1
|
Himeno Y, Endo N, Rana V, Akitake N, Suda T, Suda Y, Mizuno T, Irie K. Roles of Pbp1, Mkt1, and Dhh1 in the regulation of gene expression in the medium containing non-fermentative carbon sources. Genes Cells 2024. [PMID: 39460681 DOI: 10.1111/gtc.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pbp1, a yeast ortholog of human ataxin-2, is important for cell growth in the medium containing non-fermentable carbon sources. We had reported that Pbp1 regulates expression of genes related to glycogenesis via transcriptional regulation and genes related to mitochondrial function through mRNA stability control. To further analyze the role of Pbp1 in gene expression, we first examined the time course of gene expression after transfer from YPD medium containing glucose to YPGlyLac medium containing glycerol and lactate. At 12 h after transfer to YPGlyLac medium, the pbp1∆ mutant showed decreased expression of genes related to mitochondrial function but no decrease in expression of glycogenesis-related genes. We also examined a role of the Pbp1-binding factor, Mkt1. The mkt1∆ mutant, like the pbp1∆ mutant, showed slow growth on YPGlyLac plate and reduced expression of genes related to mitochondrial function. Furthermore, we found that mutation of DHH1 gene encoding a decapping activator exacerbated the growth of the pbp1∆ mutant on YPGlyLac plate. The dhh1∆ mutant showed reduced expression of genes related to mitochondrial function. These results indicate that Pbp1 and Mkt1 regulate the expression of genes related to mitochondrial function and that the decapping activator Dhh1 also regulates the expression of those genes.
Collapse
Affiliation(s)
- Yurika Himeno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nozomi Endo
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Varsha Rana
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natsu Akitake
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Medical Sciences, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomomi Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Irie
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Barlit H, Romero AM, Gülhan A, Patnaik PK, Tyshkovskiy A, Martínez-Pastor MT, Gladyshev VN, Puig S, Labunskyy VM. Ribosome profiling reveals the role of yeast RNA-binding proteins Cth1 and Cth2 in translational regulation. iScience 2024; 27:109868. [PMID: 38779483 PMCID: PMC11109004 DOI: 10.1016/j.isci.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Iron serves as a cofactor for enzymes involved in several steps of protein translation, but the control of translation during iron limitation is not understood at the molecular level. Here, we report a genome-wide analysis of protein translation in response to iron deficiency in yeast using ribosome profiling. We show that iron depletion affects global protein synthesis and leads to translational repression of multiple genes involved in iron-related processes. Furthermore, we demonstrate that the RNA-binding proteins Cth1 and Cth2 play a central role in this translational regulation by repressing the activity of the iron-dependent Rli1 ribosome recycling factor and inhibiting mitochondrial translation and heme biosynthesis. Additionally, we found that iron deficiency represses MRS3 mRNA translation through increased expression of antisense long non-coding RNA. Together, our results reveal complex gene expression and protein synthesis remodeling in response to low iron, demonstrating how this important metal affects protein translation at multiple levels.
Collapse
Affiliation(s)
- Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Antonia M. Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Praveen K. Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - María T. Martínez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Cohen B, Golani-Armon A, Arava YS. Emerging implications for ribosomes in proximity to mitochondria. Semin Cell Dev Biol 2024; 154:123-130. [PMID: 36642616 DOI: 10.1016/j.semcdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Synthesis of all proteins in eukaryotic cells, apart from a few organellar proteins, is done by cytosolic ribosomes. Many of these ribosomes are localized in the vicinity of the functional site of their encoded protein, enabling local protein synthesis. Studies in various organisms and tissues revealed that such locally translating ribosomes are also present near mitochondria. Here, we provide a brief summary of evidence for localized translation near mitochondria, then present data suggesting that these localized ribosomes may enable local translational regulatory processes in response to mitochondria needs. Finally, we describe the involvement of such localized ribosomes in the quality control of protein synthesis and mitochondria. These emerging views suggest that ribosomes localized near mitochondria are a hub for a variety of activities with diverse implications on mitochondria physiology.
Collapse
Affiliation(s)
- Bar Cohen
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Adi Golani-Armon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
6
|
Hayashi S, Iwamoto K, Yoshihisa T. A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 2023; 18:e0295659. [PMID: 38100455 PMCID: PMC10723686 DOI: 10.1371/journal.pone.0295659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Saccharomyces cerevisiae uses a highly glycolytic metabolism, if glucose is available, through appropriately suppressing mitochondrial functions except for some of them such as Fe/S cluster biogenesis. Puf3p, a Pumillio family protein, plays a pivotal role in modulating mitochondrial activity, especially during fermentation, by destabilizing its target mRNAs and/or by repressing their translation. Puf3p preferentially binds to 8-nt conserved binding sequences in the 3'-UTR of nuclear-encoded mitochondrial (nc-mitochondrial) mRNAs, leading to broad effects on gene expression under fermentable conditions. To further explore how Puf3p post-transcriptionally regulates nc-mitochondrial mRNAs in response to cell growth conditions, we initially focused on nc-mitochondrial mRNAs known to be enriched in monosomes in a glucose-rich environment. We unexpectedly found that one of the monosome-enriched mRNAs, CAT5/COQ7 mRNA, directly interacts with Puf3p through its non-canonical Puf3p binding sequence, which is generally less considered as a Puf3p binding site. Western blot analysis showed that Puf3p represses translation of Cat5p, regardless of culture in fermentable or respiratory medium. In vitro binding assay confirmed Puf3p's direct interaction with CAT5 mRNA via this non-canonical Puf3p-binding site. Although cat5 mutants of the non-canonical Puf3p-binding site grow normally, Cat5p expression is altered, indicating that CAT5 mRNA is a bona fide Puf3p target with additional regulatory factors acting through this sequence. Unlike other yeast PUF proteins, Puf3p uniquely regulates Cat5p by destabilizing mRNA and repressing translation, shedding new light on an unknown part of the Puf3p regulatory network. Given that pathological variants of human COQ7 lead to CoQ10 deficiency and yeast cat5Δ can be complemented by hCOQ7, our findings may also offer some insights into clinical aspects of COQ7-related disorders.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kazumi Iwamoto
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| |
Collapse
|
7
|
Das A, Liu T, Li H, Husain S. The RNA-binding protein RBP42 regulates cellular energy metabolism in mammalian-infective Trypanosoma brucei. mSphere 2023; 8:e0027323. [PMID: 37581443 PMCID: PMC10654194 DOI: 10.1128/msphere.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 08/16/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players in coordinated post-transcriptional regulation of functionally related genes, defined as RNA regulons. RNA regulons play particularly critical roles in parasitic trypanosomes, which exhibit unregulated co-transcription of long unrelated gene arrays. In this report, we present a systematic analysis of an essential RBP, RBP42, in the mammalian-infective bloodstream form of African trypanosome and show that RBP42 is a key regulator of parasite's central carbon and energy metabolism. Using individual-nucleotide resolution UV cross-linking and immunoprecipitation to identify genome-wide RBP42-RNA interactions, we show that RBP42 preferentially binds within the coding region of mRNAs encoding core metabolic enzymes. Global quantitative transcriptomic and proteomic analyses reveal that loss of RBP42 reduces the abundance of target mRNA-encoded proteins, but not target mRNA, suggesting a positive translational regulatory role of RBP42. Significant changes in central carbon metabolic intermediates, following loss of RBP42, further support its critical role in cellular energy metabolism. Trypanosoma brucei infection, transmitted through the bite of blood-feeding tsetse flies, causes deadly diseases in humans and livestock. This disease, if left untreated, is almost always fatal. Existing therapies are toxic and difficult to administer. During T. brucei's lifecycle in two different host environments, the parasite progresses through distinctive life stages with major morphological and metabolic changes, requiring precise alteration of parasite gene expression program. In the absence of regulated transcription, post-transcriptional processes mediated by RNA-binding proteins play critical roles in T. brucei gene regulation. In this study, we show that the RNA-binding protein RBP42 plays crucial roles in cellular energy metabolic regulation of this important human pathogen. Metabolic dysregulation observed in RBP42 knockdown cells offers a breadth of potential interest to researchers studying parasite biology and can also impact research in general eukaryotic biology.
Collapse
Affiliation(s)
- Anish Das
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Genomics Center, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
8
|
García-Martínez J, Singh A, Medina D, Chávez S, Pérez-Ortín JE. Enhanced gene regulation by cooperation between mRNA decay and gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194910. [PMID: 36731791 PMCID: PMC10663100 DOI: 10.1016/j.bbagrm.2023.194910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
It has become increasingly clear in the last few years that gene expression in eukaryotes is not a linear process from mRNA synthesis in the nucleus to translation and degradation in the cytoplasm, but works as a circular one where the mRNA level is controlled by crosstalk between nuclear transcription and cytoplasmic decay pathways. One of the consequences of this crosstalk is the approximately constant level of mRNA. This is called mRNA buffering and happens when transcription and mRNA degradation act at compensatory rates. However, if transcription and mRNA degradation act additively, enhanced gene expression regulation occurs. In this work, we analyzed new and previously published genomic datasets obtained for several yeast mutants related to either transcription or mRNA decay that are not known to play any role in the other process. We show that some, which were presumed only transcription factors (Sfp1) or only decay factors (Puf3, Upf2/3), may represent examples of RNA-binding proteins (RBPs) that make specific crosstalk to enhance the control of the mRNA levels of their target genes by combining additive effects on transcription and mRNA stability. These results were mathematically modeled to see the effects of RBPs when they have positive or negative effects on mRNA synthesis and decay rates. We found that RBPs can be an efficient way to buffer or enhance gene expression responses depending on their respective effects on transcription and mRNA stability.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Daniel Medina
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P. 14006, Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
9
|
van de Poll F, Sutter BM, Acoba MG, Caballero D, Jahangiri S, Yang YS, Lee CD, Tu BP. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis. PLoS Genet 2023; 19:e1010774. [PMID: 37216416 PMCID: PMC10237644 DOI: 10.1371/journal.pgen.1010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.
Collapse
Affiliation(s)
- Floortje van de Poll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle Grace Acoba
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Caballero
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yu-San Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chien-Der Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
10
|
Guerra RM, Pagliarini DJ. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci 2023; 48:463-476. [PMID: 36702698 PMCID: PMC10106368 DOI: 10.1016/j.tibs.2022.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.
Collapse
Affiliation(s)
- Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Allen G, Weiss B, Panasenko OO, Huch S, Villanyi Z, Albert B, Dilg D, Zagatti M, Schaughency P, Liao SE, Corden J, Polte C, Shore D, Ignatova Z, Pelechano V, Collart MA. Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events. Genome Biol 2023; 24:30. [PMID: 36803582 PMCID: PMC9940351 DOI: 10.1186/s13059-023-02871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. RESULTS In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. CONCLUSIONS Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.
Collapse
Affiliation(s)
- George Allen
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin Weiss
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Present address: Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olesya O. Panasenko
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Zoltan Villanyi
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
- Present Address: Molecular, Cellular & Developmental Biology (MCD), Center for Integrative Biology (CBI), University of 11, CNRS/UPS, Bâtiment IBCG, 118, Route de Narbonne, 31062 ToulouseToulouse Cedex 9, France
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Marina Zagatti
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Present Address: Axle Informatics, NIAID Collaborative Bioinformatics Resource, North Bethesda, MD USA
| | - Susan E. Liao
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Present Address: Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Jeff Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Christine Polte
- Departement of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - David Shore
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Zoya Ignatova
- Departement of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Martine A. Collart
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging. Nat Protoc 2023; 18:157-187. [PMID: 36280749 DOI: 10.1038/s41596-022-00750-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
Abstract
The ability to visualize RNA in its native subcellular environment by using single-molecule fluorescence in situ hybridization (smFISH) has reshaped our understanding of gene expression and cellular functions. A major hindrance of smFISH is the difficulty to perform systematic experiments in medium- or high-throughput formats, principally because of the high cost of generating the individual fluorescent probe sets. Here, we present high-throughput smFISH (HT-smFISH), a simple and cost-efficient method for imaging hundreds to thousands of single endogenous RNA molecules in 96-well plates. HT-smFISH uses RNA probes transcribed in vitro from a large pool of unlabeled oligonucleotides. This allows the generation of individual probes for many RNA species, replacing commercial DNA probe sets. HT-smFISH thus reduces costs per targeted RNA compared with many smFISH methods and is easily scalable and flexible in design. We provide a protocol that combines oligo pool design, probe set generation, optimized hybridization conditions and guidelines for image acquisition and analysis. The pipeline requires knowledge of standard molecular biology tools, cell culture and fluorescence microscopy. It is achievable in ~20 d. In brief, HT-smFISH is tailored for medium- to high-throughput screens that image RNAs at single-molecule sensitivity.
Collapse
|
13
|
Fernández-Alvarez AJ, Thomas MG, Pascual ML, Habif M, Pimentel J, Corbat AA, Pessoa JP, La Spina PE, Boscaglia L, Plessis A, Carmo-Fonseca M, Grecco HE, Casado M, Boccaccio GL. Smaug1 membrane-less organelles respond to AMPK/mTOR and affect mitochondrial function‡. J Cell Sci 2021; 135:273619. [PMID: 34859817 DOI: 10.1242/jcs.253591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone -but not strong mitochondrial uncoupling by CCCP- rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.
Collapse
Affiliation(s)
- Ana J Fernández-Alvarez
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María Gabriela Thomas
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Malena L Pascual
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Martín Habif
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Jerónimo Pimentel
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Agustín A Corbat
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - João P Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pablo E La Spina
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | | | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hernán E Grecco
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia 46010, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Graciela L Boccaccio
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina.,Department of Molecular and Cellular Biology and Physiology (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
14
|
Savinov A, Brandsen BM, Angell BE, Cuperus JT, Fields S. Effects of sequence motifs in the yeast 3' untranslated region determined from massively parallel assays of random sequences. Genome Biol 2021; 22:293. [PMID: 34663436 PMCID: PMC8522215 DOI: 10.1186/s13059-021-02509-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The 3' untranslated region (UTR) plays critical roles in determining the level of gene expression through effects on activities such as mRNA stability and translation. Functional elements within this region have largely been identified through analyses of native genes, which contain multiple co-evolved sequence features. RESULTS To explore the effects of 3' UTR sequence elements outside of native sequence contexts, we analyze hundreds of thousands of random 50-mers inserted into the 3' UTR of a reporter gene in the yeast Saccharomyces cerevisiae. We determine relative protein expression levels from the fitness of transformants in a growth selection. We find that the consensus 3' UTR efficiency element significantly boosts expression, independent of sequence context; on the other hand, the consensus positioning element has only a small effect on expression. Some sequence motifs that are binding sites for Puf proteins substantially increase expression in the library, despite these proteins generally being associated with post-transcriptional downregulation of native mRNAs. Our measurements also allow a systematic examination of the effects of point mutations within efficiency element motifs across diverse sequence backgrounds. These mutational scans reveal the relative in vivo importance of individual bases in the efficiency element, which likely reflects their roles in binding the Hrp1 protein involved in cleavage and polyadenylation. CONCLUSIONS The regulatory effects of some 3' UTR sequence features, like the efficiency element, are consistent regardless of sequence context. In contrast, the consequences of other 3' UTR features appear to be strongly dependent on their evolved context within native genes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Benjamin M Brandsen
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, 68178, USA
| | - Brooke E Angell
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
- Department of Medicine, University of Washington, Box 357720, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Kochan DZ, Mawer JSP, Massen J, Tishinov K, Parekh S, Graef M, Spang A, Tessarz P. The RNA-binding protein Puf5 contributes to buffering of mRNA upon chromatin-mediated changes in nascent transcription. J Cell Sci 2021; 134:jcs259051. [PMID: 34350963 PMCID: PMC8353526 DOI: 10.1242/jcs.259051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression involves regulation of chromatin structure and transcription, as well as processing of the transcribed mRNA. While there are feedback mechanisms, it is not clear whether these include crosstalk between chromatin architecture and mRNA decay. To address this, we performed a genome-wide genetic screen using a Saccharomyces cerevisiae strain harbouring the H3K56A mutation, which is known to perturb chromatin structure and nascent transcription. We identified Puf5 (also known as Mpt5) as essential in an H3K56A background. Depletion of Puf5 in this background leads to downregulation of Puf5 targets. We suggest that Puf5 plays a role in post-transcriptional buffering of mRNAs, and support this by transcriptional shutoff experiments in which Puf5 mRNA targets are degraded slower in H3K56A cells compared to wild-type cells. Finally, we show that post-transcriptional buffering of Puf5 targets is widespread and does not occur only in an H3K56A mutant, but also in an H3K4R background, which leads to a global increase in nascent transcription. Our data suggest that Puf5 determines the fate of its mRNA targets in a context-dependent manner acting as an mRNA surveillance hub balancing deregulated nascent transcription to maintain physiological mRNA levels.
Collapse
Affiliation(s)
- David Z. Kochan
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Julia S. P. Mawer
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Jennifer Massen
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Kiril Tishinov
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Martin Graef
- Max Planck Research Group ‘Autophagy and Cellular Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
16
|
Phosphorylation of mRNA-Binding Proteins Puf1 and Puf2 by TORC2-Activated Protein Kinase Ypk1 Alleviates Their Repressive Effects. MEMBRANES 2021; 11:membranes11070500. [PMID: 34209236 PMCID: PMC8304900 DOI: 10.3390/membranes11070500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Members of the Puf family of RNA-binding proteins typically associate via their Pumilio homology domain with specific short motifs in the 3’-UTR of an mRNA and thereby influence the stability, localization and/or efficiency of translation of the bound transcript. In our prior unbiased proteome-wide screen for targets of the TORC2-stimulated protein kinase Ypk1, we identified the paralogs Puf1/Jsn1 and Puf2 as high-confidence substrates. Earlier work by others had demonstrated that Puf1 and Puf2 exhibit a marked preference for interaction with mRNAs encoding plasma membrane-associated proteins, consistent with our previous studies documenting that a primary physiological role of TORC2-Ypk1 signaling is maintenance of plasma membrane homeostasis. Here, we show, first, that both Puf1 and Puf2 are authentic Ypk1 substrates both in vitro and in vivo. Fluorescently tagged Puf1 localizes constitutively in cortical puncta closely apposed to the plasma membrane, whereas Puf2 does so in the absence of its Ypk1 phosphorylation, but is dispersed in the cytosol when phosphorylated. We further demonstrate that Ypk1-mediated phosphorylation of Puf1 and Puf2 upregulates production of the protein products of the transcripts to which they bind, with a concomitant increase in the level of the cognate mRNAs. Thus, Ypk1 phosphorylation relieves Puf1- and Puf2-mediated post-transcriptional repression mainly by counteracting their negative effect on transcript stability. Using a heterologous protein-RNA tethering and fluorescent protein reporter assay, the consequence of Ypk1 phosphorylation in vivo was recapitulated for full-length Puf1 and even for N-terminal fragments (residues 1-340 and 143-295) corresponding to the region upstream of its dimerization domain (an RNA-recognition motif fold) encompassing its two Ypk1 phosphorylation sites (both also conserved in Puf2). This latter result suggests that alleviation of Puf1-imposed transcript destabilization does not obligatorily require dissociation of Ypk1-phosphorylated Puf1 from a transcript. Our findings add new insight about how the TORC2-Ypk1 signaling axis regulates the content of plasma membrane-associated proteins to promote maintenance of the integrity of the cell envelope.
Collapse
|
17
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Tuong Vi DT, Fujii S, Valderrama AL, Ito A, Matsuura E, Nishihata A, Irie K, Suda Y, Mizuno T, Irie K. Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources. PLoS One 2021; 16:e0251456. [PMID: 33984024 PMCID: PMC8118320 DOI: 10.1371/journal.pone.0251456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/05/2022] Open
Abstract
Pbp1, the yeast ortholog of human Ataxin-2, was originally isolated as a poly(A) binding protein (Pab1)-binding protein. Pbp1 regulates the Pan2-Pan3 deadenylase complex, thereby modulating the mRNA stability and translation efficiency. However, the physiological significance of Pbp1 remains unclear since a yeast strain harboring PBP1 deletion grows similarly to wild-type strain on normal glucose-containing medium. In this study, we found that Pbp1 has a role in cell growth on the medium containing non-fermentable carbon sources. While the pbp1Δ mutant showed a similar growth compared to the wild-type cell on a normal glucose-containing medium, the pbp1Δ mutant showed a slower growth on the medium containing glycerol and lactate. Microarray analyses revealed that expressions of the genes involved in gluconeogenesis, such as PCK1 and FBP1, and of the genes involved in mitochondrial function, such as COX10 and COX11, were decreased in the pbp1Δ mutant. Pbp1 regulated the expressions of PCK1 and FBP1 via their promoters, while the expressions of COX10 and COX11 were regulated by Pbp1, not through their promoters. The decreased expressions of COX10 and COX11 in the pbp1Δ mutant were recovered by the loss of Dcp1 decapping enzyme or Xrn1 5’-3’exonuclease. Our results suggest that Pbp1 regulates the expressions of the genes involved in gluconeogenesis and mitochondrial function through multiple mechanisms.
Collapse
Affiliation(s)
- Dang Thi Tuong Vi
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shiori Fujii
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Arvin Lapiz Valderrama
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ayaka Ito
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eri Matsuura
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayaka Nishihata
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Liu S, Liu S, He B, Li L, Li L, Wang J, Cai T, Chen S, Jiang H. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep 2021; 22:e51606. [PMID: 33655635 DOI: 10.15252/embr.202051606] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
Collapse
Affiliation(s)
- Siqi Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Shanshan Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Baiyu He
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Biological Sciences, China Agriculture University, Beijing, China
| | - Lanlan Li
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
21
|
Tsuboi T, Leff J, Zid BM. Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochem Soc Trans 2020; 48:2565-2578. [PMID: 33245320 PMCID: PMC8108647 DOI: 10.1042/bst20200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
In fluctuating environmental conditions, organisms must modulate their bioenergetic production in order to maintain cellular homeostasis for optimal fitness. Mitochondria are hubs for metabolite and energy generation. Mitochondria are also highly dynamic in their function: modulating their composition, size, density, and the network-like architecture in relation to the metabolic demands of the cell. Here, we review the recent research on the post-transcriptional regulation of mitochondrial composition focusing on mRNA localization, mRNA translation, protein import, and the role that dynamic mitochondrial structure may have on these gene expression processes. As mitochondrial structure and function has been shown to be very important for age-related processes, including cancer, metabolic disorders, and neurodegeneration, understanding how mitochondrial composition can be affected in fluctuating conditions can lead to new therapeutic directions to pursue.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Jordan Leff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| |
Collapse
|
22
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
23
|
Garrido-Godino AI, Gupta I, Gutiérrez-Santiago F, Martínez-Padilla AB, Alekseenko A, Steinmetz LM, Pérez-Ortín JE, Pelechano V, Navarro F. Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 2020; 18:1206-1220. [PMID: 33094674 DOI: 10.1080/15476286.2020.1839229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analysed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - I Gupta
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, Hauz Khas, India
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A B Martínez-Padilla
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - L M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - J E Pérez-Ortín
- E.R.I. Biotecmed, Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - V Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
24
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
25
|
Abstract
RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3' terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.
Collapse
|
26
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
27
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
28
|
Avendaño-Monsalve MC, Ponce-Rojas JC, Funes S. From cytosol to mitochondria: the beginning of a protein journey. Biol Chem 2020; 401:645-661. [DOI: 10.1515/hsz-2020-0110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/18/2023]
Abstract
AbstractMitochondrial protein import is one of the key processes during mitochondrial biogenesis that involves a series of events necessary for recognition and delivery of nucleus-encoded/cytosol-synthesized mitochondrial proteins into the organelle. The past research efforts have mainly unraveled how membrane translocases ensure the correct protein sorting within the different mitochondrial subcompartments. However, early steps of recognition and delivery remain relatively uncharacterized. In this review, we discuss our current understanding about the signals on mitochondrial proteins, as well as in the mRNAs encoding them, which with the help of cytosolic chaperones and membrane receptors support protein targeting to the organelle in order to avoid improper localization. In addition, we discuss recent findings that illustrate how mistargeting of mitochondrial proteins triggers stress responses, aiming to restore cellular homeostasis.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| |
Collapse
|
29
|
Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci U S A 2020; 117:7851-7862. [PMID: 32198202 DOI: 10.1073/pnas.1916471117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.
Collapse
|
30
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
31
|
Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 2019; 47:785-807. [PMID: 31643042 DOI: 10.1007/s11033-019-05142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.
Collapse
|
32
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
33
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
34
|
Schatton D, Rugarli EI. A concert of RNA-binding proteins coordinates mitochondrial function. Crit Rev Biochem Mol Biol 2019; 53:652-666. [DOI: 10.1080/10409238.2018.1553927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Désirée Schatton
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena I. Rugarli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. Toward Identifying Subnetworks from FBF Binding Landscapes in Caenorhabditis Spermatogenic or Oogenic Germlines. G3 (BETHESDA, MD.) 2019; 9:153-165. [PMID: 30459181 PMCID: PMC6325917 DOI: 10.1534/g3.118.200300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.
Collapse
Affiliation(s)
- Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Aman Prasad
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Peggy Kroll-Connor
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
36
|
Webster MW, Stowell JA, Passmore LA. RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019; 8:40670. [PMID: 30601114 PMCID: PMC6340701 DOI: 10.7554/elife.40670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets. When a cell needs to make a particular protein, it first copies the instructions from the matching gene into a molecule known as a messenger RNA (or an mRNA for short). The more mRNA copies it makes, the more protein it can produce. A simple way to control protein production is to raise or lower the number of these mRNA messages, and living cells have lots of ways to make this happen. One method involves codes built into the mRNAs themselves. The mRNAs can carry short sequences of genetic letters that can trigger their own destruction. Known as “destabilising motifs”, these sequences attract the attention of a group of proteins called Ccr4-Not. Together these proteins shorten the end of the mRNAs, preparing the molecules for degradation. But how does Ccr4-Not choose which mRNAs to target? Different mRNAs carry different destabilising motifs. This means that when groups of mRNAs all carry the same motif, the cell can destroy them all together. This allows the cell to switch networks of related genes off together without affecting the mRNAs it still needs. What is puzzling is that the destabilising motifs that control different groups of mRNAs can be very similar, and scientists do not yet know how Ccr4-Not can tell the difference, or what triggers it to start breaking down groups of mRNAs. To find out, Webster et al. recreated the system in the laboratory using purified molecules. The test-tube system confirmed previous suggestions that a protein called Puf3 forms a bridge between Ccr4-Not and mRNAs. It acts as a tether, recognising a destabilising motif and linking it to Ccr4-Not. Labelling different mRNAs with two colours of fluorescent dye showed how Puf3 helps the cell to choose which to destroy. Puf3 allows Ccr4-Not to select specific mRNAs from a mixture of molecules. Puf3 could distinguish between mRNAs that differed in a single letter of genetic code. When it matched with the wrong mRNA, it disconnected much faster than when it matched with the right one, preventing Ccr4-Not from linking up. The ability to destroy specific mRNA messages is critical for cell survival. It happens when cells divide, during immune responses such as inflammation, and in early development. Understanding the targets of tethers like Puf3 could help scientists to predict which genes will switch off and when. This could reveal genes that work together, helping to unravel their roles inside cells.
Collapse
Affiliation(s)
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
37
|
Antagonistic and cooperative AGO2-PUM interactions in regulating mRNAs. Sci Rep 2018; 8:15316. [PMID: 30333515 PMCID: PMC6192998 DOI: 10.1038/s41598-018-33596-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Approximately 1500 RNA-binding proteins (RBPs) profoundly impact mammalian cellular function by controlling distinct sets of transcripts, often using sequence-specific binding to 3′ untranslated regions (UTRs) to regulate mRNA stability and translation. Aside from their individual effects, higher-order combinatorial interactions between RBPs on specific mRNAs have been proposed to underpin the regulatory network. To assess the extent of such co-regulatory control, we took a global experimental approach followed by targeted validation to examine interactions between two well-characterized and highly conserved RBPs, Argonaute2 (AGO2) and Pumilio (PUM1 and PUM2). Transcriptome-wide changes in AGO2-mRNA binding upon PUM knockdown were quantified by CLIP-seq, and the presence of PUM binding on the same 3′UTR corresponded with cooperative and antagonistic effects on AGO2 occupancy. In addition, PUM binding sites that overlap with AGO2 showed differential, weakened binding profiles upon abrogation of AGO2 association, indicative of cooperative interactions. In luciferase reporter validation of candidate 3′UTR sites where AGO2 and PUM colocalized, three sites were identified to host antagonistic interactions, where PUM counteracts miRNA-guided repression. Interestingly, the binding sites for the two proteins are too far for potential antagonism due to steric hindrance, suggesting an alternate mechanism. Our data experimentally confirms the combinatorial regulatory model and indicates that the mostly repressive PUM proteins can change their behavior in a context-dependent manner. Overall, the approach underscores the importance of further elucidation of complex interactions between RBPs and their transcriptome-wide extent.
Collapse
|
38
|
Goldstrohm AC, Hall TMT, McKenney KM. Post-transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends Genet 2018; 34:972-990. [PMID: 30316580 DOI: 10.1016/j.tig.2018.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Mammalian Pumilio proteins, PUM1 and PUM2, are members of the PUF family of sequence-specific RNA-binding proteins. In this review, we explore their mechanisms, regulatory networks, biological functions, and relevance to diseases. Pumilio proteins bind an extensive network of mRNAs and repress protein expression by inhibiting translation and promoting mRNA decay. Opposingly, in certain contexts, they can activate protein expression. Pumilio proteins also regulate noncoding (nc)RNAs. The ncRNA, ncRNA activated by DNA damage (NORAD), can in turn modulate Pumilio activity. Genetic analysis provides new insights into Pumilio protein function. They are essential for growth and development. They control diverse processes, including stem cell fate, and neurological functions, such as behavior and memory formation. Novel findings show that their dysfunction contributes to neurodegeneration, epilepsy, movement disorders, intellectual disability, infertility, and cancer.
Collapse
Affiliation(s)
- Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katherine M McKenney
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
40
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
Novel insights into global translational regulation through Pumilio family RNA-binding protein Puf3p revealed by ribosomal profiling. Curr Genet 2018; 65:201-212. [PMID: 29951697 DOI: 10.1007/s00294-018-0862-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023]
Abstract
RNA binding proteins (RBPs) can regulate the stability, localization, and translation of their target mRNAs. Among them, Puf3p is a well-known Pumilio family RBP whose biology has been intensively studied. Nevertheless, the impact of Puf3p on the translational regulation of its downstream genes still remains to be investigated at the genome-wide level. In this study, we combined ribosome profiling and RNA-Seq in budding yeast (Saccharomyces cerevisiae) to investigate Puf3p's functions in translational regulation. Comparison of translational efficiency (TE) between wild-type and puf3Δ strains demonstrates extensive translational modulation in the absence of Puf3p (over 27% genes are affected at the genome level). Besides confirming its known role in regulating mitochondrial metabolism, our data demonstrate that Puf3p serves as a key post-transcriptional regulator of downstream RBPs by regulating their translational efficiencies, indicating a network of interactions among RBPs at the post-transcriptional level. Furthermore, Puf3p switches the balance of translational flux between mitochondrial and cytosolic ribosome biogenesis to adapt to changes in cellular metabolism. In summary, our results indicate that TE can be utilized as an informative index to interrogate the mechanism underlying RBP functions, and provide novel insights into Puf3p's mode-of-action.
Collapse
|
42
|
Kato M, McKnight SL. A Solid-State Conceptualization of Information Transfer from Gene to Message to Protein. Annu Rev Biochem 2018; 87:351-390. [DOI: 10.1146/annurev-biochem-061516-044700] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we describe speculative ideas and early stage research concerning the flow of genetic information from the nuclear residence of genes to the disparate, cytoplasmic sites of protein synthesis. We propose that this process of information transfer is meticulously guided by transient structures formed from protein segments of low sequence complexity/intrinsic disorder. These low complexity domains are ubiquitously associated with regulatory proteins that control gene expression and RNA biogenesis, but they are also found in the central channel of nuclear pores, the nexus points of intermediate filament assembly, and the locations of action of other well-studied cellular proteins and pathways. Upon being organized into localized cellular positions via mechanisms utilizing properly folded protein domains, thereby facilitating elevated local concentration, certain low complexity domains adopt cross-β interactions that are both structurally specific and labile to disassembly. These weakly tethered assemblies, we propose, are built to relay the passage of genetic information from one site to another within a cell, ensuring that the process is of extreme fidelity.
Collapse
Affiliation(s)
- Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9152, USA
| | - Steven L. McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9152, USA
| |
Collapse
|
43
|
Schatton D, Rugarli EI. Post-transcriptional regulation of mitochondrial function. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Miller D, Brandt N, Gresham D. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. PLoS Genet 2018; 14:e1007406. [PMID: 29782489 PMCID: PMC5983874 DOI: 10.1371/journal.pgen.1007406] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular responses to changing environments frequently involve rapid reprogramming of the transcriptome. Regulated changes in mRNA degradation rates can accelerate reprogramming by clearing or stabilizing extant transcripts. Here, we measured mRNA stability using 4-thiouracil labeling in the budding yeast Saccharomyces cerevisiae during a nitrogen upshift and found that 78 mRNAs are subject to destabilization. These transcripts include Nitrogen Catabolite Repression (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is a mechanism for targeted reprogramming of the transcriptome. To explore the molecular basis of destabilization we implemented a SortSeq approach to screen the pooled deletion collection library for trans factors that mediate rapid GAP1 mRNA repression. We combined low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA FISH and Fluorescence-activated cell sorting (BFF) to identify the Lsm1-7p/Pat1p complex and general mRNA decay machinery as important for GAP1 mRNA clearance. We also find that the decapping modulators EDC3 and SCD6, translation factor eIF4G2, and the 5' UTR of GAP1 are factors that mediate rapid repression of GAP1 mRNA, suggesting that translational control may impact the post-transcriptional fate of mRNAs in response to environmental changes.
Collapse
Affiliation(s)
- Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lapointe CP, Stefely JA, Jochem A, Hutchins PD, Wilson GM, Kwiecien NW, Coon JJ, Wickens M, Pagliarini DJ. Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst 2018; 6:125-135.e6. [PMID: 29248374 PMCID: PMC5799006 DOI: 10.1016/j.cels.2017.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.
Collapse
Affiliation(s)
| | | | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Paul D Hutchins
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary M Wilson
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicholas W Kwiecien
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
46
|
Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res 2018; 46:362-386. [PMID: 29165587 PMCID: PMC5758885 DOI: 10.1093/nar/gkx1120] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie L Van Etten
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trista L Schagat
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Promega Corporation, Madison, WI 53711, USA
| | - Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3-GENES GENOMES GENETICS 2018; 8:315-330. [PMID: 29158339 PMCID: PMC5765359 DOI: 10.1534/g3.117.300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ccr4 (carbon catabolite repression 4)-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a “core” subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae; however, its mRNA targets have not been mapped on a genome-wide scale. Here, we describe a genome-wide approach, RNA immunoprecipitation (RIP) high-throughput sequencing (RIP-seq), to identify the RNAs bound to Ccr4, and two proteins that associate with it, Dhh1 and Puf5. All three proteins were preferentially bound to lowly abundant mRNAs, most often at the 3′ end of the transcript. Furthermore, Ccr4, Dhh1, and Puf5 are recruited to mRNAs that are targeted by other RNA-binding proteins that promote decay and mRNA transport, and inhibit translation. Although Ccr4-Not regulates mRNA transcription and decay, Ccr4 recruitment to mRNAs correlates better with decay rates, suggesting it imparts greater control over transcript abundance through decay. Ccr4-enriched mRNAs are refractory to control by the other deadenylase complex in yeast, Pan2/3, suggesting a division of labor between these deadenylation complexes. Finally, Ccr4 and Dhh1 associate with mRNAs whose abundance increases during nutrient starvation, and those that fluctuate during metabolic and oxygen consumption cycles, which explains the known genetic connections between these factors and nutrient utilization and stress pathways.
Collapse
|
48
|
Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem 2017; 292:19110-19120. [PMID: 28924037 PMCID: PMC5704491 DOI: 10.1074/jbc.m117.800466] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/12/2017] [Indexed: 01/04/2023] Open
Abstract
Liquid–liquid phase separation (LLPS) is thought to contribute to the establishment of many biomolecular condensates, eukaryotic cell structures that concentrate diverse macromolecules but lack a bounding membrane. RNA granules control RNA metabolism and comprise a large class of condensates that are enriched in RNA-binding proteins and RNA molecules. Many RNA granule proteins are composed of both modular domains and intrinsically disordered regions (IDRs) having low amino acid sequence complexity. Phase separation of these molecules likely plays an important role in the generation and stability of RNA granules. To understand how folded domains and IDRs can cooperate to modulate LLPS, we generated a series of engineered proteins. These were based on fusions of an IDR derived from the RNA granule protein FUS (fused in sarcoma) to a multivalent poly-Src homology 3 (SH3) domain protein that phase-separates when mixed with a poly-proline–rich-motif (polyPRM) ligand. We found that the wild-type IDR promotes LLPS of the polySH3–polyPRM system, decreasing the phase separation threshold concentration by 8-fold. Systematic mutation of tyrosine residues in Gly/Ser-Tyr-Gly/Ser motifs of the IDR reduced this effect, depending on the number but not on the position of these substitutions. Mutating all tyrosines to non-aromatic residues or phosphorylating the IDR raised the phase separation threshold above that of the unmodified polySH3–polyPRM pair. These results show that low-complexity IDRs can modulate LLPS both positively and negatively, depending on the degree of aromaticity and phosphorylation status. Our findings provide plausible mechanisms by which these sequences could alter RNA granule properties on evolutionary and cellular timescales.
Collapse
Affiliation(s)
- Yuan Lin
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Simon L Currie
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Michael K Rosen
- From the Department of Biophysics, University of Texas Southwestern Medical Center and .,the Howard Hughes Medical Institute, Dallas, Texas 75390
| |
Collapse
|
49
|
Abstract
3'-untranslated regions (3'-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3'-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3'-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3'-UTRs in the biology of higher organisms. 3'-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3'-UTRs as well as for cleaved fragments. Furthermore, 3'-UTRs determine the fate of proteins through the regulation of protein-protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3'-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3'-UTRs enable the formation of protein complexes with diverse compositions. All of these 3'-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3'-UTR cis-elements. In summary, 3'-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
50
|
Identification and characterization of roles for Puf1 and Puf2 proteins in the yeast response to high calcium. Sci Rep 2017; 7:3037. [PMID: 28596535 PMCID: PMC5465220 DOI: 10.1038/s41598-017-02873-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions. A differential effect was observed at high CaCl2 concentrations, whereby puf1Δ growth was affected much more than puf2Δ, and inhibition was exacerbated in puf1Δpuf2Δ double knockout. Transcriptome analyses upon CaCl2 application for short and long terms defined the transcriptional response to CaCl2 and revealed distinct expression changes for the deletions. Intriguingly, mRNAs known to be bound by Puf1 or Puf2 were affected mainly in the double knockout. We focused on the cell wall regulator Zeo1 and observed that puf1Δpuf2Δ fails to maintain low levels of its mRNA. Complementarily, puf1Δpuf2Δ growth defect in CaCl2 was repaired upon further deletion of the Zeo1 gene. Thus, these proteins probably regulate the cell-wall integrity pathway by regulating Zeo1 post-transcriptionally. This work sheds new light on the roles of Puf proteins during the cellular response to environmental stress.
Collapse
|