquiring malignancy with near certainty. Molecularly, we propose that MLL-AF9 preserves gene expression of the cellular states in which it is expressed. As such, when expressed in the naturally-existing, rapidly-cycling immature myeloid progenitors, this cell state becomes perpetuated, yielding malignancy. In humans, high CCND1 expression predicts worse prognosis for MLL fusion AMLs. Our work elucidates one of the earliest steps toward malignancy and suggests that modifying the cycling state of the cell-of-origin could be a preventative approach against malignancy.
Collapse
MESH Headings
- Animals
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cyclin D1/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation, Leukemic
- Gene Knock-In Techniques
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Mice, Transgenic
- Myeloid Progenitor Cells/pathology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Piperazines/administration & dosage
- Primary Cell Culture
- Prognosis
- Pyridines/administration & dosage
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | | | - Amaleah A. Hartman
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Anna E. Eastman
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Chao Sun
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Xujun Wang
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Mei Zhong
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | | | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
21
|
Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:850-858. [PMID: 31471945 DOI: 10.1002/gcc.22805] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is experimental and observational evidence that the cells of the leukemic clone in acute myeloid leukemia (AML) have different phenotypes even though they share the same somatic mutations. The organization of the malignant clone in AML has many similarities to normal hematopoiesis, with leukemia stem cells (LSCs) that sustain leukemia and give rise to more differentiated cells. LSCs, similar to normal hematopoietic stem cells (HSCs), are those cells that are able to give rise to a new leukemic clone when transplanted into a recipient. The cell of origin of leukemia (COL) is defined as the normal cell that is able to transform into a leukemia cell. Current evidence suggests that the COL is distinct from the LSC. Here, we will review the current knowledge about LSCs and the COL in AML.
Collapse
Affiliation(s)
- Martin Chopra
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
The Impact of the Cellular Origin in Acute Myeloid Leukemia: Learning From Mouse Models. Hemasphere 2019; 3:e152. [PMID: 31723801 PMCID: PMC6745939 DOI: 10.1097/hs9.0000000000000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease driven by a limited number of cooperating mutations. There is a long-standing debate as to whether AML driver mutations occur in hematopoietic stem or in more committed progenitor cells. Here, we review how different mouse models, despite their inherent limitations, have functionally demonstrated that cellular origin plays a critical role in the biology of the disease, influencing clinical outcome. AML driven by potent oncogenes such as mixed lineage leukemia fusions often seem to emerge from committed myeloid progenitors whereas AML without any major cytogenetic abnormalities seem to develop from a combination of preleukemic initiating events arising in the hematopoietic stem cell pool. More refined mouse models may serve as experimental platforms to identify and validate novel targeted therapeutic strategies.
Collapse
|
23
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
24
|
Säwen P, Eldeeb M, Erlandsson E, Kristiansen TA, Laterza C, Kokaia Z, Karlsson G, Yuan J, Soneji S, Mandal PK, Rossi DJ, Bryder D. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. eLife 2018; 7:41258. [PMID: 30561324 PMCID: PMC6298771 DOI: 10.7554/elife.41258] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
A hallmark of adult hematopoiesis is the continuous replacement of blood cells with limited lifespans. While active hematopoietic stem cell (HSC) contribution to multilineage hematopoiesis is the foundation of clinical HSC transplantation, recent reports have questioned the physiological contribution of HSCs to normal/steady-state adult hematopoiesis. Here, we use inducible lineage tracing from genetically marked adult HSCs and reveal robust HSC-derived multilineage hematopoiesis. This commences via defined progenitor cells, but varies substantially in between different hematopoietic lineages. By contrast, adult HSC contribution to hematopoietic cells with proposed fetal origins is neglible. Finally, we establish that the HSC contribution to multilineage hematopoiesis declines with increasing age. Therefore, while HSCs are active contributors to native adult hematopoiesis, it appears that the numerical increase of HSCs is a physiologically relevant compensatory mechanism to account for their reduced differentiation capacity with age. As far as we know, all adult blood cells derive from blood stem cells that are located in the bone marrow. These stem cells can produce red blood cells, white blood cells and platelets – the cells fragments that form blood clots to stop bleeding. They can also regenerate, producing more stem cells to support future blood cell production. But, our understanding of the system may be incomplete. The easiest way to study blood cell production is to watch what happens after a bone marrow transplant. Before a transplant, powerful chemotherapy kills the existing stem cells. This forces the transplanted stem cells to restore the whole system from scratch, allowing scientists to study blood cell production in fine detail. But completely replacing the bone marrow puts major stress on the body, and this may alter the way that the stem cells behave. To understand how adult stem cells keep the blood ticking over on a day-to-day basis, experiments also need to look at healthy animals. Säwén et al. now describe a method to follow bone marrow stem cells as they produce blood cells in adult mice. The technique, known as lineage tracing, leaves an indelible mark, a red glow, on the stem cells. The cells pass this mark on every time they divide, leaving a lasting trace in every blood cell that they produce. Tracking the red-glowing cells over time reveals which types of blood cells the stem cells make as well as provides estimates on the timing and extent of these processes. It has previously been suggested that a few types of specialist blood cells, like brain-specific immune cells, originate from cells other than adult blood stem cells. As expected, the adult stem cells did not produce such cells. But, just as seen in transplant experiments, the stem cells were able to produce all the other major blood cell types. They made platelets at the fastest rate, followed by certain types of white blood cells and red blood cells. As the mice got older, the stem cells started to slow down, producing fewer blood cells each. To compensate, the number of stem cells increased, helping to keep blood cell numbers up. This alternative approach to studying blood stem cells shows how the system behaves in a more natural environment. Away from the stresses of transplant, the technique revealed that blood stem cells are not immune to aging. In the future, understanding more about the system in its natural state could lead to ways to boost blood stem cells as we get older.
Collapse
Affiliation(s)
- Petter Säwen
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Eva Erlandsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Cecilia Laterza
- StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Zaal Kokaia
- StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.,StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.,StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.,StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pankaj K Mandal
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Massachusetts, United States
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Massachusetts, United States
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.,StemTherapy, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
25
|
Dudenhöffer-Pfeifer M, Bryder D. Immunoediting is not a primary transformation event in a murine model of MLL-ENL AML. Life Sci Alliance 2018; 1:e201800079. [PMID: 30456365 PMCID: PMC6238415 DOI: 10.26508/lsa.201800079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023] Open
Abstract
Using a conditional model of MLL-ENL–driven AML, Dudenhöffer-Pfeifer and Bryder show that NK cell and adaptive immunity influences little on leukemia initiation from normal cells. The data argue against immune escape as a universal primary transformation event in AML. Although it is firmly established that endogenous immunity can prevent cancer outgrowth, with a range of immunomodulatory strategies reaching clinical use, most studies on the topic have been restricted to solid cancers. This applies in particular to cancer initiation, where model constraints have precluded investigations of immunosurveillance and immunoediting during the multistep progression into acute myeloid leukemia (AML). Here, we used a mouse model where the chimeric transcription factor MLL-ENL can be conditionally activated in vivo as a leukemic “first-hit,” which is followed by spontaneous transformation into AML. We observed similar disease kinetics regardless of whether AML developed in WT or immunocompromised hosts, despite more permissive preleukemic environments in the latter. When assessing transformed AML cells from either primary immunocompetent or immunocompromised hosts, AML cells from all sources could be targets of endogenous immunity. Our data argue against immunoediting in response to selective pressure from endogenous immunity as a universal primary transformation event in AML.
Collapse
Affiliation(s)
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Sahlgrenska Cancer Centre, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
26
|
Ottersbach K, Sanjuan-Pla A, Torres-Ruíz R, Bueno C, Velasco-Hernández T, Menendez P. The "Never-Ending" Mouse Models for MLL-Rearranged Acute Leukemia Are Still Teaching Us. Hemasphere 2018; 2:e57. [PMID: 31723783 PMCID: PMC6746004 DOI: 10.1097/hs9.0000000000000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 11/26/2022] Open
Affiliation(s)
- Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Raúl Torres-Ruíz
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Talia Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), Barcelona, ISCIII, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
27
|
A Novel Inducible Mouse Model of MLL-ENL-driven Mixed-lineage Acute Leukemia. Hemasphere 2018; 2:e51. [PMID: 31723780 PMCID: PMC6745998 DOI: 10.1097/hs9.0000000000000051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Supplemental Digital Content is available in the text Previous retroviral and knock-in approaches to model human t(11;19)+ acute mixed-lineage leukemia in mice resulted in myeloproliferation and acute myeloid leukemia not fully recapitulating the human disease. The authors established a doxycycline (DOX)-inducible transgenic mouse model “iMLL-ENL” in which induction in long-term hematopoietic stem cells, lymphoid primed multipotent progenitor cells, multipotent progenitors (MPP4) but not in more committed myeloid granulocyte-macrophage progenitors led to a fully reversible acute leukemia expressing myeloid and B-cell markers. iMLL-ENL leukemic cells generally expressed lower MLL-ENL mRNA than those obtained after retroviral transduction. Disease induction was associated with iMLL-ENL levels exceeding the endogenous Mll1 at mRNA and protein levels. In leukemic cells from t(11;19)+ leukemia patients, MLL-ENL mRNA also exceeded the endogenous MLL1 levels suggesting a critical threshold for transformation. Expression profiling of iMLL-ENL acute leukemia revealed gene signatures that segregated t(11;19)+ leukemia patients from those without an MLL translocation. Importantly, B220+iMLL-ENL leukemic cells showed a higher in vivo leukemia initiation potential than coexisting B220− cells. Collectively, characterization of a novel transgenic mouse model indicates that the cell-of-origin and the fusion gene expression levels are both critical determinants for MLL-ENL-driven acute leukemia.
Collapse
|
28
|
Update of ALDH as a Potential Biomarker and Therapeutic Target for AML. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516013 PMCID: PMC5817321 DOI: 10.1155/2018/9192104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies employing mouse transplantation have illustrated the role of aldehyde dehydrogenase (ALDH) defining hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs). Besides being a molecular marker, ALDH mediates drug resistance in AML, which induces poor prognosis of the patients. In AML patients, either CD34+ALDHbr population or CD34+CD38-ALDHint population was found to denote LSCs and minimal residual disease (MRD). A bunch of reagents targeting ALDH directly or indirectly have been evaluated. ATRA, disulfiram, and dimethyl ampal thiolester (DIMATE) are all shown to be potential candidates to open new perspective for AML treatment. However, inconsistent results have been shown for markers of LSCs, which makes it even more difficult to differentiate LSCs and HSCs. In this review, we elevated the role of ALDH to be a potential marker to define and distinguish HSCs and LSCs and its importance in prognosis and target therapy in AML patients. In addition to immunophenotypical markers, ALDH is also functionally active in defining and distinguishing HSCs and LSCs and offers intracellular protections against cytotoxic drugs. Targeting ALDH may be a potential strategy to improve AML treatment. Additional studies concerning specific targeting ALDH and mechanisms of its roles in LSCs are warranted.
Collapse
|
29
|
Balbach ST, Orkin SH. An Achilles' Heel for MLL-Rearranged Leukemias: Writers and Readers of H3 Lysine 36 Dimethylation. Cancer Discov 2017; 6:700-2. [PMID: 27371576 DOI: 10.1158/2159-8290.cd-16-0564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone H3 lysine 36 dimethylation (H3K36me2), a modification associated with transcriptional activation, is required for mixed-lineage leukemia-dependent transcription and leukemic transformation. In this issue of Cancer Discovery, Zhu and colleagues map the network of readers, writers, and erasers of H3K36me2 and uncover the ASH1L histone methyltransferase as a novel target for therapeutic intervention. Cancer Discov; 6(7); 700-2. ©2016 AACR.See related article by Zhu and colleagues, p. 770.
Collapse
Affiliation(s)
- Sebastian T Balbach
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts. Howard Hughes Medical Institute, Boston, Massachusetts.
| |
Collapse
|
30
|
Stavropoulou V, Peters AHFM, Schwaller J. Aggressive leukemia driven by MLL-AF9. Mol Cell Oncol 2017; 5:e1241854. [PMID: 30250880 DOI: 10.1080/23723556.2016.1241854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
We recently showed that cellular origin impacts the aggressiveness and the phenotype of acute myeloid leukemia (AML). Direct induction of the MLL-AF9 fusion in various hematopoietic compartments in vivo using a doxycycline (DOX) regulated mouse model (iMLL-AF9) led to an invasive chemoresistant AML expressing several genes known to be involved in epithelial to mesenchymal transition (EMT) in solid cancers. Many of these genes play important roles in migration and invasion and are significantly associated with poor overall survival in AML patients.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Biomedicine and Children's Hospital (UKBB), University of Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Switzerland
| | - Juerg Schwaller
- Department of Biomedicine and Children's Hospital (UKBB), University of Basel, Switzerland
| |
Collapse
|
31
|
Basilico S, Göttgens B. Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia. J Mol Med (Berl) 2017; 95:719-727. [PMID: 28429049 PMCID: PMC5487585 DOI: 10.1007/s00109-017-1535-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
Abstract
Haematopoietic stem cells (HSC) are situated at the apex of the haematopoietic differentiation hierarchy, ensuring the life-long supply of mature haematopoietic cells and forming a reservoir to replenish the haematopoietic system in case of emergency such as acute blood loss. To maintain a balanced production of all mature lineages and at the same time secure a stem cell reservoir, intricate regulatory programs have evolved to control multi-lineage differentiation and self-renewal in haematopoietic stem and progenitor cells (HSPCs). Leukaemogenic mutations commonly disrupt these regulatory programs causing a block in differentiation with simultaneous enhancement of proliferation. Here, we briefly summarize key aspects of HSPC regulatory programs, and then focus on their disruption by leukaemogenic fusion genes containing the mixed lineage leukaemia (MLL) gene. Using MLL as an example, we explore important questions of wider significance that are still under debate, including the importance of cell of origin, to what extent leukaemia oncogenes impose specific regulatory programs and the relevance of leukaemia stem cells for disease development and prognosis. Finally, we suggest that disruption of stem cell regulatory programs is likely to play an important role in many other pathologies including ageing-associated regenerative failure.
Collapse
Affiliation(s)
- Silvia Basilico
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
32
|
Reimer J, Knöß S, Labuhn M, Charpentier EM, Göhring G, Schlegelberger B, Klusmann JH, Heckl D. CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 2017; 102:1558-1566. [PMID: 28572162 PMCID: PMC5685230 DOI: 10.3324/haematol.2017.164046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Chromosomal translocations that generate oncogenic fusion proteins are causative for most pediatric leukemias and frequently affect the MLL/KMT2A gene. In vivo modeling of bona fide chromosomal translocations in human hematopoietic stem and progenitor cells is challenging but essential to determine their actual leukemogenic potential. We therefore developed an advanced lentiviral CRISPR-Cas9 vector that efficiently transduced human CD34+ hematopoietic stem and progenitor cells and induced the t(11;19)/MLL-ENL translocation. Leveraging this system, we could demonstrate that hematopoietic stem and progenitor cells harboring the translocation showed only a transient clonal growth advantage in vitro In contrast, t(11;19)/MLL-ENL-harboring CD34+ hematopoietic stem and progenitor cells not only showed long-term engraftment in primary immunodeficient recipients, but t(11;19)/MLL-ENL also served as a first hit to initiate a monocytic leukemia-like disease. Interestingly, secondary recipients developed acute lymphoblastic leukemia with incomplete penetrance. These findings indicate that environmental cues not only contribute to the disease phenotype, but also to t(11;19)/MLL-ENL-mediated oncogenic transformation itself. Thus, by investigating the true chromosomal t(11;19) rearrangement in its natural genomic context, our study emphasizes the importance of environmental cues for the pathogenesis of pediatric leukemias, opening an avenue for novel treatment options.
Collapse
Affiliation(s)
- Jana Reimer
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Sabine Knöß
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Maurice Labuhn
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Emmanuelle M Charpentier
- Max Planck Institute for Infection Biology, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Sweden
| | | | | | - Jan-Henning Klusmann
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| | - Dirk Heckl
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| |
Collapse
|
33
|
Mouse models of MLL leukemia: recapitulating the human disease. Blood 2017; 129:2217-2223. [PMID: 28179274 DOI: 10.1182/blood-2016-10-691428] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
Chromosome translocations involving the mixed lineage leukemia (MLL) gene fuse it in frame with multiple partner genes creating novel fusion proteins (MLL-FPs) that cause aggressive acute leukemias in humans. Animal models of human disease are important for the exploration of underlying disease mechanisms as well as for testing novel therapeutic approaches. Patients carrying MLL-FPs have very few cooperating mutations, making MLL-FP driven leukemias ideal for animal modeling. The fact that the MLL-FP is the main driver mutation has allowed for a wide range of different experimental model systems designed to explore different aspects of MLL-FP leukemogenesis. In addition, MLL-FP driven acute myeloid leukemia (AML) in mice is often used as a general model for AML. This review provides an overview of different MLL-FP mouse model systems and discusses how well they have recapitulated aspects of the human disease as well as highlights the biological insights each model has provided into MLL-FP leukemogenesis. Many promising new drugs fail in the early stages of clinical trials. Lessons learned from past and present MLL-FP models may serve as a paradigm for designing more flexible and dynamic preclinical models for these as well as other acute leukemias.
Collapse
|
34
|
Ugale A, Säwén P, Dudenhöffer-Pfeifer M, Wahlestedt M, Norddahl GL, Bryder D. MLL-ENL-mediated leukemia initiation at the interface of lymphoid commitment. Oncogene 2017; 36:3207-3212. [PMID: 28068328 DOI: 10.1038/onc.2016.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 01/22/2023]
Abstract
Translocations involving the mixed lineage leukemia-1 are recurrent events in acute leukemia and associate with lymphoid (ALL), myeloid (AML) or mixed lineage (MLL) subtypes. Despite an association with ALL in humans, murine MLL fusion models are persistently restricted to AML. We here explored this issue using an inducible mixed lineage leukemia-eleven nineteen leukemia (MLL-ENL) mouse model. Although multiple progenitor cell types with myeloid potential are potent AML leukemia-initiating cells, also the earliest lymphoid progenitors were capable of initiating AML. This ability to evoke a latent myeloid potential in the earliest lymphoid progenitors was lost upon further lymphoid commitment. At the same time, more downstream/committed lymphoid precursors also failed to initiate lymphoid leukemia. Co-expression of MLL-ENL with a constitutively active RAS allele, the most common co-mutation in MLL fusion leukemias, could influence on both disease latency and lineage assignment of developing leukemia in what appears to be a mutation-order-dependent manner. Finally, CEBPB-mediated transdifferentation of committed and otherwise leukemia-incompetent B-cell progenitors imbued these cells with leukemic competence for AML. Therefore, apart from providing detailed insight into the differential responsiveness of candidate target cells to a first-hit MLL fusion event, our data warrants caution to therapeutic approaches based on the concept of transdifferentiation.
Collapse
Affiliation(s)
- A Ugale
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - P Säwén
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - M Dudenhöffer-Pfeifer
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - M Wahlestedt
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - G L Norddahl
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - D Bryder
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
35
|
miR-125b promotes MLL-AF9-driven murine acute myeloid leukemia involving a VEGFA-mediated non-cell-intrinsic mechanism. Blood 2017; 129:1491-1502. [PMID: 28053194 DOI: 10.1182/blood-2016-06-721027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
The hematopoietic stem cell-enriched miR-125 family microRNAs (miRNAs) are critical regulators of hematopoiesis. Overexpression of miR-125a or miR-125b is frequent in human acute myeloid leukemia (AML), and the overexpression of these miRNAs in mice leads to expansion of hematopoietic stem cells accompanied by perturbed hematopoiesis with mostly myeloproliferative phenotypes. However, whether and how miR-125 family miRNAs cooperate with known AML oncogenes in vivo, and how the resultant leukemia is dependent on miR-125 overexpression, are not well understood. We modeled the frequent co-occurrence of miR-125b overexpression and MLL translocations by examining functional cooperation between miR-125b and MLL-AF9 By generating a knock-in mouse model in which miR-125b overexpression is controlled by doxycycline induction, we demonstrated that miR-125b significantly enhances MLL-AF9-driven AML in vivo, and the resultant leukemia is partially dependent on continued overexpression of miR-125b Surprisingly, miR-125b promotes AML cell expansion and suppresses apoptosis involving a non-cell-intrinsic mechanism. MiR-125b expression enhances VEGFA expression and production from leukemia cells, in part by suppressing TET2 Recombinant VEGFA recapitulates the leukemia-promoting effects of miR-125b, whereas knockdown of VEGFA or inhibition of VEGF receptor 2 abolishes the effects of miR-125b In addition, significant correlation between miR-125b and VEGFA expression is observed in human AMLs. Our data reveal cooperative and dependent relationships between miR-125b and the MLL oncogene in AML leukemogenesis, and demonstrate a miR-125b-TET2-VEGFA pathway in mediating non-cell-intrinsic leukemia-promoting effects by an oncogenic miRNA.
Collapse
|
36
|
Abstract
In this issue of Cancer Cell, Stavropoulou et al. report that expression of the MLL-AF9 fusion results in acute myelogenous leukemia (AML) with different behaviors depending on cell context, which leads them to identify a transcriptional signature surprisingly resembling that of the epithelial-to-mesenchymal (EMT) transition, correlating with aggressiveness of disease.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, 12800 East 19th Avenue, MS #8302, Aurora, CO 80045, USA
| | - Patricia Ernst
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, 12800 East 19th Avenue, MS #8302, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis. Stem Cell Reports 2016; 7:11-8. [PMID: 27373927 PMCID: PMC4945592 DOI: 10.1016/j.stemcr.2016.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used "deleter strain" in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.
Collapse
|
38
|
Jaako P, Ugale A, Wahlestedt M, Velasco-Hernandez T, Cammenga J, Lindström MS, Bryder D. Induction of the 5S RNP–Mdm2–p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia. Leukemia 2016; 31:213-221. [DOI: 10.1038/leu.2016.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 01/05/2023]
|
39
|
Säwén P, Lang S, Mandal P, Rossi DJ, Soneji S, Bryder D. Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis. Cell Rep 2016; 14:2809-18. [PMID: 26997272 PMCID: PMC4819906 DOI: 10.1016/j.celrep.2016.02.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/03/2015] [Accepted: 02/17/2016] [Indexed: 12/11/2022] Open
Abstract
Homeostasis of short-lived blood cells is dependent on rapid proliferation of immature precursors. Using a conditional histone 2B-mCherry-labeling mouse model, we characterize hematopoietic stem cell (HSC) and progenitor proliferation dynamics in steady state and following several types of induced stress. HSC proliferation following HSC transplantation into lethally irradiated mice is fundamentally different not only from native hematopoiesis but also from other stress contexts. Whereas transplantation promoted sustained, long-term proliferation of HSCs, both cytokine-induced mobilization and acute depletion of selected blood cell lineages elicited very limited recruitment of HSCs to the proliferative pool. By coupling mCherry-based analysis of proliferation history with multiplex gene expression analyses on single cells, we have found that HSCs can be stratified into four distinct subtypes. These subtypes have distinct molecular signatures and differ significantly in their reconstitution potentials, showcasing the power of tracking proliferation history when resolving functional heterogeneity of HSCs.
Collapse
Affiliation(s)
- Petter Säwén
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Klinikgatan 26, BMC B12, 22184 Lund, Sweden
| | - Stefan Lang
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Klinikgatan 26, BMC B12, 22184 Lund, Sweden; StemTherapy, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Pankaj Mandal
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Division of Hematology/Oncology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Division of Hematology/Oncology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02116, USA
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Klinikgatan 26, BMC B12, 22184 Lund, Sweden; StemTherapy, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Klinikgatan 26, BMC B12, 22184 Lund, Sweden; Hemato-Linné, Lund University, 22184 Lund, Sweden; StemTherapy, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
40
|
Khwaja A, Bjorkholm M, Gale RE, Levine RL, Jordan CT, Ehninger G, Bloomfield CD, Estey E, Burnett A, Cornelissen JJ, Scheinberg DA, Bouscary D, Linch DC. Acute myeloid leukaemia. Nat Rev Dis Primers 2016; 2:16010. [PMID: 27159408 DOI: 10.1038/nrdp.2016.10] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukaemia (AML) is a disorder characterized by a clonal proliferation derived from primitive haematopoietic stem cells or progenitor cells. Abnormal differentiation of myeloid cells results in a high level of immature malignant cells and fewer differentiated red blood cells, platelets and white blood cells. The disease occurs at all ages, but predominantly occurs in older people (>60 years of age). AML typically presents with a rapid onset of symptoms that are attributable to bone marrow failure and may be fatal within weeks or months when left untreated. The genomic landscape of AML has been determined and genetic instability is infrequent with a relatively small number of driver mutations. Mutations in genes involved in epigenetic regulation are common and are early events in leukaemogenesis. The subclassification of AML has been dependent on the morphology and cytogenetics of blood and bone marrow cells, but specific mutational analysis is now being incorporated. Improvements in treatment in younger patients over the past 35 years has largely been due to dose escalation and better supportive care. Allogeneic haematopoietic stem cell transplantation may be used to consolidate remission in those patients who are deemed to be at high risk of relapse. A plethora of new agents - including those targeted at specific biochemical pathways and immunotherapeutic approaches - are now in trial based on improved understanding of disease pathophysiology. These advances provide good grounds for optimism, although mortality remains high especially in older patients.
Collapse
Affiliation(s)
- Asim Khwaja
- Department of Haematology, University College London, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Magnus Bjorkholm
- Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Rosemary E Gale
- Department of Haematology, University College London, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado Denver, Denver, Colorado, USA
| | - Gerhard Ehninger
- Department of Internal Medicine, Technical University Dresden, Dresden, Germany
| | | | - Eli Estey
- Division of Hematology, University of Washington and Clinical Research Division Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - David A Scheinberg
- Molecular Pharmacology Program, Experimental Therapeutics Center, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Didier Bouscary
- Institut Cochin, Département Développement Reproduction Cancer, CNRS UMR8104, INSERM U1016, Paris, France.,Service d'Hématologie, Hôpital Cochin, AP-HP, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France
| | - David C Linch
- Department of Haematology, University College London, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
41
|
Weiss CN, Ito K. DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia. Int J Mol Sci 2015; 16:6183-201. [PMID: 25789504 PMCID: PMC4394526 DOI: 10.3390/ijms16036183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.
Collapse
Affiliation(s)
- Cary N Weiss
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology/Stem Cell Institute and Medicine, Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology/Stem Cell Institute and Medicine, Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|