1
|
Su C, Chen X, Zhang S, Wang C, Yang C, Arab K, Zeng Y, Zhou G, Zeng C, Zhang M. Progesterone and estradiol alleviate Poly I:C-induced immune response in endometrial stromal cells. J Reprod Immunol 2024; 166:104318. [PMID: 39241576 DOI: 10.1016/j.jri.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/07/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Progesterone (P) and estradiol (E2) regulate the immune status of the uterus. However, whether P and E2 can affect the immune response of endometrial cell is still unknown. In the study, primary endometrial stromal cells (EndSCs) were treated with Poly(I:C), the pathogen-associated molecular pattern of double-stranded RNA (dsRNA) virus, to induce immune response, and then EndSCs were stimulated with P or/and E2. The results showed Poly(I:C) up-regulated the expression of immune cytokines IL-6, IL-8, IL-1β and TNF-α, and significantly down-regulated the expression of ERα and PGRMC1 in EndSCs. Moreover, P or low-dose of E2 attenuate Poly(I:C)-induced immune response, and then the synergistic effects of P and E2 decreased expression of ERα, ERβ and PGR, and alleviate the decease of PGRMC1 induced by Poly(I:C), but not alleviate the decease of ERα caused by Poly(I:C). The result provides a steroid therapeutic method to suppress dsRNA virtues-induced immune response through the synergistic effect of P and E2 on endometrial stromal cells.
Collapse
Affiliation(s)
- Changqi Su
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Xuanyu Chen
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Shilin Zhang
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Chun Wang
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Cuiting Yang
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Khan Arab
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Yutian Zeng
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China
| | - Guangbin Zhou
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- College of animal science and technology, Sichuan agricultural university, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Shen S, Radhakrishnan SK, Harrell JC, Puchalapalli M, Koblinski J, Clevenger C. The Human Intermediate Prolactin Receptor I-tail Contributes Breast Oncogenesis by Targeting Ras/MAPK Pathway. Endocrinology 2024; 165:bqae039. [PMID: 38713636 PMCID: PMC11492283 DOI: 10.1210/endocr/bqae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/09/2024]
Abstract
Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Shanwei Shen
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Senthil K Radhakrishnan
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Madhavi Puchalapalli
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Koblinski
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Charles Clevenger
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
McGuinness CF, Black MA, Dunbier AK. Restriction site associated DNA sequencing for tumour mutation burden estimation and mutation signature analysis. Cancer Med 2023; 12:21545-21560. [PMID: 37974533 PMCID: PMC10726921 DOI: 10.1002/cam4.6711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Genome-wide measures of genetic disruption such as tumour mutation burden (TMB) and mutation signatures are emerging as useful biomarkers to stratify patients for treatment. Clinicians commonly use cancer gene panels for tumour mutation burden estimation, and whole genome sequencing is the gold standard for mutation signature analysis. However, the accuracy and cost associated with these assays limits their utility at scale. METHODS WGS data from 560 breast cancer patients was used for in silico library simulations to evaluate the accuracy of an FDA approved cancer gene panel as well as restriction enzyme associated DNA sequencing (RADseq) libraries for TMB estimation and mutation signature analysis. We also transfected a mouse mammary cell line with APOBEC enzymes and sequenced resulting clones to evaluate the efficacy of RADseq in an experimental setting. RESULTS RADseq had improved accuracy of TMB estimation and derivation of mutation profiles when compared to the FDA approved cancer panel. Using simulated immune checkpoint blockade (ICB) trials, we show that inaccurate TMB estimation leads to a reduction in power for deriving an optimal TMB cutoff to stratify patients for immune checkpoint blockade treatment. Additionally, prioritisation of APOBEC hypermutated tumours in these trials optimises TMB cutoff determination for breast cancer. The utility of RADseq in an experimental setting was also demonstrated, based on characterisation of an APOBEC mutation signature in an APOBEC3A transfected mouse cell line. CONCLUSION In conclusion, our work demonstrates that RADseq has the potential to be used as a cost-effective, accurate solution for TMB estimation and mutation signature analysis by both clinicians and basic researchers.
Collapse
Affiliation(s)
- Conor F. McGuinness
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | | | | |
Collapse
|
7
|
Abstract
The pathogenesis of breast cancer is driven by multiple hormones and growth factors. One of these, prolactin (PRL), contributes to both mammary differentiation and oncogenesis, and yet the basis for these disparate effects has remained unclear. The focus of this review is to examine and place into context 2 recent studies that have provided insight into the roles of PRL receptors and PRL in tumorigenesis and tumor progression. One study provides novel evidence for opposing actions of PRL in the breast being mediated in part by differential PRL receptor (PRLr) isoform utilization. Briefly, homomeric complexes of the long isoform of the PRLr (PRLrL-PRLrL) promotes mammary differentiation, while heteromeric complexes of the intermediate and long PRLr (PRLrI-PRLrL) isoforms trigger mammary oncogenesis. Another study describes an immunodeficient, prolactin-humanized mouse model, NSG-Pro, that facilitates growth of PRL receptor-expressing patient-derived breast cancer xenografts. Evidence obtained with this model supports the interactions of physiological levels of PRL with estrogen and ERBB2 gene networks, the modulatory effects of PRL on drug responsiveness, and the pro-metastatic effects of PRL on breast cancer. This recent progress provides novel concepts, mechanisms and experimental models expected to renew interest in harnessing/exploiting PRLr signaling for therapeutic effects in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Correspondence: Charles V. Clevenger, Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
9
|
Ali S, Hamam D, Liu X, Lebrun JJ. Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer. Front Endocrinol (Lausanne) 2022; 13:993570. [PMID: 36157462 PMCID: PMC9499354 DOI: 10.3389/fendo.2022.993570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.
Collapse
|
10
|
Bojorge MA, Cicconi NS, Cebrón JR, Fang Y, Lamb CA, Bartke A, Miquet JG, González L. Morphological and molecular effects of overexpressed GH on mice mammary gland. Mol Cell Endocrinol 2021; 538:111465. [PMID: 34597725 DOI: 10.1016/j.mce.2021.111465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.
Collapse
Affiliation(s)
- Mariana A Bojorge
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Julieta R Cebrón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Yimin Fang
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Caroline A Lamb
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado, 2490 1428, Buenos Aires, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Departments of Internal Medicine and Physiology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Lorena González
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Grible JM, Zot P, Olex AL, Hedrick SE, Harrell JC, Woock AE, Idowu MO, Clevenger CV. The human intermediate prolactin receptor is a mammary proto-oncogene. NPJ Breast Cancer 2021; 7:37. [PMID: 33772010 PMCID: PMC7997966 DOI: 10.1038/s41523-021-00243-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The hormone prolactin (PRL) and its receptor (hPRLr) are significantly involved in breast cancer pathogenesis. The intermediate hPRLr (hPRLrI) is an alternatively-spliced isoform, capable of stimulating cellular viability and proliferation. An analogous truncated mouse PRLr (mPRLr) was recently found to be oncogenic when co-expressed with wild-type mPRLr. The goal of this study was to determine if a similar transforming event occurs with the hPRLr in human breast epithelial cells and to better understand the mechanism behind such transformation. hPRLrL+I co-expression in MCF10AT cells resulted in robust in vivo and in vitro transformation, while hPRLrI knock-down in MCF7 cells significantly decreased in vitro malignant potential. hPRLrL+I heterodimers displayed greater stability than hPRLrL homodimers, and while being capable of activating Jak2, Ras, and MAPK, they were unable to induce Stat5a tyrosine phosphorylation. Both immunohistochemical breast cancer tissue microarray data and RNA sequencing analyses using The Cancer Genome Atlas (TCGA) identified that higher hPRLrI expression associates with triple-negative breast cancer. These studies indicate the hPRLrI, when expressed alongside hPRLrL, participates in mammary transformation, and represents a novel oncogenic mechanism.
Collapse
Affiliation(s)
- Jacqueline M Grible
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricija Zot
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy L Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Shannon E Hedrick
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Alicia E Woock
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles V Clevenger
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
12
|
Gharbaran R, Onwumere O, Codrington N, Somenarain L, Redenti S. Immunohistochemical localization of prolactin receptor (PRLR) to Hodgkin's and Reed-Sternberg cells of Hodgkin's lymphoma. Acta Histochem 2021; 123:151657. [PMID: 33259941 DOI: 10.1016/j.acthis.2020.151657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023]
Abstract
Prolactin receptor (PRLR), a type-1 cytokine receptor, is overexpressed in a number of cancer types. It has attracted much attention for putative pro-oncogenic roles, which however, remains controversial in some malignancies. In this study, we reported the localization of PRLR to the Hodgkin's and Reed-Sternberg (HRS) cells of Hodgkin's lymphoma (HL), a neoplasm of predominantly B cell origin. Immunohistochemistry performed on 5-μm thick FFPE sections revealed expression of PRLR in HRS cells. Cellular immunofluorescence experiments showed that the HL-derived cell lines, Hs445, KMH2 and L428 overexpressed PRLR. The PRLR immunofluorescent signal was depleted after treating the cell lines with 10 μM of siRNA for 48 h. We also tested whether PRLR is involved in the growth of HL, in vitro. One-way analysis of variance (ANOVA) on cell growth data obtain from WST-1 cell proliferation assay and trypan blue exclusion assay and hemocytometry showed that siRNA-depletion of PRLR expression resulted in decreased growth in all three cell lines. These results offered only a short insight into the involvement of PRLR in HL. As a result, further investigation is required to decipher the precise role(s) of PRLR in the pathogenesis of HL.
Collapse
|
13
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
14
|
Campbell KM, O'Leary KA, Rugowski DE, Mulligan WA, Barnell EK, Skidmore ZL, Krysiak K, Griffith M, Schuler LA, Griffith OL. A Spontaneous Aggressive ERα+ Mammary Tumor Model Is Driven by Kras Activation. Cell Rep 2020; 28:1526-1537.e4. [PMID: 31390566 DOI: 10.1016/j.celrep.2019.06.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
The NRL-PRL murine model, defined by mammary-selective transgenic rat prolactin ligand rPrl expression, establishes spontaneous ER+ mammary tumors in nulliparous females, mimicking the association between elevated prolactin (PRL) and risk for development of ER+ breast cancer in postmenopausal women. Whole-genome and exome sequencing in a discovery cohort (n = 5) of end-stage tumors revealed canonical activating mutations and copy number amplifications of Kras. The frequent mutations in this pathway were validated in an extension cohort, identifying activating Ras alterations in 79% of tumors (23 of 29). Transcriptome analyses over the course of oncogenesis revealed marked alterations associated with Ras activity in established tumors compared with preneoplastic tissues; in cell-intrinsic processes associated with mitosis, cell adhesion, and invasion; as well as in the surrounding tumor environment. These genomic analyses suggest that PRL induces a selective bottleneck for spontaneous Ras-driven tumors that may model a subset of aggressive clinical ER+ breast cancers.
Collapse
Affiliation(s)
- Katie M Campbell
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A Mulligan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erica K Barnell
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kilannin Krysiak
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
15
|
Xiao Z, Yang X, Zhang K, Liu Z, Shao Z, Song C, Wang X, Li Z. Estrogen receptor α/prolactin receptor bilateral crosstalk promotes bromocriptine resistance in prolactinomas. Int J Med Sci 2020; 17:3174-3189. [PMID: 33173437 PMCID: PMC7646122 DOI: 10.7150/ijms.51176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Prolactinomas are the most common type of functional pituitary adenoma. Although bromocriptine is the preferred first line treatment for prolactinoma, resistance frequently occurs, posing a prominent clinical challenge. Both the prolactin receptor (PRLR) and estrogen receptor α (ERα) serve critical roles in the development and progression of prolactinomas, and whether this interaction between PRLR and ERα contributes to bromocriptine resistance remains to be clarified. In the present study, increased levels of ERα and PRLR protein expression were detected in bromocriptine-resistant prolactinomas and MMQ cells. Prolactin (PRL) and estradiol (E2) were found to exert synergistic effects on prolactinoma cell proliferation. Furthermore, PRL induced the phosphorylation of ERα via the JAK2-PI3K/Akt-MEK/ERK pathway, while estrogen promoted PRLR upregulation via pERα. ERα inhibition abolished E2-induced PRLR upregulation and PRL-induced ERα phosphorylation, and fulvestrant, an ERα inhibitor, restored pituitary adenoma cell sensitivity to bromocriptine by activating JNK-MEK/ERK-p38 MAPK signaling and cyclin D1 downregulation. Collectively, these data suggest that the interaction between the estrogen/ERα and PRL/PRLR pathways may contribute to bromocriptine resistance, and therefore, that combination treatment with fulvestrant and bromocriptine (as opposed to either drug alone) may exert potent antitumor effects on bromocriptine-resistant prolactinomas.
Collapse
Affiliation(s)
- Zhengzheng Xiao
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Xiaoli Yang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 210011
| | - Zebin Liu
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Zheng Shao
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Chaojun Song
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Xiaobin Wang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan hospital of Wuhan university, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Matarazzo S, Melocchi L, Rezzola S, Grillo E, Maccarinelli F, Giacomini A, Turati M, Taranto S, Zammataro L, Cerasuolo M, Bugatti M, Vermi W, Presta M, Ronca R. Long Pentraxin-3 Follows and Modulates Bladder Cancer Progression. Cancers (Basel) 2019; 11:cancers11091277. [PMID: 31480336 PMCID: PMC6770810 DOI: 10.3390/cancers11091277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bladder tumors are a diffuse type of cancer. Long pentraxin-3 (PTX3) is a component of the innate immunity with pleiotropic functions in the regulation of immune response, tissue remodeling, and cancer progression. PTX3 may act as an oncosuppressor in different contexts, functioning as an antagonist of the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system, rewiring the immune microenvironment, or acting through mechanisms not yet fully clarified. In this study we used biopsies and data mining to assess that PTX3 is differentially expressed during the different stages of bladder cancer (BC) progression. BC cell lines, representative of different tumor grades, and transgenic/carcinogen-induced models were used to demonstrate in vitro and in vivo that PTX3 production by tumor cells decreases along the progression from low-grade to high-grade advanced muscle invasive forms (MIBC). In vitro and in vivo data revealed for the first time that PTX3 modulation and the consequent impairment of FGF/FGR systems in BC cells have a significant impact on different biological features of BC growth, including cell proliferation, motility, metabolism, stemness, and drug resistance. PTX3 exerts an oncosuppressive effect on BC progression and may represent a potential functional biomarker in BC evolution. Moreover, FGF/FGFR blockade has an impact on drug resistance and stemness features in BC.
Collapse
Affiliation(s)
- Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology, Fondazione Poliambulanza Hospital, 25124 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire PO1 3HF, UK
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
17
|
Gatta LB, Melocchi L, Bugatti M, Missale F, Lonardi S, Zanetti B, Cristinelli L, Belotti S, Simeone C, Ronca R, Grillo E, Licini S, Bresciani D, Tardanico R, Chan SR, Giurisato E, Calza S, Vermi W. Hyper-Activation of STAT3 Sustains Progression of Non-Papillary Basal-Type Bladder Cancer via FOSL1 Regulome. Cancers (Basel) 2019; 11:E1219. [PMID: 31438567 PMCID: PMC6770563 DOI: 10.3390/cancers11091219] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Urothelial bladder cancer (UBC) are classified into luminal and basal subtypes showing distinct molecular features and clinical behaviour. Recent in silico data have proposed the activation on the Signal Transducer and Activator of Transcription 3 (STAT3) as relevant transcription factor in UBC. To answer this question, we have combined the retrospective analysis of clinical samples, functional assays on cell lines, interrogation of public UBC datasets and a murine model of basal-type UBC. Immunohistochemistry on a retrospective UBC cohort uncovered that STAT3 Y705 phosphorylation (pSTAT3) is significantly increased in infiltrating basal-type UBC compared to luminal UBC. In vitro, STAT3 silencing in UBC cell lines significantly reduced tumor cell viability and invasion. Gene expression profile of UBC cell lines combined with the analysis of the Cancer Genome Atlas (TCGA) and GSE32894 UBC datasets showed that increased expression of a set of STAT3 targets predicts basal-type, propensity to local progression and worse prognosis. MYC and FOSL1 represent relevant STAT3 downstream targets, as validated by their co-localization in pSTAT3+ UBC cancer cells. These findings were largely reproduced in the BBN-induced murine model of basal-type UBC. Of note, FOSL1 protein resulted strongly expressed in the non-papillary UBC pathway and FOSL1-regulated transcripts were significantly enriched in the transition from NMIBC to MIBC, as indicated by the interrogation of the GSE32894 dataset. The blockade of the STAT3 pathway might represent a novel treatment option for these neoplasms. Monitoring pSTAT3 and the downstream targets, particularly FOSL1, could provide meaningful levels of UBC stratification.
Collapse
Affiliation(s)
- Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Francesco Missale
- Department of Otorhinolaryngology, Head and Neck Surgery-IRCCS Ospedale Policlinico San Martino, University of Genoa, 16121 Genoa, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Benedetta Zanetti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Luca Cristinelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Sandra Belotti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Claudio Simeone
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
| | - Sara Licini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Debora Bresciani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Regina Tardanico
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Szeman Ruby Chan
- Janssen Research and Development, Spring House, Horsham, PA 19044, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Stefano Calza
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25100 Brescia, Italy.
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
18
|
A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nat Genet 2018; 50:1735-1743. [PMID: 30397337 DOI: 10.1038/s41588-018-0257-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Cancer genomic analysis requires accurate identification of somatic variants in sequencing data. Manual review to refine somatic variant calls is required as a final step after automated processing. However, manual variant refinement is time-consuming, costly, poorly standardized, and non-reproducible. Here, we systematized and standardized somatic variant refinement using a machine learning approach. The final model incorporates 41,000 variants from 440 sequencing cases. This model accurately recapitulated manual refinement labels for three independent testing sets (13,579 variants) and accurately predicted somatic variants confirmed by orthogonal validation sequencing data (212,158 variants). The model improves on manual somatic refinement by reducing bias on calls otherwise subject to high inter-reviewer variability.
Collapse
|
19
|
The prognostic effects of somatic mutations in ER-positive breast cancer. Nat Commun 2018; 9:3476. [PMID: 30181556 PMCID: PMC6123466 DOI: 10.1038/s41467-018-05914-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
Here we report targeted sequencing of 83 genes using DNA from primary breast cancer samples from 625 postmenopausal (UBC-TAM series) and 328 premenopausal (MA12 trial) hormone receptor-positive (HR+) patients to determine interactions between somatic mutation and prognosis. Independent validation of prognostic interactions was achieved using data from the METABRIC study. Previously established associations between MAP3K1 and PIK3CA mutations with luminal A status/favorable prognosis and TP53 mutations with Luminal B/non-luminal tumors/poor prognosis were observed, validating the methodological approach. In UBC-TAM, NF1 frame-shift nonsense (FS/NS) mutations were also a poor outcome driver that was validated in METABRIC. For MA12, poor outcome associated with PIK3R1 mutation was also reproducible. DDR1 mutations were strongly associated with poor prognosis in UBC-TAM despite stringent false discovery correction (q = 0.0003). In conclusion, uncommon recurrent somatic mutations should be further explored to create a more complete explanation of the highly variable outcomes that typifies ER+ breast cancer.
Collapse
|
20
|
Mori H, Cardiff RD, Borowsky AD. Aging Mouse Models Reveal Complex Tumor-Microenvironment Interactions in Cancer Progression. Front Cell Dev Biol 2018; 6:35. [PMID: 29651417 PMCID: PMC5884881 DOI: 10.3389/fcell.2018.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Mori H, Chen JQ, Cardiff RD, Pénzváltó Z, Hubbard NE, Schuetter L, Hovey RC, Trott JF, Borowsky AD. Pathobiology of the 129:Stat1 -/- mouse model of human age-related ER-positive breast cancer with an immune infiltrate-excluded phenotype. Breast Cancer Res 2017; 19:102. [PMID: 28865492 PMCID: PMC5581425 DOI: 10.1186/s13058-017-0892-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background Stat1 gene-targeted knockout mice (129S6/SvEvTac-Stat1tm1Rds) develop estrogen receptor-positive (ER+), luminal-type mammary carcinomas at an advanced age. There is evidence for both host environment as well as tumor cell-intrinsic mechanisms to initiate tumorigenesis in this model. In this report, we summarize details of the systemic and mammary pathology at preneoplastic and tumor-bearing time points. In addition, we investigate tumor progression in the 129:Stat1−/− host compared with wild-type 129/SvEv, and we describe the immune cell reaction to the tumors. Methods Mice housed and treated according to National Institutes of Health guidelines and Institutional Animal Care and Use Committee-approved methods were evaluated by histopathology, and their tissues were subjected to immunohistochemistry with computer-assisted quantitative image analysis. Tumor cell culture and conditioned media from cell culture were used to perform macrophage (RAW264.7) cell migration assays, including the 129:Stat1−/−-derived SSM2 cells as well as control Met1 and NDL tumor cells and EpH4 normal cells. Results Tumorigenesis in 129:Stat1−/− originates from a population of FoxA1+ large oval pale cells that initially appear and accumulate along the mammary ducts in segments or regions of the gland prior to giving rise to mammary intraepithelial neoplasias. Progression to invasive carcinoma is accompanied by a marked local stromal and immune cell response composed predominantly of T cells and macrophages. In conditioned media experiments, cells derived from 129:Stat1−/− tumors secrete both chemoattractant and chemoinhibitory factors, with greater attraction in the extracellular vesicular fraction and inhibition in the soluble fraction. The result appears to be recruitment of the immune reaction to the periphery of the tumor, with exclusion of immune cell infiltration into the tumor. Conclusions 129:Stat1−/− is a unique model for studying the critical origins and risk reduction strategies in age-related ER+ breast cancer. In addition, it can be used in preclinical trials of hormonal and targeted therapies as well as immunotherapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0892-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Jane Q Chen
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Zsófia Pénzváltó
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Neil E Hubbard
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Louis Schuetter
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Russell C Hovey
- Department of Animal Science, University of California at Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California at Davis, Davis, CA, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA. .,Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|