1
|
Zhang X, Huang Y, Yang Y, Wang QE, Li L. Advancements in prospective single-cell lineage barcoding and their applications in research. Genome Res 2024; 34:2147-2162. [PMID: 39572229 PMCID: PMC11694748 DOI: 10.1101/gr.278944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research. Additionally, the review navigates through critical considerations for successful experimental design in lineage tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, contributing to the ongoing advancement of scLT studies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, Florida 33620, USA;
| | - Yirui Huang
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yajing Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Villegas-Valverde CA, Bencomo-Hernandez AA, Castillo-Aleman YM, Ventura-Carmenate Y, Casado-Hernandez I, Rivero-Jimenez RA. Application of mass cytometry to characterize hematopoietic stem cells in apheresis products of patients with hematological malignancies. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S59-S70. [PMID: 38177056 PMCID: PMC11726105 DOI: 10.1016/j.htct.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 10/20/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is a widely used therapy, but its success largely depends on the number and quality of stem cells collected. Current evidence shows the complexity of the hematopoietic system, which implies that, in the quality assurance of the apheresis product, the hematopoietic stem cells are adequately characterized and quantified, in which mass cytometry (MC) can provide its advantages in high-dimensional analysis. OBJECTIVE This research aimed to characterize and enumerate CD45dim/CD34+ stem cells using the MC in apheresis product yields from patients with chronic lymphoid malignant diseases undergoing autologous transplantation at the Abu Dhabi Stem Cells Center. METHODS An analytical and cross-sectional study was performed on 31 apheresis products from 15 patients diagnosed with multiple myeloma (n = 9) and non-Hodgkin lymphomas (n = 6) eligible for HSCT. The MC was employed using the MaxPar Kit for stem cell immunophenotyping. The analysis was performed manually in the Kaluza and unsupervised by machine learning in Cytobank Premium. RESULTS An excellent agreement was found between mass and flow cytometry for the relative and absolute counts of CD45dim/CD34+ cells (Bland-Altman bias: -0.029 and -64, respectively), seven subpopulations were phenotyped and no lineage bias was detected for any of the methods used in the pool of collected cells. A CD34+/CD38+/CD138+ population was seen in the analyses performed on four patients with multiple myeloma. CONCLUSIONS The MC helps to characterize subpopulations of stem cells in apheresis products. It also allows cell quantification by double platform. Unsupervised analysis allows results completion and validation of the manual strategy. The proposed methodology can be extended to apheresis products for purposes other than HSCT.
Collapse
|
3
|
Nogalska A, Eerdeng J, Akre S, Vergel-Rodriguez M, Lee Y, Bramlett C, Chowdhury AY, Wang B, Cess CG, Finley SD, Lu R. Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells. Cell Mol Immunol 2024; 21:1459-1473. [PMID: 39443746 DOI: 10.1038/s41423-024-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The age-associated decline in immunity manifests as imbalanced adaptive and innate immune cells, which originate from the aging of the stem cells that sustain their regeneration. Aging variation across individuals is well recognized, but its mechanism remains unclear. Here, we used high-throughput single-cell technologies to compare mice of the same chronological age that exhibited early or delayed immune aging phenotypes. We found that some hematopoietic stem cells (HSCs) in early aging mice upregulated genes related to aging, myeloid differentiation, and stem cell proliferation. Delayed aging was instead associated with genes involved in stem cell regulation and the response to external signals. These molecular changes align with shifts in HSC function. We found that the lineage biases of 30% to 40% of the HSC clones shifted with age. Moreover, their lineage biases shifted in opposite directions in mice exhibiting an early or delayed aging phenotype. In early aging mice, the HSC lineage bias shifted toward the myeloid lineage, driving the aging phenotype. In delayed aging mice, HSC lineage bias shifted toward the lymphoid lineage, effectively counteracting aging progression. Furthermore, the anti-aging HSC clones did not increase lymphoid production but instead decreased myeloid production. Additionally, we systematically quantified the frequency of various changes in HSC differentiation and their roles in driving the immune aging phenotype. Taken together, our findings suggest that temporal variation in the aging of immune cell regeneration among individuals primarily arises from differences in the myelopoiesis of a distinct subset of HSCs. Therefore, interventions to delay aging may be possible by targeting a subset of stem cells.
Collapse
Affiliation(s)
- Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Samir Akre
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Adnan Y Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Colin G Cess
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Jiang D, Chowdhury AY, Nogalska A, Contreras J, Lee Y, Vergel-Rodriguez M, Valenzuela M, Lu R. Quantitative association between gene expression and blood cell production of individual hematopoietic stem cells in mice. SCIENCE ADVANCES 2024; 10:eadk2132. [PMID: 38277455 PMCID: PMC10816716 DOI: 10.1126/sciadv.adk2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Individual hematopoietic stem cells (HSCs) produce different amounts of blood cells upon transplantation. Taking advantage of the intercellular variation, we developed an experimental and bioinformatic approach to evaluating the quantitative association between gene expression and blood cell production across individual HSCs. We found that most genes associated with blood production exhibit the association only at some levels of blood production. By mapping gene expression with blood production, we identified four distinct patterns of their quantitative association. Some genes consistently correlate with blood production over a range of levels or across all levels, and these genes are found to regulate lymphoid but not myeloid production. Other genes exhibit one or more clear peaks of association. Genes with overlapping peaks are found to be coexpressed in other tissues and share similar molecular functions and regulatory motifs. By dissecting intercellular variations, our findings revealed four quantitative association patterns that reflect distinct dose-response molecular mechanisms modulating the blood cell production of HSCs.
Collapse
Affiliation(s)
- Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jorge Contreras
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Melissa Valenzuela
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Wang Z, Jiang D, Vergel-Rodriguez M, Nogalska A, Lu R. Lineage tracking to reveal the fate of hematopoietic stem cells influenced by Flk2 - multipotent progenitors after transplantation. Exp Mol Med 2023; 55:205-214. [PMID: 36639717 PMCID: PMC9898540 DOI: 10.1038/s12276-022-00922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
After transplantation, hematopoietic stem cells (HSCs) sustain blood cell regeneration throughout the patient's life. Recent studies suggest that several types of mature blood cells provide feedback signals to regulate HSC fate. However, the potential feedback effect of hematopoietic progenitor cells has not been characterized to date. The present investigation demonstrated that multipotent progenitors (MPPs) promoted T cell production of HSCs when both cell types were cotransplanted in mice. Using genetic barcodes to track individual HSCs in mice, we found that the increased T cell production by HSCs was associated with the combined effects of altered lineage bias and clonal expansion during HSC differentiation. We showed that MPP and HSC co-transplantation promoted the multilineage differentiation of HSCs in the short term while preserving lymphoid-specialized HSC differentiation in the long term. Our findings indicate that MPPs derived from HSCs regulate the fate of HSCs after bone marrow transplantation.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Jinfeng Laboratory, Chongqing, 401329, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Konturek-Ciesla A, Bryder D. Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Front Cell Dev Biol 2022; 10:903528. [PMID: 35573680 PMCID: PMC9091331 DOI: 10.3389/fcell.2022.903528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.
Collapse
|
7
|
Rommelfanger MK, MacLean AL. A single-cell resolved cell-cell communication model explains lineage commitment in hematopoiesis. Development 2021; 148:273837. [PMID: 34935903 PMCID: PMC8722395 DOI: 10.1242/dev.199779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/06/2021] [Indexed: 01/29/2023]
Abstract
Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated ‘The people behind the papers’ interview. Summary: Through theory and computational modeling, cell-cell communication is revealed to be a crucial and under-appreciated determinant of cell-fate decision-making during hematopoiesis.
Collapse
Affiliation(s)
- Megan K Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Contreras-Trujillo H, Eerdeng J, Akre S, Jiang D, Contreras J, Gala B, Vergel-Rodriguez MC, Lee Y, Jorapur A, Andreasian A, Harton L, Bramlett CS, Nogalska A, Xiao G, Lee JW, Chan LN, Müschen M, Merchant AA, Lu R. Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses. Nat Commun 2021; 12:6522. [PMID: 34764253 PMCID: PMC8586369 DOI: 10.1038/s41467-021-26771-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular heterogeneity is a major cause of treatment resistance in cancer. Despite recent advances in single-cell genomic and transcriptomic sequencing, it remains difficult to relate measured molecular profiles to the cellular activities underlying cancer. Here, we present an integrated experimental system that connects single cell gene expression to heterogeneous cancer cell growth, metastasis, and treatment response. Our system integrates single cell transcriptome profiling with DNA barcode based clonal tracking in patient-derived xenograft models. We show that leukemia cells exhibiting unique gene expression respond to different chemotherapies in distinct but consistent manners across multiple mice. In addition, we uncover a form of leukemia expansion that is spatially confined to the bone marrow of single anatomical sites and driven by cells with distinct gene expression. Our integrated experimental system can interrogate the molecular and cellular basis of the intratumoral heterogeneity underlying disease progression and treatment resistance. DNA barcoding is a promising technology for the simultaneous analysis of genetic and phenotypic heterogeneity. Here, the authors combine DNA barcoding and single-cell RNA-seq to study heterogeneity, progression and response to therapy in B-cell acute lymphoblastic leukaemia patient-derived xenografts.
Collapse
Affiliation(s)
- Humberto Contreras-Trujillo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Samir Akre
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jorge Contreras
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Basia Gala
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mary C Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Aparna Jorapur
- Division of Hematology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Areen Andreasian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lisa Harton
- Division of Hematology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Charles S Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Gang Xiao
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Jae-Woong Lee
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA.,Department of Immunobiology, Yale University, New Haven, CT, 06511, USA
| | - Akil A Merchant
- Division of Hematology and Cellular Therapy, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Suryawanshi GW, Arokium H, Kim S, Khamaikawin W, Lin S, Shimizu S, Chupradit K, Lee Y, Xie Y, Guan X, Suryawanshi V, Presson AP, An DS, Chen ISY. Longitudinal clonal tracking in humanized mice reveals sustained polyclonal repopulation of gene-modified human-HSPC despite vector integration bias. Stem Cell Res Ther 2021; 12:528. [PMID: 34620229 PMCID: PMC8499514 DOI: 10.1186/s13287-021-02601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. METHODS Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. RESULTS A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice-providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. CONCLUSIONS Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.
Collapse
Affiliation(s)
- Gajendra W Suryawanshi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Hubert Arokium
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Wannisa Khamaikawin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Samantha Lin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Saki Shimizu
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | | | - YooJin Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Yiming Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Xin Guan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Vasantika Suryawanshi
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Angela P Presson
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, 84108, USA
- Department of Biostatistics, University of California, Los Angeles, 90095, USA
| | - Dong-Sung An
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA.
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA.
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Lieske A, Ha TC, Schambach A, Maetzig T. An improved lentiviral fluorescent genetic barcoding approach distinguishes hematopoietic stem cell properties in multiplexed in vivo experiments. Hum Gene Ther 2021; 32:1280-1294. [PMID: 34139894 DOI: 10.1089/hum.2021.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent a rare cell population of particular interest for biomedical research and regenerative medicine. Various marker combinations enable the isolation of HSCs but fail to reach purity in transplantation assays. To reduce animal consumption, we developed a multiplexing system based on lentiviral fluorescent genetic barcoding (FGB) to enable the parallel characterization of multiple HSC samples within single animals. While previous FGB-mediated HSC multiplexing experiments achieved high in vitro gene marking rates, in vivo persistence of transduced cells remained sub-optimal. Thus, we aimed to optimize vector design and gene transfer protocols to demonstrate the applicability of FGB for functional characterization of two highly similar HSC populations in a reduced number of mice. We developed a set of 6 new lentiviral FGB vectors, utilizing individual and combinatorial expression of Azami Green, mCherry, and YFP derivatives. Gene transfer rates were optimized by overnight transduction of pre-stimulated HSCs with titrated vector doses. Populations for competitive transplantation experiments were identified by immunophenotyping murine HSCs. This identified an LSK-SLAM- (Lin-Sca-1+cKit+CD48-CD150+EPCR-) cell subpopulation that lacks EPCR expression and exhibits prospectively reduced self-renewal potential compared with prototypical ESLAM (CD45+EPCR+CD48-CD150+) HSCs. We monitored 30 data points per HSC-subpopulation in two independent experiments (each n=5) after co-transplantation of 3 uniquely color-coded ESLAM and LSK-SLAM- samples per recipient. While the first experiment was hampered by data fluctuations, increasing cell numbers and exchange of the internal promoter in the second experiment led to 74.4% chimerism, with 87.1% of fluorescent cells derived from ESLAM HSCs. Furthermore, ESLAM-derived cells produced 88.1% of myeloid cells, which is indicative of their origin from long-term repopulating HSCs. This work verifies the importance of EPCR for long-term repopulating HSCs and demonstrates the applicability of our optimized FGB-driven multiplexing approach for the efficient characterization of blood cell populations in biomedical research.
Collapse
Affiliation(s)
- Anna Lieske
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, Clinic for Pediatric Hematology and Oncology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| | - Teng-Cheong Ha
- Hannover Medical School, 9177, Institute of Experimental Hematology, Hannover, State..., Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany.,Harvard Medical School, 1811, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, United States;
| | - Tobias Maetzig
- Hannover Medical School, Insitute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, Clinic for Pediatric Hematology and Oncology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| |
Collapse
|
11
|
Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, Takaori-Kondo A, Weissman IL, Miyanishi M. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun 2021; 539:34-41. [PMID: 33418191 DOI: 10.1016/j.bbrc.2020.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023]
Abstract
Self-renewal and multipotency are essential functions of hematopoietic stem cells (HSCs). To maintain homeostatic hematopoiesis, functionally uniform HSCs have been thought to be an ideal cell-of-origin. Recent technological advances in the field have allowed us to analyze HSCs with single cell resolution and implicate that functional heterogeneity may exist even within the highly purified HSC compartment. However, due in part to the technical limitations of analyzing extremely rare populations and our incomplete understanding of HSC biology, neither the biological meaning of why heterogeneity exists nor the precise mechanism of how heterogeneity is determined within the HSC compartment is entirely known. Here we show the first evidence that self-renewal capacity varies with the degree of replication stress dose and results in heterogeneity within the HSC compartment. Using the Hoxb5-reporter mouse line which enables us to distinguish between long-term (LT)-HSCs and short-term (ST)-HSCs, we have found that ST-HSCs quickly lose self-renewal capacity under high stress environments but can maintain self-renewal under low stress environments for long periods of time. Critically, exogeneous Hoxb5 expression confers protection against loss of self-renewal to Hoxb5-negative HSCs and can partially alter the cell fate of ST-HSCs to that of LT-HSCs. Our results demonstrate that Hoxb5 imparts functional heterogeneity in the HSC compartment by regulating self-renewal capacity. Additionally, Hoxb5-positive HSCs may exist as fail-safe system to protect from the exhaustion of HSCs throughout an organism's lifespan.
Collapse
Affiliation(s)
- Taro Sakamaki
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8397, Japan
| | - Kevin S Kao
- Weill Cornell, Rockefeller, Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Katsuyuki Nishi
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8397, Japan
| | - James Y Chen
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA
| | - Kay Sadaoka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Momo Fujii
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8397, Japan
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Biology and Medicine, USA; Department of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Masanori Miyanishi
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
12
|
Zorina T, Black L. Mesenchymal–Hematopoietic Stem Cell Axis: Applications for Induction of Hematopoietic Chimerism and Therapies for Malignancies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Zorina TD. New Insights on the Role of the Mesenchymal-Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells Dev 2020; 30:2-16. [PMID: 33231142 DOI: 10.1089/scd.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of "empty" niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation. In addition, the capacity of the MSPCs to cross-talk with HSCs, despite major histocompatibility complex disparity, and suppress graft versus host disease indicates the possibility for development of a conditioning-free, MSPCs-enhanced protocol for BM transplantation. The clinical advantage of supplementing cytoreductive protocols with MSPCs to improve autologous hematopoiesis reconstitution and alleviate cytopenia associated with chemo and radiation therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Tatiana D Zorina
- Department of Medical Laboratory Science and Biotechnology, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J, Lu R. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 2020; 15:1436-1458. [PMID: 32132718 PMCID: PMC7427513 DOI: 10.1038/s41596-019-0290-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/21/2019] [Indexed: 11/09/2022]
Abstract
Embedded viral barcoding in combination with high-throughput sequencing is a powerful technology with which to track single-cell clones. It can provide clonal-level insights into cellular proliferation, development, differentiation, migration, and treatment efficacy. Here, we present a detailed protocol for a viral barcoding procedure that includes the creation of barcode libraries, the viral delivery of barcodes, the recovery of barcodes, and the computational analysis of barcode sequencing data. The entire procedure can be completed within a few weeks. This barcoding method requires cells to be susceptible to viral transduction. It provides high sensitivity and throughput, and enables precise quantification of cellular progeny. It is cost efficient and does not require any advanced skills. It can also be easily adapted to many types of applications, including both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Charles Bramlett
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Du Jiang
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Anna Nogalska
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jiya Eerdeng
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Contreras
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Rong Lu
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Black L, Zorina T. Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discov Today 2020; 25:380-391. [DOI: 10.1016/j.drudis.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
|
16
|
Kao RL, Holtan SG. Host and Graft Factors Impacting Infection Risk in Hematopoietic Cell Transplantation. Infect Dis Clin North Am 2019; 33:311-329. [PMID: 30940461 DOI: 10.1016/j.idc.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection contributes significantly to morbidity and mortality in hematopoietic cell transplantation. A complex interplay of host, graft, and technical factors contributes to infectious risk in the recipient. Host factors such as age, underlying disease, and comorbidities; central venous access; and the preparative regimen contribute to mucosal disruption, organ dysfunction, and immunodeficiency before hematopoietic cell transplantation. Graft factors, including donor histocompatibility, cell source, and graft components, along with immunosuppression and graft-versus-host disease, contribute to the speed of immune reconstitution. Evaluation of these factors, plus previous and posttransplant exposure to pathogens, is necessary to best assess an individual recipient's infection risk.
Collapse
Affiliation(s)
- Roy L Kao
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street Southeast, MMC 480, Minneapolis, MN 55455, USA.
| | - Shernan G Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street Southeast, MMC 480, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proc Natl Acad Sci U S A 2019; 116:1447-1456. [PMID: 30622181 DOI: 10.1073/pnas.1801480116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.
Collapse
|
18
|
Nguyen L, Wang Z, Chowdhury AY, Chu E, Eerdeng J, Jiang D, Lu R. Functional compensation between hematopoietic stem cell clones in vivo. EMBO Rep 2018; 19:embr.201745702. [PMID: 29848511 DOI: 10.15252/embr.201745702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/05/2023] Open
Abstract
In most organ systems, regeneration is a coordinated effort that involves many stem cells, but little is known about whether and how individual stem cells compensate for the differentiation deficiencies of other stem cells. Functional compensation is critically important during disease progression and treatment. Here, we show how individual hematopoietic stem cell (HSC) clones heterogeneously compensate for the lymphopoietic deficiencies of other HSCs in a mouse. This compensation rescues the overall blood supply and influences blood cell types outside of the deficient lineages in distinct patterns. We find that highly differentiating HSC clones expand their cell numbers at specific differentiation stages to compensate for the deficiencies of other HSCs. Some of these clones continue to expand after transplantation into secondary recipients. In addition, lymphopoietic compensation involves gene expression changes in HSCs that are characterized by increased lymphoid priming, decreased myeloid priming, and HSC self-renewal. Our data illustrate how HSC clones coordinate to maintain the overall blood supply. Exploiting the innate compensation capacity of stem cell networks may improve the prognosis and treatment of many diseases.
Collapse
Affiliation(s)
- Lisa Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zheng Wang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adnan Y Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Chu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 2018; 131:1195-1205. [PMID: 29295845 DOI: 10.1182/blood-2017-08-802033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.
Collapse
|
20
|
Xu N, Shen S, Dolnikov A. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution. Stem Cells Dev 2017; 26:461-470. [DOI: 10.1089/scd.2016.0186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ning Xu
- Sydney Cord & Marrow Transplant Facility, Centre for Children's Cancer & Blood Disorders, Sydney Children's Hospital, Randwick, Australia
| | - Sylvie Shen
- Sydney Cord & Marrow Transplant Facility, Centre for Children's Cancer & Blood Disorders, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Alla Dolnikov
- Sydney Cord & Marrow Transplant Facility, Centre for Children's Cancer & Blood Disorders, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| |
Collapse
|