1
|
Jewell S, Nguyen TB, Ascher DB, Robertson AA. Insights into the structure of NLR family member X1: Paving the way for innovative drug discovery. Comput Struct Biotechnol J 2024; 23:3506-3513. [PMID: 39435340 PMCID: PMC11493199 DOI: 10.1016/j.csbj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is a negative regulator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, with a significant role in the context of inflammation. Altered expression of NLRX1 is prevalent in inflammatory diseases leading to interest in NLRX1 as a drug target. There is a lack of structural information available for NLRX1 as only the leucine-rich repeat domain of NLRX1 has been crystallised. This lack of structural data limits progress in understanding function and potential druggability of NLRX1. We have modelled full-length NLRX1 by combining experimental, homology modelled and AlphaFold2 structures. The full-length model of NLRX1 was used to explore protein dynamics, mutational tolerance and potential functions. We identified a new RNA binding site in the previously uncharacterized N-terminus, which served as a basis to model protein-RNA complexes. The structure of the adenosine triphosphate (ATP) binding domain revealed a potential catalytic functionality for the protein as a member of the ATPase Associated with Diverse Cellular Activity family of proteins. Finally, we investigated the interactions of NLRX1 with small molecule activators in development, revealing a binding site that has not previously been discussed in literature. The model generated here will help to catalyse efforts towards creating new drug molecules to target NLRX1 and may be used to inform further studies on functionality of NLRX1.
Collapse
Affiliation(s)
- Shannon Jewell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Avril A.B. Robertson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Focus on negatively regulated NLRs in inflammation and cancer. Int Immunopharmacol 2024; 136:112347. [PMID: 38820966 DOI: 10.1016/j.intimp.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China; Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenjing He
- Medical Intensive Care Unit, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Chunhua Li
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Yue Ma
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Mingjun Liu
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Jinxiang Ye
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Lei Sun
- Changchun Tongyuan Hospital, Changchun 130012, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China.
| |
Collapse
|
3
|
Zhou L, Gan L, Sun C, Chu A, Yang M, Liu Z. Bioinformatics analysis and experimental verification of NLRX1 as a prognostic factor for esophageal squamous cell carcinoma. Oncol Lett 2024; 27:264. [PMID: 38659420 PMCID: PMC11040542 DOI: 10.3892/ol.2024.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Nucleotide binding and oligomeric domain-like receptor X1 (NLRX1), a member of the NLR family, is associated with the physiological and pathological processes of inflammation, autophagy, immunity, metabolism and mitochondrial regulation, and has been demonstrated to have pro- or antitumor effects in various tumor types. However, the biological function of NLRX1 in esophageal squamous cell carcinoma (ESCC) has remained elusive. In the present study, by using bioinformatics methods, the differential expression of NLRX1 at the mRNA level was examined. Overall survival, clinical correlation, receiver operating characteristic curve, Cox regression, co-expression, enrichment, immune infiltration and drug sensitivity analyses were carried out. A nomogram and a calibration curve were constructed. Changes in protein expression levels were investigated by immunohistochemistry and western blotting. The impact of NLRX1 on i) cell proliferation was evaluated by Cell Counting Kit-8 assays; ii) migration was examined by wound-healing assays; iii) migration and invasion were evaluated by Transwell assays; and iv) apoptosis was assessed by Annexin V/PI staining and flow cytometry. The results revealed that, compared to normal adjacent tissue, NLRX1 was lowly expressed in ESCC, and patients with low NLRX1 expression had a shorter survival time. NLRX1 was an independent prognostic factor for ESCC and was associated with tumor grading. Patients in the low-NLRX1 group showed a decrease in the infiltration of activated natural killer cells, monocytes and M0 macrophages, and these immune-cell infiltration levels were positively correlated with NLRX1 expression. Knocking down NLRX1 promoted the proliferation of KYSE450 cells, while overexpression of NLRX1 inhibited the proliferation of ECA109 cells. NLRX1 negatively regulated the PI3K/AKT signaling pathway in ESCC. These findings indicate that, through several mechanisms, NLRX1 suppresses tumor growth in ESCC, which offers new insight for investigating the causes and progression of ESCC, as well as for identifying more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Lu Zhou
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lanlan Gan
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chen Sun
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Alan Chu
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Menglin Yang
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zongwen Liu
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
4
|
Ding Y, Sun W, Han M, Liu Z, Kang H, Ma X, Wang J, Mu H, Huang Y, Hou S, Sun D, Shen X, Wu X, Liu R. NLRX1: a key regulator in mitochondrial respiration and colorectal cancer progression. Med Oncol 2024; 41:131. [PMID: 38683455 DOI: 10.1007/s12032-024-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Colorectal cancer (CRC) is a prevalent and aggressive malignancy with high mortality rates and significant risks to human well-being. Population-wide screening for tumor suppressor genes and oncogenes shows promise for reducing the incidence and fatality of CRC. Recent studies have suggested that NLRX1, an innate immunity suppressor, may play a role in regulating chronic inflammation and tumorigenesis. However, further investigation is needed to understand the specific role of NLRX1 in CRC. To evaluate the impact of NLRX1 on migration, invasion, and metastasis, two human colon cancer cell lines were studied in vitro. Additionally, a knockout mouse tumor-bearing model was used to validate the inhibitory effect of NLRX1 on tumor emergence and progression. The Seahorse XF96 technology was employed to assess mitochondrial function and glycolysis in colorectal cancer cells overexpressing NLRX1. Moreover, public databases were consulted to analyze gene and protein expression levels of NLRX1. Finally, the results were validated using a series of CRC patient samples. Our findings demonstrate that downregulation of NLRX1 enhances proliferation, colony formation, and tumor-forming capacity in HCT116 and LoVo cells. Conversely, overexpression of NLRX1 negatively impacts basal respiration and mitochondrial ATP-linked respiration in both cell lines, resulting in a notable decrease in maximal respiration during the standard mitochondrial stress test. Furthermore, analysis of data from the TCGA database reveals a significant reduction in NLRX1 expression in colon and rectal cancer tissues compared to normal tissues. This result was validated using clinical samples, where immunohistochemistry staining and western blotting demonstrated a notable reduction in NLRX1 protein levels in CRC compared to adjacent normal tissues. The decreased expression of NLRX1 may serve as a significant prognostic indicator and diagnostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Yaxin Ding
- College of Life Science, Northwest University, Xi'an, China
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenjie Sun
- College of Life Science, Northwest University, Xi'an, China
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingwei Han
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Huarui Kang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaohan Ma
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiayu Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hongrui Mu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuxiao Huang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Danni Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xing Shen
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Bi PY, Killackey SA, Schweizer L, Girardin SE. NLRX1: Versatile functions of a mitochondrial NLR protein that controls mitophagy. Biomed J 2024; 47:100635. [PMID: 37574163 PMCID: PMC10837482 DOI: 10.1016/j.bj.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
NLRX1 is a member of the of the Nod-like receptor (NLR) family, and it represents a unique pattern recognition molecule (PRM) as it localizes to the mitochondrial matrix in resting conditions. Over the past fifteen years, NLRX1 has been proposed to regulate multiple cellular processes, including antiviral immunity, apoptosis, reactive oxygen species (ROS) generation and mitochondrial metabolism. Similarly, in vivo models have shown that NLRX1 was associated with the control of a number of diseases, including multiple sclerosis, colorectal cancer and ischemia-reperfusion injury. This apparent versatility in function hinted that a common and general overarching role for NLRX1 may exist. Recent evidence has suggested that NLRX1 controls mitophagy through the detection of a specific "danger signal", namely the defective import of proteins into mitochondria, or mitochondrial protein import stress (MPIS). In this review article, we propose that mitophagy regulation may represent the overarching process detected by NLRX1, which could in turn impact on a number of diseases if dysfunctional.
Collapse
Affiliation(s)
- Paul Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
7
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J 2023; 46:100616. [PMID: 37321320 PMCID: PMC10494316 DOI: 10.1016/j.bj.2023.100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
A subset of Nucleotide-binding and leucine-rich repeat-containing receptors (NLRs) function to mitigate overzealous pro-inflammatory signaling produced by NF-κB activation. Under normal pathophysiologic conditions, proper signaling by these NLRs protect against potential autoimmune responses. These NLRs associate with several different proteins within both the canonical and noncanonical NF-κB signaling pathways to either prevent activation of the pathway or inhibit signal transduction. Inhibition of the NF-κB pathways ultimately dampens the production of pro-inflammatory cytokines and activation of other downstream pro-inflammatory signaling mechanisms. Dysregulation of these NLRs, including NLRC3, NLRX1, and NLRP12, have been reported in human inflammatory bowel disease (IBD) and colorectal cancer patients, suggesting the potential of these NLRs as biomarkers for disease detection. Mouse models deficient in these NLRs also have increased susceptibility to colitis and colitis-associated colorectal cancer. While current standard of care for IBD patients and FDA-approved therapeutics function to remedy symptoms associated with IBD and chronic inflammation, these negative regulatory NLRs have yet to be explored as potential drug targets. In this review, we describe a comprehensive overview of recent studies that have evaluated the role of NLRC3, NLRX1, and NLRP12 in IBD and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
9
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Nagai-Singer MA, Morrison HA, Woolls MK, Leedy K, Imran KM, Tupik JD, Allen IC. NLRX1 functions as a tumor suppressor in Pan02 pancreatic cancer cells. Front Oncol 2023; 13:1155831. [PMID: 37342194 PMCID: PMC10277690 DOI: 10.3389/fonc.2023.1155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic cancer is a deadly malignancy with limited treatment options. NLRX1 is a unique, understudied member of the Nod-like Receptor (NLR) family of pattern recognition receptors that regulates a variety of biological processes that are highly relevant to pancreatic cancer. The role of NLRX1 in cancer remains highly enigmatic, with some studies defining its roles as a tumor promoter, while others characterize its contributions to tumor suppression. These seemingly contradicting roles appear to be due, at least in part, to cell type and temporal mechanisms. Here, we define roles for NLRX1 in regulating critical hallmarks of pancreatic cancer using both gain-of-function and loss-of-function studies in murine Pan02 cells. Our data reveals that NLRX1 increases susceptibility to cell death, while also suppressing proliferation, migration, and reactive oxygen species production. We also show that NLRX1 protects against upregulated mitochondrial activity and limits energy production in the Pan02 cells. Transcriptomics analysis revealed that the protective phenotypes associated with NLRX1 are correlated with attenuation of NF-κB, MAPK, AKT, and inflammasome signaling. Together, these data demonstrate that NLRX1 diminishes cancer-associated biological functions in pancreatic cancer cells and establishes a role for this unique NLR in tumor suppression.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA,
United States
| |
Collapse
|
11
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
12
|
Shi L, Xu Y, Feng M. Role of Gut Microbiome in Immune Regulation and Immune Checkpoint Therapy of Colorectal Cancer. Dig Dis Sci 2023; 68:370-379. [PMID: 36575326 DOI: 10.1007/s10620-022-07689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignant tumors worldwide. Immune checkpoint therapies (ICTs) have been proven to be a reliable treatment for some subtypes of CRC. Gut microbiome is closely involved in intestinal carcinogenesis through the regulation of local immune and inflammation of colonic mucosa. Numerous studies have demonstrated that the immunotherapeutic efficacy of CRC and other kinds of cancer is influenced by the immunosuppressive microenvironment constituted by intestinal microbiome and their metabolites. This Review will discuss the recent advances in how gut microbiome can modify the immune microenvironment and its potential role in ICTs of CRC.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yumei Xu
- Department of Radiation Oncology Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of NanJing Medical University, 321 Zhongshan Road, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
13
|
Liu M, Liu K, Cheng D, Zheng B, Li S, Mo Z. The regulatory role of NLRX1 in innate immunity and human disease. Cytokine 2022; 160:156055. [DOI: 10.1016/j.cyto.2022.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
|
14
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
15
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
16
|
Ting JPY. The All-Encompassing Importance of Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2445-2449. [PMID: 35595304 DOI: 10.4049/jimmunol.2290008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President’s Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI ’94; AAI President 2019–2020) and Jenny P.-Y. Ting, Ph.D. (AAI ’97; AAI President 2020–2021) welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective President’s Address to open the meeting.
Collapse
|
17
|
Morrison HA, Liu Y, Eden K, Nagai-Singer MA, Wade PA, Allen IC. NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Front Immunol 2022; 13:882521. [PMID: 35572547 PMCID: PMC9097893 DOI: 10.3389/fimmu.2022.882521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with gluten sensitivities present with dysbiosis of the gut microbiome that is further exacerbated by a strict adherence to a gluten-free diet (GFD). A subtype of patients genetically susceptible to gluten sensitivities are Celiac Disease (CeD) patients, who are carriers of the HLA DR3/DQ2 or HLA DR4/DQ8 haplotypes. Although 85-95% of all CeD patients carry HLA DQ2, up to 25-50% of the world population carry this haplotype with only a minority developing CeD. This suggests that CeD and other gluten sensitivities are mediated by factors beyond genetics. The contribution of innate immune system signaling has been generally understudied in the context of gluten sensitivities. Thus, here we examined the role of NOD-like receptors (NLRs), a subtype of pattern recognition receptors, in maintaining the composition of the gut microbiome in animals maintained on a GFD. Human transcriptomics data revealed significant increases in the gene expression of multiple NLR family members, across functional groups, in patients with active CeD compared to control specimens. However, NLRX1 was uniquely down-regulated during active disease. NLRX1 is a negative regulatory NLR that functions to suppress inflammatory signaling and has been postulate to prevent inflammation-induced dysbiosis. Using Nlrx1-/- mice maintained on either a normal or gluten-free diet, we show that loss of NLRX1 alters the microbiome composition, and a distinctive shift further ensues following adherence to a GFD, including a reciprocal loss of beneficial microbes and increase in opportunistic bacterial populations. Finally, we evaluated the functional impact of an altered gut microbiome by assessing short- and medium-chain fatty acid production. These studies revealed significant differences in a selection of metabolic markers that when paired with 16S rRNA sequencing data could reflect an overall imbalance and loss of immune system homeostasis in the gastrointestinal system.
Collapse
Affiliation(s)
- Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yang Liu
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
18
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
19
|
Chou WC, Rampanelli E, Li X, Ting JPY. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol 2022; 19:337-351. [PMID: 34697412 PMCID: PMC8891342 DOI: 10.1038/s41423-021-00780-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Immunometabolism, which is the metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and metabolite synthesis upon immune cell activation, has gained importance as a regulator of the homeostasis, activation, proliferation, and differentiation of innate and adaptive immune cell subsets that function as key factors in immunity. Metabolic changes in epithelial and other stromal cells in response to different stimulatory signals are also crucial in infection, inflammation, cancer, autoimmune diseases, and metabolic disorders. The crosstalk between the PI3K-AKT-mTOR and LKB1-AMPK signaling pathways is critical for modulating both immune and nonimmune cell metabolism. The bidirectional interaction between immune cells and metabolism is a topic of intense study. Toll-like receptors (TLRs), cytokine receptors, and T and B cell receptors have been shown to activate multiple downstream metabolic pathways. However, how intracellular innate immune sensors/receptors intersect with metabolic pathways is less well understood. The goal of this review is to examine the link between immunometabolism and the functions of several intracellular innate immune sensors or receptors, such as nucleotide-binding and leucine-rich repeat-containing receptors (NLRs, or NOD-like receptors), absent in melanoma 2 (AIM2)-like receptors (ALRs), and the cyclic dinucleotide receptor stimulator of interferon genes (STING). We will focus on recent advances and describe the impact of these intracellular innate immune receptors on multiple metabolic pathways. Whenever appropriate, this review will provide a brief contextual connection to pathogenic infections, autoimmune diseases, cancers, metabolic disorders, and/or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elena Rampanelli
- Amsterdam UMC (University Medical Center, location AMC), Department of Experimental Vascular Medicine, AGEM (Amsterdam Gastroenterology Endocrinology Metabolism) Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Li
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Anisman H, Kusnecov AW. Immunotherapies and their moderation. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Scarfe L, Mackie GM, Maslowski KM. Inflammasome-independent functions of NAIPs and NLRs in the intestinal epithelium. Biochem Soc Trans 2021; 49:2601-2610. [PMID: 34854889 PMCID: PMC8786307 DOI: 10.1042/bst20210365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The gut relies on the complex interaction between epithelial, stromal and immune cells to maintain gut health in the face of food particles and pathogens. Innate sensing by the intestinal epithelium is critical for maintaining epithelial barrier function and also orchestrating mucosal immune responses. Numerous innate pattern recognition receptors (PRRs) are involved in such sensing. In recent years, several Nucleotide-binding-domain and Leucine-rich repeat-containing receptors (NLRs) have been found to partake in pathogen or damage sensing while also being implicated in gut pathologies, such as colitis and colorectal cancer (CRC). Here, we discuss the current literature focusing on NLR family apoptosis inhibitory proteins (NAIPs) and other NLRs that have non-inflammasome roles in the gut. The mechanisms behind NLR-mediated protection often converges on similar signalling pathways, such as STAT3, MAPK and NFκB. Further understanding of how these NLRs contribute to the maintenance of gut homeostasis will be important for understanding gut pathologies and developing new therapies.
Collapse
Affiliation(s)
- Lisa Scarfe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Gillian M. Mackie
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kendle M. Maslowski
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
22
|
Mulas F, Wang X, Song S, Nishanth G, Yi W, Brunn A, Larsen PK, Isermann B, Kalinke U, Barragan A, Naumann M, Deckert M, Schlüter D. The deubiquitinase OTUB1 augments NF-κB-dependent immune responses in dendritic cells in infection and inflammation by stabilizing UBC13. Cell Mol Immunol 2021; 18:1512-1527. [PMID: 32024978 PMCID: PMC8167118 DOI: 10.1038/s41423-020-0362-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/01/2020] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells (DCs) are indispensable for defense against pathogens but may also contribute to immunopathology. Activation of DCs upon the sensing of pathogens by Toll-like receptors (TLRs) is largely mediated by pattern recognition receptor/nuclear factor-κB (NF-κB) signaling and depends on the appropriate ubiquitination of the respective signaling molecules. However, the ubiquitinating and deubiquitinating enzymes involved and their interactions are only incompletely understood. Here, we reveal that the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) is upregulated in DCs upon murine Toxoplasma gondii infection and lipopolysaccharide challenge. Stimulation of DCs with the TLR11/12 ligand T. gondii profilin and the TLR4 ligand lipopolysaccharide induced an increase in NF-κB activation in OTUB1-competent cells, resulting in elevated interleukin-6 (IL-6), IL-12, and tumor necrosis factor (TNF) production, which was also observed upon the specific stimulation of TLR2, TLR3, TLR7, and TLR9. Mechanistically, OTUB1 promoted NF-κB activity in DCs by K48-linked deubiquitination and stabilization of the E2-conjugating enzyme UBC13, resulting in increased K63-linked ubiquitination of IRAK1 (IL-1 receptor-associated kinase 1) and TRAF6 (TNF receptor-associated factor 6). Consequently, DC-specific deletion of OTUB1 impaired the production of cytokines, in particular IL-12, by DCs over the first 2 days of T. gondii infection, resulting in the diminished production of protective interferon-γ (IFN-γ) by natural killer cells, impaired control of parasite replication, and, finally, death from chronic T. encephalitis, all of which could be prevented by low-dose IL-12 treatment in the first 3 days of infection. In contrast, impaired OTUB1-deficient DC activation and cytokine production by OTUB1-deficient DCs protected mice from lipopolysaccharide-induced immunopathology. Collectively, these findings identify OTUB1 as a potent novel regulator of DCs during infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Floriana Mulas
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Shanshan Song
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Wenjing Yi
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Berend Isermann
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, 30625, Hannover, Germany
| | - Antonio Barragan
- Department of Molecular Biosciences, Stockholm University, 10691, Stockholm, Sweden
| | - Michael Naumann
- Institute for Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Guo H, Wang Q, Ghneim K, Wang L, Rampanelli E, Holley-Guthrie E, Cheng L, Garrido C, Margolis DM, Eller LA, Robb ML, Sekaly RP, Chen X, Su L, Ting JPY. Multi-omics analyses reveal that HIV-1 alters CD4 + T cell immunometabolism to fuel virus replication. Nat Immunol 2021; 22:423-433. [PMID: 33767427 PMCID: PMC8087183 DOI: 10.1038/s41590-021-00898-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.
Collapse
Affiliation(s)
- Haitao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Khader Ghneim
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena Rampanelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Holley-Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolina Garrido
- HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leigh A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Xian Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
25
|
Mackiewicz T, Sowa A, Fichna J. Biomarkers for Early Detection of Colitis-associated Colorectal Cancer - Current Concepts, Future Trends. Curr Drug Targets 2021; 22:137-145. [PMID: 32077822 DOI: 10.2174/1389450121666200220123844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Colitis-associated colorectal cancer (CAC) remains a critical complication of ulcerative colitis (UC) with a mortality of approximately 15%, which makes early CAC diagnosis crucial. The current standard of surveillance, with repetitive colonoscopies and histological testing of biopsied mucosa samples, is burdensome and expensive, and therefore less invasive methods and reliable biomarkers are needed. Significant progress has been made, thanks to continuous extensive research in this field, however, no clinically relevant biomarker has been established so far. This review of the current literature presents the genetic and molecular differences between CAC and sporadic colorectal cancer and covers progress made in the early detection of CAC carcinogenesis. It focuses on biomarkers under development, which can easily be tested in samples of body fluids or breath and, once made clinically available, will help to differentiate between progressors (UC patients who will develop dysplasia) from non-progressors and enable early intervention to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Tomasz Mackiewicz
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Jakub Fichna
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Pickering RJ, Booty LM. NLR in eXile: Emerging roles of NLRX1 in immunity and human disease. Immunology 2020; 162:268-280. [PMID: 33314068 DOI: 10.1111/imm.13291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.
Collapse
Affiliation(s)
- Robert J Pickering
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Lee M Booty
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
27
|
Snäkä T, Fasel N. Behind the Scenes: Nod-Like Receptor X1 Controls Inflammation and Metabolism. Front Cell Infect Microbiol 2020; 10:609812. [PMID: 33344269 PMCID: PMC7746548 DOI: 10.3389/fcimb.2020.609812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory Nod-like receptors (NLRs) are a subgroup of the cytosolic NLR family of pathogen recognition receptors (PRRs). These receptors can tune the innate immune responses triggered by the activation of other PRRs by either augmenting or attenuating the activated pro-inflammatory signaling cascades. Nod-like receptor X1 (NLRX1) is the only known mitochondria-associated negative regulatory NLR. NLRX1 attenuates several inflammatory pathways and modulates cellular processes such as autophagy and mitochondrial function following infection or injury. Using both in vitro expression and in vivo experimental models, NLRX1 is extensively described in the context of anti-viral signaling and host-defense against invading pathogens. More recently, NLRX1 has also gained interest in the field of cancer and metabolism where NLRX1 functions to attenuate overzealous inflammation in various inflammatory and autoimmune diseases. However, the exact function of this novel receptor is still under debate and many, often contradictory, mechanisms of action together with cellular localizations have been proposed. Thus, a better understanding of the underlying mechanism is crucial for future research and development of novel therapeutical approaches. Here, we summarize the current findings on NLRX1 and discuss its role in both infectious and inflammatory context.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
28
|
Kastelberg B, Tubau-Juni N, Ayubi T, Leung A, Leber A, Hontecillas R, Bassaganya-Riera J, Kale SD. NLRX1 is a key regulator of immune signaling during invasive pulmonary aspergillosis. PLoS Pathog 2020; 16:e1008854. [PMID: 32956405 PMCID: PMC7529209 DOI: 10.1371/journal.ppat.1008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen of immunocompromised patient populations. Mortality is thought to be context-specific and occurs via both enhanced fungal growth and immunopathogenesis. NLRX1 is a negative regulator of immune signaling and metabolic pathways implicated in host responses to microbes, cancers, and autoimmune diseases. Our study indicates loss of Nlrx1 results in enhanced fungal burden, pulmonary inflammation, immune cell recruitment, and mortality across immuno-suppressed and immuno-competent models of IPA using two clinically derived isolates (AF293, CEA10). We observed that the heightened mortality is due to enhanced recruitment of CD103+ dendritic cells (DCs) that produce elevated amounts of IL-4 resulting in a detrimental Th2-mediated immune response. Adoptive transfer of Nlrx1-/- CD103+ DCs in neutropenic NRG mice results in enhanced mortality that can be ablated using IL-4 neutralizing antibodies. In vitro analysis of CD103+ DCs indicates loss of Nlrx1 results in enhanced IL-4 production via elevated activation of the JNK/JunB pathways. Interestingly, loss of Nlrx1 also results in enhanced recruitment of monocytes and neutrophils. Chimeras of irradiated Nlrx1-/- mice reconstituted with wild type bone marrow have enhanced neutrophil recruitment and survival during models of IPA. This enhanced immune cell recruitment in the absence of Nlrx1 is mediated by excessive production of CXCL8/IL-8 family of chemokines and IL-6 via early and enhanced activation of P38 in response to A. fumigatus conidia as shown in BEAS-2B airway epithelial cells. In summary, our results point strongly towards the cell-specific and contextual function of Nlrx1 during invasive pulmonary aspergillosis and may lead to novel therapeutics to reduce Th2 responses by CD103+ DCs or heightened recruitment of neutrophils. Fungal infections are mitigated and controlled in part by a robust immune response and generation of reactive oxygen species. In certain instances, the immune response may become harmful to the host. Nlrx1 is a known negative regulator of inflammatory aspects of the immune system in response to viruses, bacteria, and cancers. In this study we describe the novel importance of Nlrx1 in controlling and fighting fungal infections in two different host cell populations through two distinct mechanisms. Nlrx1 may function as a future target to mitigate inflammation and immunopathogenesis during fungal pulmonary infection as well as enhance beneficial neutrophil recruitment.
Collapse
Affiliation(s)
- Bridget Kastelberg
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Tariq Ayubi
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Austin Leung
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Shiv D. Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Functional characterization of NLRX1 in rabbit during enterohemorrhagic Escherichia coli infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103612. [PMID: 31962226 DOI: 10.1016/j.dci.2020.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Nucleotide oligomerization domain (NOD) like receptor X1 (NLRX1) is a member of pattern recognition receptor, which has been linked to viral response, cancer, and inflammatory diseases. In this study, rabbit NLRX1 (rNLRX1) was firstly cloned from RK-13 cells, which protein contained a NACHT domain and seven LRRs. rNLRX1 was widely expressed in tissues of rabbits, and highly increased in liver, spleen, kidney, and colon after infected with enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNLRX1 negatively regulated NF-κB signaling, and impaired the expression of pro-inflammatory cytokines and defensins. Moreover, deficient of rNLRX1 in RK-13 cells was performed to investigate the possible roles of rNLRX1. Upon EHEC stimulation, knockdown of rNLRX1 markedly enhanced NF-κB activation and downstream responsive cytokines (IL1β and TNFα) and β-defensins (DEFB114, DEFB124, and DEFB125). Furthermore, overexpression of rNLRX1 promoted the proliferation of EHEC, whereas knockdown of rNLRX1 inhibited its growth. Our study identified that rNLRX1 acts as a negative regulatory in anti-microbial responses after EHEC infection.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congyue Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Chu X, Wu S, Raju R. NLRX1 Regulation Following Acute Mitochondrial Injury. Front Immunol 2019; 10:2431. [PMID: 31736938 PMCID: PMC6830126 DOI: 10.3389/fimmu.2019.02431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Several metabolic, cardiovascular, and neurological disorders are characterized by mitochondrial dysfunction followed by dysregulation of cellular energetics. Mitochondria play an important role in ATP production and cell death regulation. NLRX1, a mitochondria-targeted protein, is known to negatively regulate innate immunity, and cell death responses. However, the role of this protein in cellular homeostasis following mitochondrial injury is not well-understood. To understand the mechanisms underlying the effect of acute injury in regulating NLRX1 signaling pathways, we used an in vitro model of mitochondrial injury wherein, rat pulmonary microvascular endothelial cells were subjected to sodium azide treatment or glucose starvation. Both sodium azide and glucose starvation activated NF-κB and TBK1 associated innate immune response. Moreover, increased TBK1, IKK, IκB, and TRAF6 were recruited to mitochondria and interacted with NLRX1. Depletion of endogenous NLRX1 resulted in exacerbated NF-κB and TBK1 associated innate immune response and apoptosis. Our results suggest that NLRX1 participates in the regulation of innate immune response in mitochondria, and plays an important role in the maintenance of cellular homeostasis following acute mitochondrial injury. We propose that the mitochondrial recruitment of inflammatory mediators and their interaction with NLRX1 are protective responses to maintain cellular homeostasis following injury.
Collapse
Affiliation(s)
- Xiaogang Chu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raghavan Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
31
|
Nagai-Singer MA, Morrison HA, Allen IC. NLRX1 Is a Multifaceted and Enigmatic Regulator of Immune System Function. Front Immunol 2019; 10:2419. [PMID: 31681307 PMCID: PMC6797603 DOI: 10.3389/fimmu.2019.02419] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, significant progress has been achieved in defining mechanisms underlying NLR regulation of immune system function. However, several NLR family members continue to defy our best attempts at characterization and routinely exhibit confounding data. This is particularly true for NLR family members that regulate signaling associated with the activation of other pattern recognition receptors. NLRX1 is a member of this NLR sub-group and acts as an enigmatic regulator of immune system function. NLRX1 has been shown to negatively regulate type-I interferon, attenuate pro-inflammatory NF-κB signaling, promote reactive oxygen species production, and modulate autophagy, cell death, and proliferation. However, the mechanism/s associated with NLRX1 modulation of these pathways is not fully understood and there are inconsistencies within the field. Likewise, it is highly likely that the full repertoire of biological functions impacted by NLRX1 are yet to be defined. Recent mouse studies have shown that NLRX1 significantly impacts a multitude of diseases, including cancer, virus infection, osteoarthritis, traumatic brain injury, and inflammatory bowel disease. Thus, it is essential that the underlying mechanism associated with NLRX1 function in each of these diseases be robustly defined. Here, we summarize the current progress in understanding mechanisms associated with NLRX1 function. We also offer insight into both unique and overlapping mechanisms regulated by NLRX1 that likely contribute to disease pathobiology. Ultimately, we believe that an improved understanding of NLRX1 will result in better defined mechanisms associated with immune system attenuation and the resolution of inflammation in a myriad of diseases.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
32
|
Immune Checkpoint Inhibitors in Metastatic Colorectal Cancer: Current Status, Recent Advances, and Future Directions. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00437-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Jing H, Song T, Cao S, Sun Y, Wang J, Dong W, Zhang Y, Ding Z, Wang T, Xing Z, Bao W. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res 2019; 268:18-26. [PMID: 31132368 PMCID: PMC7114581 DOI: 10.1016/j.virusres.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
PRRSV infection up-regulates NLRX1 expression. NLRX1 impairs PRRSV replication. NLRX1 suppresses the synthesis of viral subgenomic RNAs. NLRX1 interacts and colocalizes with the Nsp9 of PRRSV.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine worldwide. Current antiviral strategies provide only limited protection. Nucleotide-binding oligomerization domain-like receptor (NLR) X1 is unique among NLR proteins in its functions as a pro-viral or antiviral factor to different viral infections. To date, the impact of NLRX1 on PRRSV infection remains unclear. In this study, we found that PRRSV infection promoted the expression of NLRX1 gene. In turn, ectopic expression of NLRX1 inhibited PRRSV replication in Marc-145 cells, whereas knockdown of NLRX1 enhanced PRRSV propagation in porcine alveolar macrophages (PAMs). Mechanistically, NLRX1 was revealed to impair intracellular viral subgenomic RNAs accumulation. Finally, Mutagenic analyses indicated that the LRR (leucine-rich repeats) domain of NLRX1 interacted with PRRSV Nonstructural Protein 9 (Nsp9) RdRp (RNA-dependent RNA Polymerase) domain and was necessary for antiviral activity. Thus, our study establishes the role of NLRX1 as a new host restriction factor in PRRSV infection.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhao Xing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wenqi Bao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
34
|
Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Significance and Role of Pattern Recognition Receptors in Malignancy. Arch Immunol Ther Exp (Warsz) 2019; 67:133-141. [PMID: 30976817 PMCID: PMC6509067 DOI: 10.1007/s00005-019-00540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors (PRRs) are members of innate immunity, playing pivotal role in several immunological reactions. They are known to act as a bridge between innate and adaptive immunity. They are expressed on several normal cell types but have been shown with increasing frequency on/in tumor cells. Significance of this phenomenon is largely unknown, but it has been shown by several authors that they, predominantly Toll-like receptors (TLRs), act in the interest of tumor, by promotion of its growth and spreading. Preparation of artificial of TLRs ligands (agonists) paved the way to use them as a therapeutic agents for cancer, so far in a limited scale. Agonists may be combined with conventional anti-cancer modalities with apparently promising results. PRRs recognizing nucleic acids such as RIG-1 like receptors (sensing RNA) and STING (sensing DNA) constitute a novel promising approach for cancer immunotherapy.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- DNA/immunology
- DNA/metabolism
- Disease Models, Animal
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Ligands
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- RNA/immunology
- RNA/metabolism
- Receptors, Pattern Recognition/agonists
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Jan Żeromski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Agata Kierepa
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| |
Collapse
|
35
|
NLRX1 alleviates lipopolysaccharide-induced apoptosis and inflammation in chondrocytes by suppressing the activation of NF-κB signaling. Int Immunopharmacol 2019; 71:7-13. [PMID: 30861394 DOI: 10.1016/j.intimp.2019.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a chronic debilitating disease characterized by joint degeneration. Excessive chondrocyte apoptosis and inflammation contributes to articular cartilage destruction in OA pathology. Nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) has emerged as a critical regulator of inflammation that participates in the pathology of diverse diseases. To date, little is known about the role of NLRX1 in OA. In the present study, we aimed to explore the function of NLRX1 in lipopolysaccharide (LPS)-induced injury in chondrocytes, an in vitro model of OA. NLRX1 mRNA was detected by quantitative polymerase chain reaction (qPCR) analysis. Protein expression of NLRX1, phosphorylated IκB kinase β (IKKβ), and phosphorylated nuclear factor-κB (NF-κB) p65 were examined by western blot. Cell viability was assessed by the MTT assay. Cell apoptosis was evaluated by measuring caspase-3 activity. Cytokine release was assessed by enzyme-linked immunosorbent assay (ELISA). NF-κB signaling activation was analyzed with a luciferase reporter assay. Herein, our results revealed that NLRX1 expression was markedly decreased in LPS-treated chondrocytes. Functional experiments demonstrated that NLRX1 overexpression significantly improved cell viability and attenuated LPS-treated chondrocyte apoptosis and inflammation, while NLRX1 silencing caused the opposite effects. Moreover, our results showed that NLRX1 regulated LPS-induced NF-κB signaling activation. Notably, NF-κB signaling inhibition significantly reversed the NLRX1-knockdown-mediated enhanced effects on LPS-induced apoptosis and inflammation. Overall, these results demonstrate that NLRX1 alleviates LPS-induced apoptosis and inflammation in chondrocytes by negatively regulating NF-κB signaling, results that indicate an anti-inflammatory role for NLRX1 in OA. Our findings suggest that NLRX1 may serve as a potential therapeutic target for OA.
Collapse
|
36
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
37
|
Singh K, Roy M, Prajapati P, Lipatova A, Sripada L, Gohel D, Singh A, Mane M, Godbole MM, Chumakov PM, Singh R. NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1460-1476. [PMID: 30802640 DOI: 10.1016/j.bbadis.2019.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
An increased level of proinflammatory cytokines, including TNF-α in tumor microenvironment regulates the bioenergetic capacity, immune evasion and survival of cancer cells. Emerging evidences suggest that mitochondrial immune signaling proteins modulates mitochondrial bioenergetic capacity, in addition to the regulation of innate immune response. The optimal oxidative phosphorylation (OxPhos) capacity is required for the maintenance of functional lysosomes and autophagy flux. NLRX1, a mitochondrial NOD family receptor protein, regulates mitochondrial function during apoptosis and tissue injury. However, its role in regulation of mitochondrial and lysosomal function to modulate autophagy flux during inflammatory conditions is not understood. In the current study, we investigated the role of NLRX1 in modulating TNF-α induced autophagy flux and mitochondrial turnover and its implication in regulating the invasive and metastatic capability of breast cancer cells. Expression analyses of clinical breast cancer samples and meta-analysis of multiple public databases revealed that NLRX1 expression is significantly increased in basal-like and metastatic breast carcinoma as compared to non-basal-like and primary breast cancer. Depletion of NLRX1 expression in triple-negative breast cancer cells, altered the organization and activity of OxPhos complexes in presence of TNF-α. NLRX1 depletion further impaired lysosomal function and hence the turnover of damaged mitochondria through mitophagy in presence of TNF-α. Importantly, loss of NLRX1 decreased OxPhos-dependent cell proliferation and migration ability of triple-negative breast cancer cells in presence of TNF-α. These evidences suggest an essential role of NLRX1 in maintaining the crosstalk of mitochondrial metabolism and lysosomal function to regulate invasion and metastasis capability of breast cancer cells.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Paresh Prajapati
- SCoBIRC Department of Neuroscience, University of Kentucky, 741S.Limestone, BBSRB, Lexington, KY 40536, USA
| | - Anastasia Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Aru Singh
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Meenal Mane
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Madan M Godbole
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitis, Federal Scientific Center on Research and Development of Immunobiology Products, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
38
|
Chu P, He L, Li Y, Huang R, Liao L, Li Y, Zhu Z, Wang Y. Molecular cloning and functional characterisation of NLRX1 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 81:276-283. [PMID: 30010019 DOI: 10.1016/j.fsi.2018.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) proteins regulate innate immunity. Although the positive regulatory impact of NLRs is clear, their inhibitory roles are not well defined. In the present study, the NLR family gene NLRX1 from grass carp (Ctenopharyngodon idella) was cloned and characterised. NLRX1 was widely expressed in all tissues examined, albeit at varying levels. After exposure to the grass carp reovirus (GCRV), NLRX1 mRNA expression levels were altered in immune organs, and dramatically altered in liver. Subcellular localisation indicated that NLRX1 protein co-localised with the mitochondria in the transfected cells. Additionally, the bimolecular fluorescence complementation (BiFC) system was introduced to detect the interaction between tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) and NLRX1. Moreover, deficient of NLRX1 in CIK cells with small interference RNA (siRNA) promoted polyinosinic:polycytidylic acid (poly (I:C))-induced IFN-related genes production, including IRF3, IRF7, and IFN-I, which reveals that NLRX1 is a negative regulator of IFN. Taken together, our results demonstrate that NLRX1 gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the NLRX1 in teleosts.
Collapse
Affiliation(s)
- Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
39
|
Killackey SA, Rahman MA, Soares F, Zhang AB, Abdel-Nour M, Philpott DJ, Girardin SE. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem 2018; 453:187-196. [PMID: 30191480 DOI: 10.1007/s11010-018-3444-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
NLRX1, the mitochondrial NOD-like receptor (NLR), modulates apoptosis in response to both intrinsic and extrinsic cues. Insights into the mechanism of how NLRX1 influences apoptosis remain to be determined. Here, we demonstrate that NLRX1 associates with SARM1, a protein with a toll/interleukin-1 receptor (TIR)-containing domain also found in adaptor proteins downstream of toll-like receptors, such as MyD88. While a direct role of SARM1 in innate immunity is unclear, the protein plays essential roles in Wallerian degeneration (WD), a type of neuronal catabolism occurring following axonal severing or damage. In non-neuronal cells, we found that endogenous SARM1 was equally distributed in the cytosol and the mitochondrial matrix, where association with NLRX1 occurred. In these cells, the apoptotic role of NLRX1 was fully dependent on SARM1, indicating that SARM1 was downstream of NLRX1 in apoptosis regulation. In primary murine neurons, however, Wallerian degeneration induced by vinblastine or NGF deprivation occurred in SARM1- yet NLRX1-independent manner, suggesting that WD requires the cytosolic pool of SARM1 or that NLRX1 levels in neurons are too low to contribute to WD regulation. Together, these results shed new light into the mechanisms through which NLRX1 controls apoptosis and provides evidence of a new link between NLR and TIR-containing proteins.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Muhammed A Rahman
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Fraser Soares
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ashley B Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mena Abdel-Nour
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
40
|
Yamada S, Sakakibara SI. Expression profile of the STAND protein Nwd1 in the developing and mature mouse central nervous system. J Comp Neurol 2018; 526:2099-2114. [PMID: 30004576 DOI: 10.1002/cne.24495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/02/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
The orchestrated events required during brain development, as well as the maintenance of adult neuronal plasticity, highly depend on the accurate responses of neuronal cells to various cellular stress or environmental stimuli. Recent studies have defined a previously unrecognized, broad class of multidomain proteins, designated as signal transduction ATPases with numerous domains (STAND), which comprises a large number of proteins, including the apoptotic peptidase activating factor 1 (Apaf1) and nucleotide-binding oligomerization domain-like receptors (NLRs), central players in cell death and innate immune responses, respectively. Although the involvement of STANDs in the central nervous system (CNS) has been postulated in terms of neuronal development and function, it remains largely unclear. Here, we identified Nwd1 (NACHT and WD repeat domain-containing protein 1), as a novel STAND protein, expressed in neural stem/progenitor cells (NSPCs). Structurally, Nwd1 was most analogous to the apoptosis regulator Apaf1, also involved in mitosis and axonal outgrowth regulation in the CNS. Using a specific antibody, we show that, during the embryonic and postnatal period, Nwd1 is expressed in nestin-positive NSPCs in vivo and in vitro, while postnatally it is found in terminally differentiated neurons and blood vessels. At the subcellular level, we demonstrate that Nwd1 is preferentially located in the cytosolic compartment of cultured NSPCs, partially overlapping with cytochrome c. These observations imply that Nwd1 might be involved in the neuronal lineage as a new STAND gene, including having a pro-apoptotic or nonapoptotic role, similar to Apaf1.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
41
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
42
|
Maisonneuve C, Irrazabal T, Martin A, Girardin SE, Philpott DJ. The Impact of the Gut Microbiome on Colorectal Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Thergiory Irrazabal
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| |
Collapse
|
43
|
Yin H, Yang Q, Cao Z, Li H, Yu Z, Zhang G, Sun G, Man R, Wang H, Li J. Activation of NLRX1-mediated autophagy accelerates the ototoxic potential of cisplatin in auditory cells. Toxicol Appl Pharmacol 2018; 343:16-28. [DOI: 10.1016/j.taap.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
|
44
|
Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Abedi V, Bassaganya-Riera J. NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host-Gut Microbiota Interactions during Inflammatory Bowel Disease. Front Immunol 2018. [PMID: 29535731 PMCID: PMC5834749 DOI: 10.3389/fimmu.2018.00363] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interactions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). Nlrx1−/− mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic Nlrx1−/− mice compared to wild-type (WT) mice. Cell-specificity studies using cre-lox mice demonstrate that the loss of NLRX1 in intestinal epithelial cells (IEC) recapitulate the increased sensitivity to DSS colitis observed in whole body Nlrx1−/− mice. Further, organoid cultures of Nlrx1−/− and WT epithelial cells confirm the altered patterns of proliferation, amino acid metabolism, and tight junction expression. These differences in IEC behavior can impact the composition of the microbiome. Microbiome analyses demonstrate that colitogenic bacterial taxa such as Veillonella and Clostridiales are increased in abundance in Nlrx1−/− mice and in WT mice co-housed with Nlrx1−/− mice. The transfer of an Nlrx1−/−-associated gut microbiome through co-housing worsens disease in WT mice confirming the contributions of the microbiome to the Nlrx1−/− phenotype. To validate NLRX1 effects on IEC metabolism mediate gut–microbiome interactions, restoration of WT glutamine metabolic profiles through either exogenous glutamine supplementation or administration of 6-diazo-5-oxo-l-norleucine abrogates differences in inflammation, microbiome, and overall disease severity in Nlrx1−/− mice. The influence NLRX1 deficiency on SIRT1-mediated effects is identified to be an upstream controller of the Nlrx1−/− phenotype in intestinal epithelial cell function and metabolism. The altered IEC function and metabolisms leads to changes in barrier permeability and microbiome interactions, in turn, promoting greater translocation and inflammation and resulting in an increased disease severity. In conclusion, NLRX1 is an immunoregulatory molecule and a candidate modulator of the interplay between mucosal inflammation, metabolism, and the gut microbiome during IBD.
Collapse
Affiliation(s)
- Andrew Leber
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Raquel Hontecillas
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, PA, United States
| | - Josep Bassaganya-Riera
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
45
|
Hu B, Ding GY, Fu PY, Zhu XD, Ji Y, Shi GM, Shen YH, Cai JB, Yang Z, Zhou J, Fan J, Sun HC, Kuang M, Huang C. NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. J Hematol Oncol 2018; 11:28. [PMID: 29482578 PMCID: PMC5828065 DOI: 10.1186/s13045-018-0573-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study was performed to investigate the role of nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) in regulating hepatocellular carcinoma (HCC) progression. METHODS Expression levels of NLRX1 in clinical specimens and cell lines were determined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Transwell assays were conducted to evaluate the effect of NLRX1 on cell invasion, and flow cytometry was used to assess apoptosis. Expression patterns of key molecules in the phosphoinositide 3-kinase (PI3K)-AKT pathways were determined via WB. The effect of NLRX1 on cell senescence was evaluated with β-galactosidase assays. Kaplan-Meier analyses and Cox regression models were used for prognostic evaluation. RESULTS NLRX1 was downregulated in tumor tissue compared with adjacent normal liver tissue. Low tumor NLRX1 expression was identified as an independent indicator for HCC prognosis (recurrence: hazard ratio [HR] 1.87, 95% confidence interval [CI] 1.26-2.76, overall survival [OS] 2.26, 95% CI 1.44-3.56). NLRX1 over-expression (OE) significantly inhibited invasiveness ability and induced apoptosis in HCC cells. In vivo experiments showed that NLRX1 knock-down (KD) significantly promoted HCC growth. Mechanistically, NLRX1 exhibited a suppressor function by decreasing phosphorylation of AKT and thus downregulating Snail1 expression, which inhibited epithelial-mesenchymal-transition (EMT) in HCC cells. Moreover, NLRX1 OE could induce cell senescence via an AKT-P21-dependent manner. CONCLUSIONS NLRX1 acted as a tumor suppressor in HCC by inducing apoptosis, promoting senescence, and decreasing invasiveness by repressing PI3K-AKT signaling pathway. Future investigations will focus on restoring expression of NLRX1 to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Guang-Yu Ding
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Pei-Yao Fu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jian Zhou
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Rd 2, Guangzhou, 510080 China
| | - Cheng Huang
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| |
Collapse
|
46
|
Coutermarsh-Ott S, Simmons A, Capria V, LeRoith T, Wilson JE, Heid B, Philipson CW, Qin Q, Hontecillas-Magarzo R, Bassaganya-Riera J, Ting JPY, Dervisis N, Allen IC. NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-κB signaling. Oncotarget 2018; 7:33096-110. [PMID: 27105514 PMCID: PMC5078078 DOI: 10.18632/oncotarget.8861] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1-/- mice and a model of urethane-induced tumorigenesis. Nlrx1-/- mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-κB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma.
Collapse
Affiliation(s)
- Sheryl Coutermarsh-Ott
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Alysha Simmons
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Vittoria Capria
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Justin E Wilson
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bettina Heid
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Casandra W Philipson
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Qizhi Qin
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Raquel Hontecillas-Magarzo
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Virginia Tech, Virginia Bioinformatics Institute, Nutritional Immunology and Molecular Medicine Laboratory, Blacksburg, VA, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biological Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
47
|
Fletcher R, Wang YJ, Schoen RE, Finn OJ, Yu J, Zhang L. Colorectal cancer prevention: Immune modulation taking the stage. Biochim Biophys Acta Rev Cancer 2018; 1869:138-148. [PMID: 29391185 DOI: 10.1016/j.bbcan.2017.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Prevention or early detection is one of the most promising strategies against colorectal cancer (CRC), the second leading cause of cancer death in the US. Recent studies indicate that antitumor immunity plays a key role in CRC prevention. Accumulating evidence suggests that immunosurveillance represents a critical barrier that emerging tumor cells have to overcome in order to sustain the course of tumor development. Virtually all of the agents with cancer preventive activity have been shown to have an immune modulating effect. A number of immunoprevention studies aimed at triggering antitumor immune response against early lesions have been performed, some of which have shown promising results. Furthermore, the recent success of immune checkpoint blockade therapy reinforces the notion that cancers including CRC can be effectively intervened via immune modulation including immune normalization, and has stimulated various immune-based combination prevention studies. This review summarizes recent advances to help better harness the immune system in CRC prevention.
Collapse
Affiliation(s)
- Rochelle Fletcher
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Yi-Jun Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olivera J Finn
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Wang H, Xu G, Huang Z, Li W, Cai H, Zhang Y, Xiong D, Liu G, Wang S, Xue Z, Luo Q. LRP6 targeting suppresses gastric tumorigenesis via P14 ARF-Mdm2-P53-dependent cellular senescence. Oncotarget 2017; 8:111597-111607. [PMID: 29340077 PMCID: PMC5762345 DOI: 10.18632/oncotarget.22876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
NLRP6, a member of the Nod-like receptor family, protects against chemically induced intestinal injury and colitis-associated colon cancer. However, the cellular mechanisms involved in this NLRP6-mediated protection remain unclear. Here, we show that NLRP6 was down-regulated in approximately 75% of primary gastric cancer cases and exhibited significant associations with advanced clinical-stage lymph node metastasis and poor overall survival. Functional studies established that ectopic overexpression or down-regulation of NLRP6 inhibited cancer cell proliferation by inducing cell cycle arrest at the G1 phase via P21 and Cyclin D1 both in vitro and in vivo. Activation of the P14ARF-P53 pathway played a crucial role in the observed cellular senescence. We further demonstrated that ectopic overexpression of NLRP6 combined with inactivation of NF-κB(p65) and Mdm2 activates P14ARF-P53 to promote the senescence of gastric cancer cells. These findings indicate that NLRP6 functions as a negative regulator of gastric cancer and offer a potential new option for preventing gastric cancer.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Guoxing Xu
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China.,Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350004, China
| | - Weizheng Li
- Department of Cancer Prevention, Diagnosis and Treatment, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Huali Cai
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Yunda Zhang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Disheng Xiong
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Zengfu Xue
- Department of Cancer Prevention, Diagnosis and Treatment, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Qi Luo
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| |
Collapse
|
49
|
NLRX1 Mediates MAVS Degradation To Attenuate the Hepatitis C Virus-Induced Innate Immune Response through PCBP2. J Virol 2017; 91:JVI.01264-17. [PMID: 28956771 DOI: 10.1128/jvi.01264-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. However, attenuation or termination of signaling is also necessary for preventing immune-mediated tissue damage and spontaneous autoimmunity. Here, we identify nucleotide binding oligomerization domain (NOD)-like receptor X1 (NLRX1) as a negative regulator of the mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathway during hepatitis C virus (HCV) infection. The depletion of NLRX1 enhances the HCV-triggered activation of interferon (IFN) signaling and causes the suppression of HCV propagation in hepatocytes. NLRX1, a HCV-inducible protein, interacts with MAVS and mediates the K48-linked polyubiquitination and subsequent degradation of MAVS via the proteasomal pathway. Moreover, poly(rC) binding protein 2 (PCBP2) interacts with NLRX1 to participate in the NLRX1-induced degradation of MAVS and the inhibition of antiviral responses during HCV infection. Mutagenic analyses further revealed that the NOD of NLRX1 is essential for NLRX1 to interact with PCBP2 and subsequently induce MAVS degradation. Our study unlocks a key mechanism of the fine-tuning of innate immunity by which NLRX1 restrains the retinoic acid-inducible gene I-like receptor (RLR)-MAVS signaling cascade by recruiting PCBP2 to MAVS for inducing MAVS degradation through the proteasomal pathway. NLRX1, a negative regulator of innate immunity, is a pivotal host factor for HCV to establish persistent infection.IMPORTANCE Innate immunity needs to be tightly regulated to maximize the antiviral response and minimize immune-mediated pathology, but the underlying mechanisms are poorly understood. In this study, we report that NLRX1 is a proviral host factor for HCV infection and functions as a negative regulator of the HCV-triggered innate immune response. NLRX1 recruits PCBP2 to MAVS and induces the K48-linked polyubiquitination and degradation of MAVS, leading to the negative regulation of the IFN signaling pathway and promoting HCV infection. Overall, this study provides intriguing insights into how innate immunity is regulated during viral infection.
Collapse
|
50
|
Theus MH, Brickler T, Meza AL, Coutermarsh-Ott S, Hazy A, Gris D, Allen IC. Loss of NLRX1 Exacerbates Neural Tissue Damage and NF-κB Signaling following Brain Injury. THE JOURNAL OF IMMUNOLOGY 2017; 199:3547-3558. [PMID: 28993512 DOI: 10.4049/jimmunol.1700251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Traumatic and nontraumatic brain injury results from severe disruptions in the cellular microenvironment leading to massive loss of neuronal populations and increased neuroinflammation. The progressive cascade of secondary events, including ischemia, inflammation, excitotoxicity, and free-radical release, contribute to neural tissue damage. NLRX1 is a member of the NLR family of pattern recognition receptors and is a potent negative regulator of several pathways that significantly modulate many of these events. Thus, we hypothesized that NLRX1 limits immune system signaling in the brain following trauma. To evaluate this hypothesis, we used Nlrx1-/- mice in a controlled cortical impact (CCI) injury murine model of traumatic brain injury (TBI). In this article, we show that Nlrx1-/- mice exhibited significantly larger brain lesions and increased motor deficits following CCI injury. Mechanistically, our data indicate that the NF-κB signaling cascade is significantly upregulated in Nlrx1-/- animals. This upregulation is associated with increased microglia and macrophage populations in the cortical lesion. Using a mouse neuroblastoma cell line (N2A), we also found that NLRX1 significantly reduced apoptosis under hypoxic conditions. In human patients, we identify 15 NLRs that are significantly dysregulated, including significant downregulation of NLRX1 in brain injury following aneurysm. We further demonstrate a concurrent increase in NF-κB signaling that is correlated with aneurysm severity in these human subjects. Together, our data extend the function of NLRX1 beyond its currently characterized role in host-pathogen defense and identify this highly novel NLR as a significant modulator of brain injury progression.
Collapse
Affiliation(s)
- Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Armand L Meza
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061.,Department of Neuroscience, Virginia Tech, Blacksburg, VA 24061; and
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Denis Gris
- Programme d'Immunologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| |
Collapse
|