1
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2024:10.1007/s43032-024-01714-5. [PMID: 39333437 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Goff NJ, Mikhova M, Schmidt JC, Meek K. DNA-PK: A synopsis beyond synapsis. DNA Repair (Amst) 2024; 141:103716. [PMID: 38996771 PMCID: PMC11369974 DOI: 10.1016/j.dnarep.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK's function in repair.
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Mariia Mikhova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Zhu Y, Lee BJ, Fujii S, Jonchhe S, Zhang H, Li A, Wang KJ, Rothenberg E, Modesti M, Zha S. The KU70-SAP domain has an overlapping function with DNA-PKcs in limiting the lateral movement of KU along DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609806. [PMID: 39253422 PMCID: PMC11383278 DOI: 10.1101/2024.08.26.609806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.
Collapse
|
4
|
Leal AF, Herreno-Pachón AM, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. Int J Mol Sci 2024; 25:2456. [PMID: 38473704 PMCID: PMC10931195 DOI: 10.3390/ijms25052456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans. For instance, an LV (NCT03852498)- and AAV9 (NCT05514249)-based GT clinical trials for treating X-linked adrenoleukodystrophy and Duchenne Muscular Dystrophy showed the development of myelodysplastic syndrome and patient's death, respectively. In contrast with classical GT, the CRISPR/Cas9-based genome editing requires the homologous direct repair (HDR) machinery of the cells for inserting the transgene in specific regions of the genome. This sophisticated and well-regulated process is limited in the cell cycle of mammalian cells, and in turn, the nonhomologous end-joining (NHEJ) predominates. Consequently, seeking approaches to increase HDR efficiency over NHEJ is crucial. This manuscript comprehensively reviews the current alternatives for improving the HDR for CRISPR/Cas9-based GTs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Angelica María Herreno-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eliana Benincore-Flórez
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
| | - Amali Karunathilaka
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
5
|
Kumari N, Antil H, Kumari S, Raghavan SC. Deficiency of ligase IV leads to reduced NHEJ, accumulation of DNA damage, and can sensitize cells to cancer therapeutics. Genomics 2023; 115:110731. [PMID: 37871849 DOI: 10.1016/j.ygeno.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Himanshu Antil
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
7
|
Loparo JJ. Holding it together: DNA end synapsis during non-homologous end joining. DNA Repair (Amst) 2023; 130:103553. [PMID: 37572577 PMCID: PMC10530278 DOI: 10.1016/j.dnarep.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.
Collapse
Affiliation(s)
- Joseph J Loparo
- Dept. of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Head PE, Kapoor-Vazirani P, Nagaraju GP, Zhang H, Rath S, Luong N, Haji-Seyed-Javadi R, Sesay F, Wang SY, Duong D, Daddacha W, Minten E, Song B, Danelia D, Liu X, Li S, Ortlund E, Seyfried N, Smalley D, Wang Y, Deng X, Dynan W, El-Rayes B, Davis A, Yu D. DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining. Nucleic Acids Res 2023; 51:7972-7987. [PMID: 37395399 PMCID: PMC10450170 DOI: 10.1093/nar/gkad549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.
Collapse
Affiliation(s)
- PamelaSara E Head
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ganji P Nagaraju
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Shi-Ya Wang
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Boying Song
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuyi Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David M Smalley
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ya Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bassel El-Rayes
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
10
|
Watanabe G, Lieber MR. The flexible and iterative steps within the NHEJ pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:105-119. [PMID: 37150451 PMCID: PMC10205690 DOI: 10.1016/j.pbiomolbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Cellular and biochemical studies of nonhomologous DNA end joining (NHEJ) have long established that nuclease and polymerase action are necessary for the repair of a very large fraction of naturally-arising double-strand breaks (DSBs). This conclusion is derived from NHEJ studies ranging from yeast to humans and all genetically-tractable model organisms. Biochemical models derived from recent real-time and structural studies have yet to incorporate physical space or timing for DNA end processing. In real-time single molecule FRET (smFRET) studies, we analyzed NHEJ synapsis of DNA ends in a defined biochemical system. We described a Flexible Synapsis (FS) state in which the DNA ends were in proximity via only Ku and XRCC4:DNA ligase 4 (X4L4), and in an orientation that would not yet permit ligation until base pairing between one or more nucleotides of microhomology (MH) occurred, thereby allowing an in-line Close Synapsis (CS) state. If no MH was achievable, then XLF was critical for ligation. Neither FS or CS required DNA-PKcs, unless Artemis activation was necessary to permit local resection and subsequent base pairing between the two DNA ends being joined. Here we conjecture on possible 3D configurations for this FS state, which would spatially accommodate the nuclease and polymerase processing steps in an iterative manner. The FS model permits repeated attempts at ligation of at least one strand at the DSB after each round of nuclease or polymerase action. In addition to activation of Artemis, other possible roles for DNA-PKcs are discussed.
Collapse
Affiliation(s)
- Go Watanabe
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
11
|
Chen S, Vogt A, Lee L, Naila T, McKeown R, Tomkinson AE, Lees-Miller SP, He Y. Cryo-EM visualization of DNA-PKcs structural intermediates in NHEJ. SCIENCE ADVANCES 2023; 9:eadg2838. [PMID: 37256947 PMCID: PMC10413680 DOI: 10.1126/sciadv.adg2838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
DNA double-strand breaks (DSBs), one of the most cytotoxic forms of DNA damage, can be repaired by the tightly regulated nonhomologous end joining (NHEJ) machinery (Stinson and Loparo and Zhao et al.). Core NHEJ factors form an initial long-range (LR) synaptic complex that transitions into a DNA-PKcs (DNA-dependent protein kinase, catalytic subunit)-free, short-range state to align the DSB ends (Chen et al.). Using single-particle cryo-electron microscopy, we have visualized three additional key NHEJ complexes representing different transition states, with DNA-PKcs adopting distinct dimeric conformations within each of them. Upon DNA-PKcs autophosphorylation, the LR complex undergoes a substantial conformational change, with both Ku and DNA-PKcs rotating outward to promote DNA break exposure and DNA-PKcs dissociation. We also captured a dimeric state of catalytically inactive DNA-PKcs, which resembles structures of other PIKK (Phosphatidylinositol 3-kinase-related kinase) family kinases, revealing a model of the full regulatory cycle of DNA-PKcs during NHEJ.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tasmin Naila
- Department of Internal Medicine and Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Alan E Tomkinson
- Department of Internal Medicine and Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Seif-El-Dahan M, Kefala-Stavridi A, Frit P, Hardwick SW, Chirgadze DY, Maia De Oliviera T, Britton S, Barboule N, Bossaert M, Pandurangan AP, Meek K, Blundell TL, Ropars V, Calsou P, Charbonnier JB, Chaplin AK. PAXX binding to the NHEJ machinery explains functional redundancy with XLF. SCIENCE ADVANCES 2023; 9:eadg2834. [PMID: 37256950 PMCID: PMC10413649 DOI: 10.1126/sciadv.adg2834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023]
Abstract
Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.
Collapse
Affiliation(s)
- Murielle Seif-El-Dahan
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Antonia Kefala-Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Steven W. Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dima Y. Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Prasad Pandurangan
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Tang J, Li Z, Wu Q, Irfan M, Li W, Liu X. Role of Paralogue of XRCC4 and XLF in DNA Damage Repair and Cancer Development. Front Immunol 2022; 13:852453. [PMID: 35309348 PMCID: PMC8926060 DOI: 10.3389/fimmu.2022.852453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.
Collapse
Affiliation(s)
- Jialin Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhongxia Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Muhammad Irfan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weili Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
14
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
15
|
Koike M, Yutoku Y, Koike A. Feline XRCC4 undergoes rapid Ku-dependent recruitment to DNA damage sites. FEBS Open Bio 2022; 12:798-810. [PMID: 35000298 PMCID: PMC8972062 DOI: 10.1002/2211-5463.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation and chemotherapy resistance remain some of the greatest challenges in human and veterinary cancer therapies. XRCC4, an essential molecule for nonhomologous end joining repair, is a promising target for radiosensitizers. Genetic variants and mutations of XRCC4 contribute to cancer susceptibility, and XRCC4 is also the causative gene of microcephalic primordial dwarfism (MPD) in humans. The development of clinically effective molecular‐targeted drugs requires accurate understanding of the functions and regulatory mechanisms of XRCC4. In this study, we cloned and sequenced the cDNA of feline XRCC4. Comparative analysis indicated that sequences and post‐translational modification sites that are predicted to be involved in regulating the localization of human XRCC4, including the nuclear localization signal, are mostly conserved in feline XRCC4. All examined target amino acids responsible for human MPD are completely conserved in feline XRCC4. Furthermore, we found that the localization of feline XRCC4 dynamically changes during the cell cycle. Soon after irradiation, feline XRCC4 accumulated at laser‐induced DNA double‐strand break (DSB) sites in both the interphase and mitotic phase, and this accumulation was dependent on the presence of Ku. Additionally, XRCC4 superfamily proteins XLF and PAXX accumulated at the DSB sites. Collectively, these findings suggest that mechanisms regulating the spatiotemporal localization of XRCC4 are crucial for XRCC4 function in humans and cats. Our findings contribute to elucidating the functions of XRCC4 and the role of abnormal XRCC4 in diseases, including cancers and MPD, and may help in developing XRCC4‐targeted drugs, such as radiosensitizers, for humans and cats.
Collapse
Affiliation(s)
- Manabu Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Yasutomo Yutoku
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aki Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
16
|
Bai Q, Cheng S, Zhang J, Li M, Cao Y, Yuan Y. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2114-2128. [PMID: 33660223 DOI: 10.1007/s11427-020-1885-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits. The non-homologous end joining (NHEJ), which enables foreign DNA fragments to be randomly integrated into different chromosomal sites, shows prominent capability in genomic libraries construction. In this study, we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process, employment of defective Ura marker and optimization of iterative transformations, which enhanced genes integration efficiency by 4.67, 22.74 and 1.87 times, respectively. We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE, CrtB and CrtI, with 23.8 times higher production than rDNA integration through homologous recombination (HR). The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites, with the copy number up to 65 and 53, respectively, creating potential for further application of recombinase mediated genome rearrangement in Y. lipolytica. This work provides a high-efficient NHEJ-mediated genomic library technology, which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h. This novel technology also lays an excellent foundation for the development of other genetic technologies in Y. lipolytica.
Collapse
Affiliation(s)
- Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
18
|
Kim JJ, Lee SY, Hwang Y, Kim S, Chung JM, Park S, Yoon J, Yun H, Ji JH, Chae S, Cho H, Kim CG, Dawson TM, Kim H, Dawson VL, Kang HC. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Res 2021; 49:11083-11102. [PMID: 34614178 PMCID: PMC8565343 DOI: 10.1093/nar/gkab892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mutual crosstalk among poly(ADP-ribose) (PAR), activated PAR polymerase 1 (PARP1) metabolites, and DNA repair machinery has emerged as a key regulatory mechanism of the DNA damage response (DDR). However, there is no conclusive evidence of how PAR precisely controls DDR. Herein, six deubiquitinating enzymes (DUBs) associated with PAR-coupled DDR were identified, and the role of USP39, an inactive DUB involved in spliceosome assembly, was characterized. USP39 rapidly localizes to DNA lesions in a PAR-dependent manner, where it regulates non-homologous end-joining (NHEJ) via a tripartite RG motif located in the N-terminus comprising 46 amino acids (N46). Furthermore, USP39 acts as a molecular trigger for liquid demixing in a PAR-coupled N46-dependent manner, thereby directly interacting with the XRCC4/LIG4 complex during NHEJ. In parallel, the USP39-associated spliceosome complex controls homologous recombination repair in a PAR-independent manner. These findings provide mechanistic insights into how PAR chains precisely control DNA repair processes in the DDR.
Collapse
Affiliation(s)
- Jae Jin Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Life Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo Yun Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jee Min Chung
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sangwook Park
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Junghyun Yoon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hansol Yun
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Chan Gil Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Republic of Korea
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongtae Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ho Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.,Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
19
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
20
|
Chen BR, Wang Y, Shen ZJ, Bennett A, Hindi I, Tyler JK, Sleckman BP. The RNF8 and RNF168 Ubiquitin Ligases Regulate Pro- and Anti-Resection Activities at Broken DNA Ends During Non-Homologous End Joining. DNA Repair (Amst) 2021; 108:103217. [PMID: 34481157 PMCID: PMC9586520 DOI: 10.1016/j.dnarep.2021.103217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The RING-type E3 ubiquitin ligases RNF8 and RNF168 recruit DNA damage response (DDR) factors to chromatin flanking DNA double strand breaks (DSBs) including 53BP1, which protects DNA ends from resection during DNA DSB repair by non-homologous end joining (NHEJ). Deficiency of RNF8 or RNF168 does not lead to demonstrable NHEJ defects, but like deficiency of 53BP1, the combined deficiency of XLF and RNF8 or RNF168 leads to diminished NHEJ in lymphocytes arrested in G0/G1 phase. The function of RNF8 in NHEJ depends on its E3 ubiquitin ligase activity. Loss of RNF8 or RNF168 in G0/G1-phase lymphocytes leads to the resection of broken DNA ends, demonstrating that RNF8 and RNF168 function to protect DNA ends from nucleases, pos sibly through the recruitment of 53BP1. However, the loss of 53BP1 leads to more severe resection than the loss of RNF8 or RNF168. Moreover, in 53BP1-deficient cells, the loss of RNF8 or RNF168 leads to diminished DNA end resection. We conclude that RNF8 and RNF168 regulate pathways that both prevent and promote DNA end resection in cells arrested in G0/G1 phase.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Amelia Bennett
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Issa Hindi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, United States
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, United States.
| |
Collapse
|
21
|
Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:60-73. [PMID: 33285184 PMCID: PMC8224183 DOI: 10.1016/j.pbiomolbio.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.
Collapse
Affiliation(s)
- Shikang Liang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK.
| |
Collapse
|
22
|
Ray U, Raghavan SC. Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair (Amst) 2021; 106:103177. [PMID: 34325086 DOI: 10.1016/j.dnarep.2021.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
23
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
24
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
25
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
26
|
Macromolecular interactions in vitro, comparing classical and novel approaches. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:313-330. [PMID: 33792745 DOI: 10.1007/s00249-021-01517-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 01/11/2023]
Abstract
Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.
Collapse
|
27
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
28
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
29
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
30
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Hepburn M, Saltzberg DJ, Lee L, Fang S, Atkinson C, Strynadka NCJ, Sali A, Lees-Miller SP, Schriemer DC. The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex. Structure 2021; 29:467-478.e6. [PMID: 33412091 DOI: 10.1016/j.str.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023]
Abstract
In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.
Collapse
Affiliation(s)
- Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Claire Atkinson
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Department of Chemistry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Measurements of Protein-DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST). Methods Mol Biol 2021; 2247:125-143. [PMID: 33301115 DOI: 10.1007/978-1-0716-1126-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interactions between protein complexes and DNA are central regulators of the cell life. They control the activation and inactivation of a large set of nuclear processes including transcription, replication, recombination, repair, and chromosome structures. In the literature, protein-DNA interactions are characterized by highly complementary approaches including large-scale studies and analyses in cells. Biophysical approaches with purified materials help to evaluate if these interactions are direct or not. They provide quantitative information on the strength and specificity of the interactions between proteins or protein complexes and their DNA substrates. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) are widely used and are complementary methods to characterize nucleo-protein complexes and quantitatively measure protein-DNA interactions. We present here protocols to analyze the interactions between a DNA repair complex, Ku70-Ku80 (Ku) (154 kDa), and DNA substrates. ITC is a label-free method performed with both partners in solution. It serves to determine the dissociation constant (Kd), the enthalpy (ΔH), and the stoichiometry N of an interaction. MST is used to measure the Kd between the protein or the DNA labeled with a fluorescent probe. We report the data obtained on Ku-DNA interactions with ITC and MST and discuss advantages and drawbacks of both the methods.
Collapse
|
33
|
Inhibitors of DNA double-strand break repair at the crossroads of cancer therapy and genome editing. Biochem Pharmacol 2020; 182:114195. [DOI: 10.1016/j.bcp.2020.114195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
34
|
Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, Villarreal H, Forrester I, Fang S, Tsai MS, Blundell TL, Davis AJ, Lin C, Lees-Miller SP, Strick TR, Tainer J. Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 2020; 48:10953-10972. [PMID: 33045735 PMCID: PMC7641761 DOI: 10.1093/nar/gkaa784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1's ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA-RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing L Wang
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Ke Liang
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shikang Liang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Su S Maw
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | | | - Isaac Forrester
- CryoEM Core at Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Terence R Strick
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
- Programme “Equipe Labellisée’’, Ligue Nationale Contre le Cancer, Paris 75005, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Arora M, Kumari S, Singh J, Chopra A, Chauhan SS. PAXX, Not NHEJ1 Is an Independent Prognosticator in Colon Cancer. Front Mol Biosci 2020; 7:584053. [PMID: 33195430 PMCID: PMC7649742 DOI: 10.3389/fmolb.2020.584053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Classical Non-homologous End Joining (NHEJ) pathway is the mainstay of cellular response to DNA double strand breaks. While aberrant expression of genes involved in this pathway has been linked with genomic instability and drug resistance in several cancers, limited information is available about its clinical significance in colon cancer. We performed a comprehensive analysis of seven essential genes, including XRCC5, XRCC6, PRKDC, LIG4, XRCC4, NHEJ1, and PAXX of this pathway, in colon cancer using multi-omics datasets, and studied their associations with molecular and clinicopathological features, including age, gender, stage, KRAS mutation, BRAF mutation, microsatellite instability status and promoter DNA methylation in TCGA colon cancer dataset. This analysis revealed upregulation of XRCC5, PRKDC, and PAXX in colon cancer compared to normal colon tissues, while LIG4 and NHEJ1 (XLF) displayed downregulation. The expression of these genes was independent of age and KRAS status, while XRCC5, PRKDC, and LIG4 exhibited reduced expression in BRAF mutant tumors. Interestingly, we observed a strong association between XRCC6, XRCC5, PRKDC and LIG4 overexpression and microsatellite instability status of the tumors. In multivariate analysis, high PAXX expression emerged as an independent prognostic marker for poor overall and disease specific survival. We also observed hypomethylation of PAXX promoter in tumors, which exhibited a strong correlation with its overexpression. Furthermore, PAXX overexpression was also associated with several oncogenic pathways as well as a reduction in numbers of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
37
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
39
|
Liu X, Liu T, Shang Y, Dai P, Zhang W, Lee BJ, Huang M, Yang D, Wu Q, Liu LD, Zheng X, Zhou BO, Dong J, Yeap LS, Hu J, Xiao T, Zha S, Casellas R, Liu XS, Meng FL. ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Res 2020; 30:732-744. [PMID: 32355287 PMCID: PMC7608219 DOI: 10.1038/s41422-020-0328-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Programmed DNA recombination in mammalian cells occurs predominantly in a directional manner. While random DNA breaks are typically repaired both by deletion and by inversion at approximately equal proportions, V(D)J and class switch recombination (CSR) of immunoglobulin heavy chain gene overwhelmingly delete intervening sequences to yield productive rearrangement. What factors channel chromatin breaks to deletional CSR in lymphocytes is unknown. Integrating CRISPR knockout and chemical perturbation screening we here identify the Snf2-family helicase-like ERCC6L2 as one such factor. We show that ERCC6L2 promotes double-strand break end-joining and facilitates optimal CSR in mice. At the cellular levels, ERCC6L2 rapidly engages in DNA repair through its C-terminal domains. Mechanistically, ERCC6L2 interacts with other end-joining factors and plays a functionally redundant role with the XLF end-joining factor in V(D)J recombination. Strikingly, ERCC6L2 controls orientation-specific joining of broken ends during CSR, which relies on its helicase activity. Thus, ERCC6L2 facilitates programmed recombination through directional repair of distant breaks.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafang Shang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wubing Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Min Huang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingpeng Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Wu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liu Daisy Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
| | - Bo O Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, Center of Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, 02215, USA
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Structural biology of multicomponent assemblies in DNA double-strand-break repair through non-homologous end joining. Curr Opin Struct Biol 2020; 61:9-16. [DOI: 10.1016/j.sbi.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 01/19/2023]
|
41
|
Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020; 160:233-247. [PMID: 32031242 DOI: 10.1111/imm.13176] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins emerging from B lymphocytes and capable of recognizing almost all kinds of antigens owing to the extreme diversity of their antigen-binding portions, known as variable (V) regions, play an important role in immune responses. The exons encoding the V regions are known as V (variable), D (diversity), or J (joining) genes. V, D, J segments exist as multiple copy arrays on the chromosome. The recombination of the V(D)J gene is the key mechanism to produce antibody diversity. The recombinational process, including randomly choosing a pair of V, D, J segments, introducing double-strand breaks adjacent to each segment, deleting (or inverting in some cases) the intervening DNA and ligating the segments together, is defined as V(D)J recombination, which contributes to surprising immunoglobulin diversity in vertebrate immune systems. To enhance both the ability of immunoglobulins to recognize and bind to foreign antigens and the effector capacities of the expressed antibodies, naive B cells will undergo class switching recombination (CSR) and somatic hypermutation (SHM). However, the genetics mechanisms of V(D)J recombination, CSR and SHM are not clear. In this review, we summarize the major progress in mechanism studies of immunoglobulin V(D)J gene recombination and CSR as well as SHM, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Xiying Chi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yue Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
42
|
Structural mechanism of DNA-end synapsis in the non-homologous end joining pathway for repairing double-strand breaks: bridge over troubled ends. Biochem Soc Trans 2020; 47:1609-1619. [PMID: 31829407 DOI: 10.1042/bst20180518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), which is the most toxic DNA damage in cells. Unrepaired DSBs can cause genome instability, tumorigenesis or cell death. DNA end synapsis is the first and probably the most important step of the NHEJ pathway, aiming to bring two broken DNA ends close together and provide structural stability for end processing and ligation. This process is mediated through a group of NHEJ proteins forming higher-order complexes, to recognise and bridge two DNA ends. Spatial and temporal understanding of the structural mechanism of DNA-end synapsis has been largely advanced through recent structural and single-molecule studies of NHEJ proteins. This review focuses on core NHEJ proteins that mediate DNA end synapsis through their unique structures and interaction properties, as well as how they play roles as anchor and linker proteins during the process of 'bridge over troubled ends'.
Collapse
|
43
|
Janel-Bintz R, Kuhn L, Frit P, Chicher J, Wagner J, Haracska L, Hammann P, Cordonnier AM. Proteomic Analysis of DNA Synthesis on a Structured DNA Template in Human Cellular Extracts: Interplay Between NHEJ and Replication-Associated Proteins. Proteomics 2020; 20:e1900184. [PMID: 31999075 DOI: 10.1002/pmic.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/19/2019] [Indexed: 01/01/2023]
Abstract
It is established that short inverted repeats trigger base substitution mutagenesis in human cells. However, how the replication machinery deals with structured DNA is unknown. It has been previously reported that in human cell-free extracts, DNA primer extension using a structured single-stranded template is transiently blocked at DNA hairpins. Here, the proteomic analysis of proteins bound to the DNA template is reported and evidence that the DNA-PK complex (DNA-PKcs and the Ku heterodimer) recognizes, and is activated by, structured single-stranded DNA is provided. Hijacking the DNA-PK complex by double-stranded oligonucleotides results in a large removal of the pausing sites and an elevated DNA extension efficiency. Conversely, DNA-PKcs inhibition results in its stabilization on the template, along with other proteins acting downstream in the Non-Homologous End-Joining (NHEJ) pathway, especially the XRCC4-DNA ligase 4 complex and the cofactor PAXX. Retention of NHEJ factors to the DNA in the absence of DNA-PKcs activity correlates with additional halts of primer extension, suggesting that these proteins hinder the progression of the DNA synthesis at these sites. Overall these results raise the possibility that, upon binding to hairpins formed onto ssDNA during fork progression, the DNA-PK complex interferes with replication fork dynamics in vivo.
Collapse
Affiliation(s)
- Régine Janel-Bintz
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, CNRS, Illkirch, 67412, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, FR1589, 67084, Strasbourg, France
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, FR1589, 67084, Strasbourg, France
| | - Jérôme Wagner
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, CNRS, Illkirch, 67412, France
| | - Lajos Haracska
- Institute of Genetics, Biological Research Center, HU-6726, Szeged, Hungary
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, FR1589, 67084, Strasbourg, France
| | - Agnès M Cordonnier
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, CNRS, Illkirch, 67412, France
| |
Collapse
|
44
|
Bhargava R, Lopezcolorado FW, Tsai LJ, Stark JM. The canonical non-homologous end joining factor XLF promotes chromosomal deletion rearrangements in human cells. J Biol Chem 2020; 295:125-137. [PMID: 31753920 PMCID: PMC6952595 DOI: 10.1074/jbc.ra119.010421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
Clastogen exposure can result in chromosomal rearrangements, including large deletions and inversions that are associated with cancer development. To examine such rearrangements in human cells, here we developed a reporter assay based on endogenous genes on chromosome 12. Using the RNA-guided nuclease Cas9, we induced two DNA double-strand breaks, one each in the GAPDH and CD4 genes, that caused a deletion rearrangement leading to CD4 expression from the GAPDH promoter. We observed that this GAPDH-CD4 deletion rearrangement activates CD4+ cells that can be readily detected by flow cytometry. Similarly, double-strand breaks in the LPCAT3 and CD4 genes induced an LPCAT3-CD4 inversion rearrangement resulting in CD4 expression. Studying the GAPDH-CD4 deletion rearrangement in multiple cell lines, we found that the canonical non-homologous end joining (C-NHEJ) factor XLF promotes these rearrangements. Junction analysis uncovered that the relative contribution of C-NHEJ appears lower in U2OS than in HEK293 and A549 cells. Furthermore, an ATM kinase inhibitor increased C-NHEJ-mediated rearrangements only in U2OS cells. We also found that an XLF residue that is critical for an interaction with the C-NHEJ factor X-ray repair cross-complementing 4 (XRCC4), and XRCC4 itself are each important for promoting both this deletion rearrangement and end joining without insertion/deletion mutations. In summary, a reporter assay based on endogenous genes on chromosome 12 reveals that XLF-dependent C-NHEJ promotes deletion rearrangements in human cells and that cell type-specific differences in the contribution of C-NHEJ and ATM kinase inhibition influence these rearrangements.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010.
| |
Collapse
|
45
|
Stinson BM, Moreno AT, Walter JC, Loparo JJ. A Mechanism to Minimize Errors during Non-homologous End Joining. Mol Cell 2019; 77:1080-1091.e8. [PMID: 31862156 DOI: 10.1016/j.molcel.2019.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Ruis B, Molan A, Takasugi T, Hendrickson EA. Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination. DNA Repair (Amst) 2019; 85:102738. [PMID: 31731258 DOI: 10.1016/j.dnarep.2019.102738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
The repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency. A critical DSB protein required for C-NHEJ is the DNA Ligase IV (LIGIV) accessory factor, X-Ray Cross Complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, participate in LIGIV activation, and to help tether the broken DSB ends together. XRCC4's role in these processes has been muddied by the identification of two additional XRCC4 paralogs, XRCC4-Like Factor (XLF), and Paralog of XRCC4 and XLF (PAXX). The roles that these paralogs play in C-NHEJ is partially understood, but, in turn, has itself been obscured by species-specific differences observed in the absence of one or the other paralogs. In order to investigate the role(s) that XRCC4 may play, with or without XLF and/or PAXX, in lymphoid variable(diversity)joining [V(D)J] recombination as well as in DNA DSB repair in human somatic cells, we utilized gene targeting to inactivate the XRCC4 gene in both parental and XLF- HCT116 cells and then inactivated PAXX in those same cell lines. The loss of XRCC4 expression by itself led, as anticipated, to increased sensitivity to DNA damaging agents as well as an increased dependence on microhomology-mediated DNA repair whether in the context of DSB repair or during V(D)J recombination. The additional loss of XLF in these cell lines sensitized the cells even more whereas the presence or absence of PAXX was scarcely negligible. These studies demonstrate that, of the three LIG4 accessory factor paralogs, the absence of XRCC4 influences DNA repair and recombination the most in human cells.
Collapse
Affiliation(s)
- Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Amy Molan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States.
| |
Collapse
|
47
|
Ma W, Yang L, Liu H, Chen P, Ren H, Ren P. PAXX is a novel target to overcome resistance to doxorubicin and cisplatin in osteosarcoma. Biochem Biophys Res Commun 2019; 521:204-211. [PMID: 31640855 DOI: 10.1016/j.bbrc.2019.10.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 01/15/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor diagnosed in children and adolescents. Unfortunately, OS patients with metastatic or recurrent disease are highly resistant to front line chemotherapy that significantly limits the long-term survival rate. Since majority of chemotherapeutic agents used in OS work by generating DNA damages, enhanced DNA repair pathways are generally associated with chemoresistance in OS treatment. However, the exact mechanisms of chemoresistance in OS are not fully understood. Our study found that paralogue of XRCC4 and XLF (PAXX), which was identified recently as a novel factor of non-homologous end joining (NHEJ), is upregulated in chemoresistant OS cells. Importantly, PAXX deficiency re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Mechanistically, chemoresistance to doxorubicin or cisplatin results in enhanced PAXX-Ku70 interaction and elevated NHEJ efficiency. We also identified a small molecule M11 that interrupts PAXX-Ku70 interaction and re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Thus, our data provide evidence that PAXX could serve as a novel target to overcome chemoresistance in OS treatment.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Lei Yang
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong, China.
| | - Huan Liu
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Peng Chen
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Hui Ren
- Department of Thoracic, The Central Hospital, Taian, Shandong, China.
| | - Peng Ren
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
48
|
Gourzones C, Bret C, Moreaux J. Treatment May Be Harmful: Mechanisms/Prediction/Prevention of Drug-Induced DNA Damage and Repair in Multiple Myeloma. Front Genet 2019; 10:861. [PMID: 31620167 PMCID: PMC6759943 DOI: 10.3389/fgene.2019.00861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by accumulation of malignant plasma cells within the bone marrow (BM). MM is considered mostly without definitive treatment because of the inability of standard of care therapies to overcome drug-resistant relapse. Genotoxic agents are used in the treatment of MM and exploit the fact that DNA double-strand breaks are highly cytotoxic for cancer cells. However, their mutagenic effects are well-established and described. According to these effects, chemotherapy could cause harmful DNA damage associated with new driver genomic abnormalities providing selective advantage, drug resistance, and higher relapse risk. Several mechanisms associated with MM cell (MMC) resistance to genotoxic agents have been described, underlining MM heterogeneity. The understanding of these mechanisms provides several therapeutic strategies to overcome drug resistance and limit mutagenic effects of treatment in MM. According to this heterogeneity, adopting precision medicine into clinical practice, with the development of biomarkers, has the potential to improve MM disease management and treatment.
Collapse
Affiliation(s)
| | - Caroline Bret
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
49
|
The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis. Nat Commun 2019; 10:3588. [PMID: 31399561 PMCID: PMC6688983 DOI: 10.1038/s41467-019-11507-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/17/2019] [Indexed: 01/13/2023] Open
Abstract
One of the most central questions about the repair of a double-strand DNA break (DSB) concerns how the two free DNA ends are brought together - a step called synapsis. Using single-molecule FRET (smFRET), we show here that both Ku plus XRCC4:DNA ligase IV are necessary and sufficient to achieve a flexible synapsis of blunt DNA ends, whereas either alone is not. Addition of XLF causes a transition to a close synaptic state, and maximum efficiency of close synapsis is achieved within 20 min. The promotion of close synapsis by XLF indicates a role that is independent of a filament structure, with action focused at the very ends of each duplex. DNA-PKcs is not required for the formation of either the flexible or close synaptic states. This model explains in biochemical terms the evolutionarily central synaptic role of Ku, X4L4, and XLF in NHEJ for all eukaryotes.
Collapse
|
50
|
Chen G, Chen J, Qiao Y, Shi Y, Liu W, Zeng Q, Xie H, Shi X, Sun Y, Liu X, Li T, Zhou L, Wan J, Xie T, Wang H, Wang F. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair. Nucleic Acids Res 2019; 46:1266-1279. [PMID: 29244158 PMCID: PMC5814808 DOI: 10.1093/nar/gkx1258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Homologous recombination (HR), which mediates the repair of DNA double-strand breaks (DSB), is crucial for maintaining genomic integrity and enhancing survival in response to chemotherapy and radiotherapy in human cancers. However, the mechanisms of HR repair in treatment resistance for the improvement of cancer therapy remains unclear. Here, we report that the zinc finger protein 830 (ZNF830) promotes HR repair and the survival of cancer cells in response to DNA damage. Mechanistically, ZNF830 directly participates in DNA end resection via interacting with CtIP and regulating CtIP recruitment to DNA damage sites. Moreover, the recruitment of ZNF830 at DNA damage sites is dependent on its phosphorylation at serine 362 by ATR. ZNF830 directly and preferentially binds to double-strand DNA with its 3′ or 5′ overhang through the Zinc finger (Znf) domain, facilitating HR repair and maintaining genome stability. Thus, our study identified a novel function of ZNF830 as a HR repair regulator in DNA end resection, conferring the chemoresistance to genotoxic therapy for cancers those that overexpress ZNF830.
Collapse
Affiliation(s)
- Guo Chen
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.,Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Jianxiang Chen
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.,Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311100, PR China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Yiting Qiao
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Yaru Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Wei Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Hui Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Xiaorui Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Youwei Sun
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongyu Li
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311100, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| |
Collapse
|