1
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Colli C, Masi I, Jacchetti E, Santoni S, Sponchioni M, Colosimo BM, Rosanò L, Raimondi MT, Mauri E, Moscatelli D. Zwitterionic nanoparticles for thermally activated drug delivery in hyperthermia cancer treatment. NANOSCALE 2024; 16:12635-12649. [PMID: 38884523 PMCID: PMC11223588 DOI: 10.1039/d4nr00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Hyperthermia is considered a promising strategy to boost the curative outcome of traditional chemotherapeutic treatments. However, this thermally mediated drug delivery is still affected by important limitations. First, the poor accumulation of the conventional anticancer formulations in the target site limits the bioavailability of the active ingredient and induces off-site effects. In addition, some tumoral scenarios, such as ovarian carcinoma, are characterized by cell thermotolerance, which induces tumoral cells to activate self-protecting mechanisms against high temperatures. To overcome these constraints, we developed thermoresponsive nanoparticles (NPs) with an upper critical solution temperature (UCST) to intracellularly deliver a therapeutic payload and release it on demand through hyperthermia stimulation. These NPs were synthesized via reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization and combine polyzwitterionic stabilizing segments and an oligoester-based biodegradable core. By leveraging the pseudo-living nature of RAFT polymerization, important physicochemical properties of the NPs were controlled and optimized, including their cloud point (Tcp) and size. We have tuned the Tcp of NPs to match the therapeutic needs of hyperthermia treatments at 43 °C and tested the nanocarriers in the controlled delivery of paclitaxel, a common anticancer drug. The NPs released almost entirely the encapsulated drug only following 1 h incubation at 43 °C, whereas they retained more than 95% of the payload in the physiological environment (37 °C), thus demonstrating their efficacy as on-demand drug delivery systems. The administration of drug-loaded NPs to ovarian cancer cells led to therapeutic effects outperforming the conventional administration of non-encapsulated paclitaxel, which highlights the potential of the zwitterionic UCST-type NPs as an innovative hyperthermia-responsive drug delivery system.
Collapse
Affiliation(s)
- Camillo Colli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Silvia Santoni
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156, Milan, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Bianca Maria Colosimo
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156, Milan, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, piazza L. da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
3
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Su YY, Liu YL, Huang HC, Lin CC. Ensemble learning model for identifying the hallmark genes of NFκB/TNF signaling pathway in cancers. J Transl Med 2023; 21:485. [PMID: 37475016 PMCID: PMC10357720 DOI: 10.1186/s12967-023-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ling Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Castro-Torres JL, Méndez J, Torres-Lugo M, Juan E. Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitroevaluation on ovarian and prostate cancer cell lines. Biomed Phys Eng Express 2023; 9:035010. [PMID: 36827691 PMCID: PMC9999354 DOI: 10.1088/2057-1976/acbeaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Objective:Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C-47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed.Methods:Miniature 'pancake' coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments' capabilities in killing cancer cellsin vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied.Results:Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m-1at 326 kHz and 26.3 kA m-1at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells.Conclusion:This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies.Significance:These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.
Collapse
Affiliation(s)
| | - Janet Méndez
- Chemical Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Madeline Torres-Lugo
- Chemical Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Eduardo Juan
- Electrical and Computer Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico
| |
Collapse
|
6
|
Ni LP, Sun HT, Wang P, Wang J, Zhou JH, Cao RQ, Yue L, Chen YG, Shen FR. Hyperthermia enhances the efficacy of chemotherapeutic drugs in heat-sensitive cells through interfering with DNA damage repair. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:463. [PMID: 35571421 PMCID: PMC9096405 DOI: 10.21037/atm-22-955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022]
Abstract
Background Hyperthermic intraperitoneal chemotherapy (HIPEC) has been shown to be clinically effective, but the mechanisms by which hyperthermia enhances the sensitivity of cells to chemotherapeutic drugs has not yet been elucidated. Methods To identify the key molecules involved in thermochemotherapy, this study used mass spectrometry (MS)-based quantitative proteomics technology to analyze the effects of thermochemotherapy on the heat-sensitive ovarian cancer cell line A2780. We divided the A2780 cell line into four groups, one group served as blank control, and the other three groups were stimulated by oxaliplatin, stimulated by hyperthermia at 42 ℃, and stimulated by hyperthermia combined with oxaliplatin. Samples were then collected for tandem mass tag (TMT) labeling, high-performance liquid chromatography fractionation, and MS-based quantitative proteomics for analysis The differentially expressed proteins were quantitatively compared and identified, and Gene Ontology (GO) assessment and cluster analyses were performed. Finally, the above MS results were verified again by Western blotting experiments. Results A total of 349 differentially expressed proteins were identified between cells treated with chemotherapy alone (group B) and cells treated with a combination of chemotherapy and hyperthermia (group D). There were 145 upregulated proteins and 204 downregulated proteins. Among the top 20 proteins with significantly different expression levels, nearly two-thirds were involved in DNA damage repair. These proteins were subsequently verified by Western blot analysis. Indeed, consistent with MS data, the expression of the RBL1 protein was significantly upregulated in cells treated with thermochemotherapy (group D) compared to cells treated with chemotherapy alone (group B). Conclusions In heat-sensitive ovarian cancer cells, the damage repair of tumor cell DNA is disturbed by hyperthermia, making it unable to fully repair when damaged by chemotherapeutic drugs. As a result, hyperthermia enhances the efficacy of chemotherapeutic drugs. RBL1, as a tumor suppressor gene, may be associated with the repair of DNA damage, and thus it may be a key target for hyperthermia to enhance the sensitivity of thermosensitive cells to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Li-Ping Ni
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua-Ting Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Hua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruo-Qi Cao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ling Yue
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - You-Guo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fang-Rong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep 2022; 24:875-887. [PMID: 35325402 DOI: 10.1007/s11912-022-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM. RECENT FINDINGS The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is largely observational. Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperthermia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.
Collapse
|
8
|
Xu H, Bao X, Kong H, Yang J, Li Y, Sun Z. Melatonin Protects Against Cyclophosphamide-induced Premature Ovarian Failure in Rats. Hum Exp Toxicol 2022; 41:9603271221127430. [PMID: 36154502 DOI: 10.1177/09603271221127430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to understand the efficacy and molecular cues of melatonin in cyclophosphamide(CTX)-induced premature ovarian failure (POF) in rats. Female SD rats were used to evaluate the potential effects of melatonin on the ovarian hormonal status, follicular development, and granulosa cells in CTX-treated rats. Here, we found that pretreatment with melatonin before CTX administration preserved the normal sex hormone levels, improved follicular morphology, and granulosa cell proliferation, and reduced apoptosis, as compared to the CTX treatment alone. Additionally, melatonin also up-regulated CYR6 and CTGF at the mRNA and protein levels. A potential mechanism is that melatonin inhibits LATS1, Mps1-One binder (MOB1), and YAP phosphorylation, thereby activating the Hippo signal pathway to promote its downstream targets, CYR61 and CTGF. In conclusion, pretreatment with melatonin effectively protected the ovaries against CTX-induced damage by activating the Hippo pathway. This study lay the foundation for the clinical application of melatonin for cancer patients with CTX treatment.
Collapse
Affiliation(s)
- Hongxia Xu
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Reproductive Medical Centre, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiuming Bao
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hanxin Kong
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junya Yang
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Li
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiwei Sun
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| |
Collapse
|
9
|
Vos LMC, Aronson SL, van Driel WJ, Huitema ADR, Schagen van Leeuwen JH, Lok CAR, Sonke GS. Translational and pharmacological principles of hyperthermic intraperitoneal chemotherapy for ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2021; 78:86-102. [PMID: 34565676 DOI: 10.1016/j.bpobgyn.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The long-term survival of advanced-stage ovarian cancer patients remains poor, despite extensive cytoreductive surgery, chemotherapy, and the recent addition of poly (ADP-ribose) polymerase inhibitors (PARPi). Hyperthermic intraperitoneal chemotherapy (HIPEC) has shown survival benefit by specifically targeting peritoneal metastases, the primary site of disease recurrence. Different aspects of how HIPEC exerts its effect remain poorly understood. Improved understanding of the effects of hyperthermia on ovarian cancer cells, the synergy of hyperthermia with intraperitoneal chemotherapy, and the pharmacological and pharmacokinetic properties of intraperitoneally administered cisplatin may help identify ways to optimize the efficacy of HIPEC. This review provides an overview of these translational and pharmacological principles of HIPEC and aims to expose knowledge gaps that may direct further research to optimize the HIPEC procedure and ultimately improve survival for women with advanced ovarian cancer.
Collapse
Affiliation(s)
- Laura M C Vos
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - S Lot Aronson
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willemien J van Driel
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alwin D R Huitema
- Dept. of Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Dept. of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Christine A R Lok
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Kanamori T, Miyazaki N, Aoki S, Ito K, Hisaka A, Hatakeyama H. Investigation of energy metabolic dynamism in hyperthermia-resistant ovarian and uterine cancer cells under heat stress. Sci Rep 2021; 11:14726. [PMID: 34282188 PMCID: PMC8289900 DOI: 10.1038/s41598-021-94031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Despite progress in the use of hyperthermia in clinical practice, the thermosensitivity of cancer cells is poorly understood. In a previous study, we found that sensitivity to hyperthermia varied between ovarian and uterine cancer cell lines. Upon hyperthermia, glycolytic enzymes decreased in hyperthermia-resistant SKOV3 cells. However, the mechanisms of glycolysis inhibition and their relationship with thermoresistance remain to be explored. In this study, metabolomic analysis indicated the downregulation of glycolytic metabolites in SKOV3 cells after hyperthermia. Proteomic and pathway analyses predicted that the ubiquitin pathway was explicitly activated in resistant SKOV3 cells, compared with hyperthermia-sensitive A2780 cells, and STUB1, a ubiquitin ligase, potentially targeted PKM, a glycolytic rate-limiting enzyme. PKM is degraded via ubiquitination upon hyperthermia. Although glycolysis is inactivated by hyperthermia, ATP production is maintained. We observed that oxygen consumption and mitochondrial membrane potential were activated in SKOV3 cells but suppressed in A2780 cells. The activation of mitochondria could compensate for the loss of ATP production due to the suppression of glycolysis by hyperthermia. Although the physiological significance has not yet been elucidated, our results demonstrated that metabolomic adaptation from the Warburg effect to mitochondrial oxidative phosphorylation could contribute to thermoresistance in ovarian and uterine cancer cells.
Collapse
Affiliation(s)
- Taisei Kanamori
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan
| | - Natumi Miyazaki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuou-ku, Chiba, 260-0856, Japan.
| |
Collapse
|
11
|
Sun Q, Novak D, Hüser L, Poelchen J, Wu H, Granados K, Federico A, Liu K, Steinfass T, Vierthaler M, Umansky V, Utikal J. FOXD1 promotes dedifferentiation and targeted therapy resistance in melanoma by regulating the expression of connective tissue growth factor. Int J Cancer 2021; 149:657-674. [PMID: 33837564 DOI: 10.1002/ijc.33591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Metastatic melanoma is an aggressive skin cancer and associated with a poor prognosis. In clinical terms, targeted therapy is one of the most important treatments for patients with BRAFV600E -mutated advanced melanoma. However, the development of resistance to this treatment compromises its therapeutic success. We previously demonstrated that forkhead box D1 (FOXD1) regulates melanoma migration and invasion. Here, we found that FOXD1 was highly expressed in melanoma cells and was associated with a poor survival of patients with metastatic melanoma. Upregulation of FOXD1 expression enhanced melanoma cells' resistance to vemurafenib (BRAF inhibitor [BRAFi]) or vemurafenib and cobimetinib (MEK inhibitor) combination treatment whereas loss of FOXD1 increased the sensitivity to treatment. By comparing gene expression levels between FOXD1 knockdown (KD) and overexpressing (OE) cells, we identified the connective tissue growth factor (CTGF) as a downstream factor of FOXD1. Chromatin immunoprecipitation and luciferase assay demonstrated the direct binding of FOXD1 to the CTGF promoter. Similar to FOXD1, knockdown of CTGF increased the sensitivity of BRAFi-resistant cells to vemurafenib. FOXD1 KD cells treated with recombinant CTGF protein were less sensitive towards vemurafenib compared to untreated FOXD1 KD cells. Based on these findings, we conclude that FOXD1 might be a promising new diagnostic marker and a therapeutic target for the treatment of targeted therapy resistant melanoma.
Collapse
Affiliation(s)
- Qian Sun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Huizi Wu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,BGI Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Ke Liu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Marlene Vierthaler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
12
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
13
|
Li XT, Li JY, Zeng GC, Lu L, Jarrett MJ, Zhao Y, Yao QZ, Chen X, Yu KJ. Overexpression of connective tissue growth factor is associated with tumor progression and unfavorable prognosis in endometrial cancer. Cancer Biomark 2020; 25:295-302. [PMID: 31306107 DOI: 10.3233/cbm-190099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study was to explore the prognostic value of connective tissue growth factor (CTGF) expression in endometrial cancer (EC). METHODS We compared CTGF expression in 198 samples from patients with endometrial cancer and 50 samples from patients with healthy endometrial tissues as determined by immunohistochemistry. RESULTS Expression of CTGF was significantly higher in endometrial cancers as compared to normal endometrial tissues. Positive CTGF expression displayed a strong association with CA125 level, histological grade, depth of myometrial invasion and the International Federation of Gynecology and Obstetrics (FIGO) stage. Our findings revealed histological grade, depth of myometrial invasion, FIGO stage, vascular/lymphatic invasion, and the CTGF expression are related to 5-year survival in patients with endometrial cancer. Positive CTGF expression, lymph node status, as well as vascular/lymphatic invasion, were identified as independent prognostic factors in endometrial cancer. CONCLUTIONS Over-expression of CTGF is an independent prognostic factor that will allow the successful differentiation of high-risk population from the group of patients with stage III-IV endometrial cancer. The up-regulation of CTGF may contribute to the progression of endometrial cancer and serve as a new prognostic biomarker in patients with endometrial cancer survival.
Collapse
Affiliation(s)
- Xue-Ting Li
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jia-Yu Li
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guang-Chun Zeng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Li Lu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Michael J Jarrett
- Department of Cardiothoracic Surgery, University of Colorado Denver, Denver, CO 80045, USA
| | - Ye Zhao
- Department of Pathology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, 519020, China
| | - Qing-Zhou Yao
- Department of Cardiothoracic Surgery, University of Colorado Denver, Denver, CO 80045, USA
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kai-Jiang Yu
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
14
|
Mérida F, Rinaldi C, Juan EJ, Torres-Lugo M. In vitro Ultrasonic Potentiation of 2-Phenylethynesulfonamide/Magnetic Fluid Hyperthermia Combination Treatments for Ovarian Cancer. Int J Nanomedicine 2020; 15:419-432. [PMID: 32021188 PMCID: PMC6982443 DOI: 10.2147/ijn.s217870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Background Magnetic Fluid Hyperthermia (MFH) is a promising adjuvant for chemotherapy, potentiating the action of anticancer agents. However, drug delivery to cancer cells must be optimized to improve the overall therapeutic effect of drug/MFH combination treatments. Purpose The aim of this work was to demonstrate the potentiation of 2-phenylethynesulfonamide (PES) at various combination treatments with MFH, using low-intensity ultrasound as an intracellular delivery enhancer. Methods The effect of ultrasound (US), MFH, and PES was first evaluated individually and then as combination treatments. Definity® microbubbles and polyethylene glycol (PEG)-coated iron oxide nanoparticles were used to induce cell sonoporation and MFH, respectively. Assessment of cell membrane permeabilization was evaluated via fluorescence microscopy, iron uptake by cells was quantified by UV-Vis spectroscopy, and cell viability was determined using automatic cell counting. Results Notable reductions in cancer cell viability were observed when ultrasound was incorporated. For example, the treatment US+PES reduced cell viability by 37% compared to the non-toxic effect of the drug. Similarly, the treatment US+MFH using mild hyperthermia (41°C), reduced cell viability by an additional 18% when compared to the effect of MH alone. Significant improvements were observed for the combination of US+PES+MFH with cell viability reduced by an additional 26% compared to the PES+MFH group. The improved cytotoxicity was attributed to enhanced drug/nanoparticle intracellular delivery, with iron uptake values nearly twice those achieved without ultrasound. Various treatment schedules were examined, and all of them showed substantial cell death, indicating that the time elapsed between sonoporation and magnetic field exposure was not significant. Conclusion Superior cancer cell-killing patterns took place when ultrasound was incorporated thus demonstrating the in vitro ultrasonic potentiation of PES and mild MFH. This work demonstrated that ultrasound is a promising non-invasive enhancer of PES/MFH combination treatments, aiming to establish a sono-thermo-chemotherapy in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Fernando Mérida
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Eduardo J Juan
- Department of Electrical and Computer Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
15
|
Medina-Ramírez IE, Díaz de León Olmos MA, Muñoz Ortega MH, Zapien JA, Betancourt I, Santoyo-Elvira N. Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Invest 2019; 38:61-84. [PMID: 31791151 DOI: 10.1080/07357907.2019.1698593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cancer treatment by magnetic hyperthermia offers numerous advantages, but for practical applications many variables still need to be adjusted before developing a controlled and reproducible cancer treatment that is bio-compatible (non-damaging) to healthy cells. In this work, Fe3O4 and CoFe2O4 were synthesized and systematically studied for the development of efficient therapeutic agents for applications in hyperthermia. The biocompatibility of the materials was further evaluated using HepG2 cells as biological model. Colorimetric and microscopic techniques were used to evaluate the interaction of magnetic nano-materials (MNMs) and HepG2 cells. Finally, the behavior of MNMs was evaluated under the influence of an alternating magnetic field (AMF), observing a more efficient temperature increment for CoFe2O4, a desirable behavior for biomedical applications since lower doses and shorter expositions to alternating magnetic field might be required.
Collapse
Affiliation(s)
- Iliana E Medina-Ramírez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | | | - Martín Humberto Muñoz Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Israel Betancourt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nathaly Santoyo-Elvira
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
16
|
Yao Y, Wang Y, Li L, Xiang X, Li J, Chen J, Liu Z, Huang S, Xiong J, Deng J. Down-regulation of interferon regulatory factor 2 binding protein 2 suppresses gastric cancer progression by negatively regulating connective tissue growth factor. J Cell Mol Med 2019; 23:8076-8089. [PMID: 31559693 PMCID: PMC6851004 DOI: 10.1111/jcmm.14677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional repressor involved in regulating gene expression and other biological processes, including tumorigenesis. However, the clinical significance and roles of IRF2BP2 in human gastric cancer (GC) remain uncertain. Clinical GC tissues were obtained from GC patients at the First Affiliated Hospital of Nanchang University. Immunohistochemistry (IHC) was conducted to detect the IRF2BP2 protein in clinical paraffin specimens. Cell proliferation, migration and invasion were evaluated by MTT, colony formation assays and transwell assays. Co-immunoprecipitation was conducted to detect the interaction between TEA domain family members 4 (TEAD4) and vestigial-like family member 4 (VGLL4) or Yes-associated protein 1 (YAP1). Dual-luciferase reporter assay was used to confirm the binding of miR-101-3p to the 3'-UTR. The expression of IRF2BP2 was significantly higher in GC tissues than in normal tissues. Patients with higher IRF2BP2 protein expression had lower survival. IRF2BP2 knockdown inhibited proliferation, migration, invasion and epithelial-mesenchymal transition in GC cells. IRF2BP2 knockdown decreased the mRNA and protein levels of connective tissue growth factor (CTGF). The interaction between IRF2BP2 and VGLL4 increased the binding of TEAD4 to YAP1, resulting in the transcriptional coactivation of CTGF. In addition, miR-101-3p suppressed the expression of CTGF by directly targeting the 3'-UTR of IRF2BP2. Taken together, these findings provide a model for the role of miR-101-3p-IRF2BP2-CTGF signalling axis in GC and a novel insight into the mechanism of GC progression and metastasis.
Collapse
Affiliation(s)
- Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Wang
- Radiotherapy&Chemotherapy Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
17
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
18
|
Hatakeyama H. Recent Advances in Endogenous and Exogenous Stimuli-Responsive Nanocarriers for Drug Delivery and Therapeutics. Chem Pharm Bull (Tokyo) 2017; 65:612-617. [PMID: 28674332 DOI: 10.1248/cpb.c17-00068] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant progress has been achieved in the development of stimuli-responsive nanocarriers for drug delivery, diagnosis, and therapy. Various types of triggers are utilized in the development of nanocarrier delivery. Endogenous factors such as changes in pH, redox, gradient, and enzyme concentration which are linked to disease progression have been utilized for controlling biodistribution and releasing drugs from nanocarriers, as well as increasing subsequent pharmacological activity at the disease site. Nanocarriers which respond to artificially-induced exogenous factors (such as temperature, light, magnetic field, and ultrasound) have also been developed. This review aims to discuss recent advances in the design of stimuli-responsive nanocarriers which appear to have a promising future in medicine.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
19
|
Cheng JC, Chang HM, Leung PCK. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis. Oncotarget 2017; 8:85224-85233. [PMID: 29156715 PMCID: PMC5689605 DOI: 10.18632/oncotarget.19626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|