1
|
Koli S, Shetty S. Ribosomal dormancy at the nexus of ribosome homeostasis and protein synthesis. Bioessays 2024; 46:e2300247. [PMID: 38769702 DOI: 10.1002/bies.202300247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.
Collapse
Affiliation(s)
- Saloni Koli
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sunil Shetty
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Seely SM, Basu RS, Gagnon MG. Mechanistic insights into the alternative ribosome recycling by HflXr. Nucleic Acids Res 2024; 52:4053-4066. [PMID: 38407413 DOI: 10.1093/nar/gkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ritwika S Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10 -formyl-tetrahydrofolate (N10 -fTHF), respectively. Both methionine and N10 -fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
4
|
Flügel T, Schacherl M, Unbehaun A, Schroeer B, Dabrowski M, Bürger J, Mielke T, Sprink T, Diebolder CA, Guillén Schlippe YV, Spahn CMT. Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM. Nat Commun 2024; 15:1756. [PMID: 38409277 PMCID: PMC10897467 DOI: 10.1038/s41467-024-46092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Structural studies of translating ribosomes traditionally rely on in vitro assembly and stalling of ribosomes in defined states. To comprehensively visualize bacterial translation, we reactivated ex vivo-derived E. coli polysomes in the PURE in vitro translation system and analyzed the actively elongating polysomes by cryo-EM. We find that 31% of 70S ribosomes assemble into disome complexes that represent eight distinct functional states including decoding and termination intermediates, and a pre-nucleophilic attack state. The functional diversity of disome complexes together with RNase digest experiments suggests that paused disome complexes transiently form during ongoing elongation. Structural analysis revealed five disome interfaces between leading and queueing ribosomes that undergo rearrangements as the leading ribosome traverses through the elongation cycle. Our findings reveal at the molecular level how bL9's CTD obstructs the factor binding site of queueing ribosomes to thwart harmful collisions and illustrate how translation dynamics reshape inter-ribosomal contacts.
Collapse
Affiliation(s)
- Timo Flügel
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Magdalena Schacherl
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Anett Unbehaun
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Birgit Schroeer
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Marylena Dabrowski
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Jörg Bürger
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Technology Platform Cryo-EM, Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Technology Platform Cryo-EM, Berlin, Germany
| | - Yollete V Guillén Schlippe
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.
| | - Christian M T Spahn
- Charité - Univesitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.
| |
Collapse
|
5
|
Chadani Y, Kanamori T, Niwa T, Ichihara K, Nakayama KI, Matsumoto A, Taguchi H. Mechanistic dissection of premature translation termination induced by acidic residues-enriched nascent peptide. Cell Rep 2023; 42:113569. [PMID: 38071619 DOI: 10.1016/j.celrep.2023.113569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Abstract
Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabilizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical premature termination.
Collapse
Affiliation(s)
- Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kazuya Ichihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Keiichi I Nakayama
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
6
|
Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, Nelson B, Wolfe C, Ha T, Green R, Liu J, Wu B. Bursting translation on single mRNAs in live cells. Mol Cell 2023; 83:2276-2289.e11. [PMID: 37329884 PMCID: PMC10330622 DOI: 10.1016/j.molcel.2023.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/14/2023] [Indexed: 06/19/2023]
Abstract
Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.
Collapse
Affiliation(s)
- Nathan M Livingston
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiwoong Kwon
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oliver Valera
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranav Reddy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clara Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Prabhakar A, Pavlov MY, Zhang J, Indrisiunaite G, Wang J, Lawson M, Ehrenberg M, Puglisi JD. Dynamics of release factor recycling during translation termination in bacteria. Nucleic Acids Res 2023; 51:5774-5790. [PMID: 37102635 PMCID: PMC10287982 DOI: 10.1093/nar/gkad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305-5126, USA
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Michael R Lawson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| |
Collapse
|
8
|
Das A, Adiletta N, Ermolenko DN. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Int J Mol Sci 2023; 24:ijms24086878. [PMID: 37108045 PMCID: PMC10138997 DOI: 10.3390/ijms24086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nichole Adiletta
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Role of ribosome recycling factor in natural termination and translational coupling as a ribosome releasing factor. PLoS One 2023; 18:e0282091. [PMID: 36827443 PMCID: PMC9955659 DOI: 10.1371/journal.pone.0282091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
The role of ribosome recycling factor (RRF) of E. coli was studied in vivo and in vitro. We used the translational coupling without the Shine-Dalgarno sequence of downstream ORF (d-ORF) as a model system of the RRF action in natural termination of protein synthesis. For the in vivo studies we used the translational coupling by the adjacent coat and lysis genes of RNA phage GA sharing the termination and initiation (UAAUG) and temperature sensitive RRF. The d-ORF translation was measured by the expression of the reporter lacZ gene connected to the 5'-terminal part of the lysis gene. The results showed that more ribosomes which finished upstream ORF (u-ORF) reading were used for downstream reading when RRF was inactivated. The in vitro translational coupling studies with 027mRNA having the junction sequence UAAUG with wild-type RRF were carried out with measuring amino acids incorporation. The results showed that ribosomes released by RRF read downstream from AUG of UAAUG. In the absence of RRF, ribosomes read downstream in frame with UAA. These in vivo and in vitro studies indicate that RRF releases ribosomes from mRNA at the termination codon of u-ORF. Furthermore, the non-dissociable ribosomes read downstream from AUG of UAAUG with RRF in vitro. This suggests that complete ribosomal splitting is not required for ribosome release by RRF in translational coupling. The data are consistent with the interpretation that RRF functions mostly as a ribosome releasing factor rather than ribosome splitting factor. Additionally, the in vivo studies showed that short (less than 5 codons) u-ORF inhibited d-ORF reading by ribosomes finishing u-ORF reading, suggesting that the termination process in short ORF is not similar to that in normal ORF. This means that all the preexisting studies on RRF with short mRNA may not represent what goes on in natural termination step.
Collapse
|
10
|
Chen YA, Chen GW, Ku HH, Huang TC, Chang HY, Wei CI, Tsai YH, Chen TY. Differential Proteomic Analysis of Listeria monocytogenes during High-Pressure Processing. BIOLOGY 2022; 11:biology11081152. [PMID: 36009779 PMCID: PMC9405252 DOI: 10.3390/biology11081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under sub-lethal to lethal damage by different levels of HPP treatments were conducted by label-free quantitative proteomic analysis. HPP might promote translation initiation due to upregulation of most ribosomal subunits and initiation factors. However, protein synthesis was arrested according to the shortage of proteins responsible for elongation, termination and recycling. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods. Abstract High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under HPP at 200 and 400 MPa for 3 min were investigated by label-free quantitative proteomic analysis and functional enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes. HPP treatment at 400 MPa exhibited significant effects on proteins involved in translation, carbon, carbohydrate, lipid and energy metabolism, and peptidoglycan biosynthesis. HPP increased most ribosomal subunits and initiation factors, suggesting it might shift ribosomal biogenesis to translation initiation. However, protein synthesis was impaired by the shortage of proteins responsible for elongation, termination and recycling. HPP stimulated several ATP-dependent Clp proteases, and the global transcriptional regulator Spx, associating with activation of the stress-activated sigma factor Sigma B (σB) and the transcriptional activator positive regulatory factor A (PrfA) regulons. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Hao-Hsiang Ku
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Cheng-I Wei
- Department of Nutrition &Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5124); Fax: +886-2-2462-8750
| |
Collapse
|
11
|
Prabhakar A, Krahn N, Zhang J, Vargas-Rodriguez O, Krupkin M, Fu Z, Acosta-Reyes FJ, Ge X, Choi J, Crnković A, Ehrenberg M, Puglisi EV, Söll D, Puglisi J. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Res 2022; 50:10201-10211. [PMID: 35882385 PMCID: PMC9561287 DOI: 10.1093/nar/gkac576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.
Collapse
Affiliation(s)
| | | | | | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Miri Krupkin
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | | | - Dieter Söll
- Correspondence may also be addressed to Dieter Söll.
| | - Joseph Puglisi
- To whom correspondence should be addressed. Tel: +1 650 498 4397;
| |
Collapse
|
12
|
Abstract
In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
13
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
14
|
Datta M, Singh J, Modak MJ, Pillai M, Varshney U. Systematic evolution of initiation factor 3 and the ribosomal protein uS12 optimizes Escherichia coli growth with an unconventional initiator tRNA. Mol Microbiol 2021; 117:462-479. [PMID: 34889476 DOI: 10.1111/mmi.14861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
The anticodon stem of initiator tRNA (i-tRNA) possesses the characteristic three consecutive GC base pairs (G29:C41, G30:C40, and G31:C39 abbreviated as GC/GC/GC or 3GC pairs) crucial to commencing translation. To understand the importance of this highly conserved element, we isolated two fast-growing suppressors of Escherichia coli sustained solely on an unconventional i-tRNA (i-tRNAcg/GC/cg ) having cg/GC/cg sequence instead of the conventional GC/GC/GC. Both suppressors have the common mutation of V93A in initiation factor 3 (IF3), and additional mutations of either V32L (Sup-1) or H76L (Sup-2) in small subunit ribosomal protein 12 (uS12). The V93A mutation in IF3 was necessary for relaxed fidelity of i-tRNA selection to sustain on i-tRNAcg/GC/cg though with a retarded growth. Subsequent mutations in uS12 salvaged the retarded growth by enhancing the fidelity of translation. The H76L mutation in uS12 showed better fidelity of i-tRNA selection. However, the V32L mutation compensated for the deficient fidelity of i-tRNA selection by ensuring an efficient fidelity check by ribosome recycling factor (RRF). We reveal unique genetic networks between uS12, IF3 and i-tRNA in initiation and between uS12, elongation factor-G (EF-G), RRF, and Pth (peptidyl-tRNA hydrolase) which, taken together, govern the fidelity of translation in bacteria.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
15
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Zhao L, Fu G, Cui Y, Xu Z, Cai T, Zhang D. Compensating Complete Loss of Signal Recognition Particle During Co-translational Protein Targeting by the Translation Speed and Accuracy. Front Microbiol 2021; 12:690286. [PMID: 34305852 PMCID: PMC8299109 DOI: 10.3389/fmicb.2021.690286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Signal recognition particle (SRP) is critical for delivering co-translational proteins to the bacterial inner membrane. Previously, we identified SRP suppressors in Escherichia coli that inhibit translation initiation and elongation, which provided insights into the mechanism of bypassing the requirement of SRP. Suppressor mutations tended to be located in regions that govern protein translation under evolutionary pressure. To test this hypothesis, we re-executed the suppressor screening of SRP. Here, we isolated a novel SRP suppressor mutation located in the Shine–Dalgarno sequence of the S10 operon, which partially offset the targeting defects of SRP-dependent proteins. We found that the suppressor mutation decreased the protein translation rate, which extended the time window of protein targeting. This increased the possibility of the correct localization of inner membrane proteins. Furthermore, the fidelity of translation was decreased in suppressor cells, suggesting that the quality control of translation was inactivated to provide an advantage in tolerating toxicity caused by the loss of SRP. Our results demonstrated that the inefficient protein targeting due to SRP deletion can be rescued through modulating translational speed and accuracy.
Collapse
Affiliation(s)
- Liuqun Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| | - Yanyan Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zixiang Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| | - Tao Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
17
|
Ieong KW, Indrisiunaite G, Prabhakar A, Puglisi JD, Ehrenberg M. N 6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors. Nucleic Acids Res 2021; 49:2684-2699. [PMID: 33561188 PMCID: PMC7969026 DOI: 10.1093/nar/gkab033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.
Collapse
Affiliation(s)
- Ka-Weng Ieong
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.,Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Zhao T, Chen YM, Li Y, Wang J, Chen S, Gao N, Qian W. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol 2021; 22:16. [PMID: 33402206 PMCID: PMC7784341 DOI: 10.1186/s13059-020-02256-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The folding of proteins is challenging in the highly crowded and sticky environment of a cell. Regulation of translation elongation may play a crucial role in ensuring the correct folding of proteins. Much of our knowledge regarding translation elongation comes from the sequencing of mRNA fragments protected by single ribosomes by ribo-seq. However, larger protected mRNA fragments have been observed, suggesting the existence of an alternative and previously hidden layer of regulation. RESULTS In this study, we performed disome-seq to sequence mRNA fragments protected by two stacked ribosomes, a product of translational pauses during which the 5'-elongating ribosome collides with the 3'-paused one. We detected widespread ribosome collisions that are related to slow ribosome release when stop codons are at the A-site, slow peptide bond formation from proline, glycine, asparagine, and cysteine when they are at the P-site, and slow leaving of polylysine from the exit tunnel of ribosomes. The structure of disomes obtained by cryo-electron microscopy suggests a different conformation from the substrate of the ribosome-associated protein quality control pathway. Collisions occurred more frequently in the gap regions between α-helices, where a translational pause can prevent the folding interference from the downstream peptides. Paused or collided ribosomes are associated with specific chaperones, which can aid in the cotranslational folding of the nascent peptides. CONCLUSIONS Therefore, cells use regulated ribosome collisions to ensure protein homeostasis.
Collapse
Affiliation(s)
- Taolan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan-Ming Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Li
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Science, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
20
|
Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R, Jogl G. Cryo-electron microscopy structure of the 70S ribosome from Enterococcus faecalis. Sci Rep 2020; 10:16301. [PMID: 33004869 PMCID: PMC7530986 DOI: 10.1038/s41598-020-73199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.
Collapse
Affiliation(s)
- Eileen L. Murphy
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Kavindra V. Singh
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Bryant Avila
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Torsten Kleffmann
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Steven T. Gregory
- grid.20431.340000 0004 0416 2242Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI 02881 USA
| | - Barbara E. Murray
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Kurt L. Krause
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Reza Khayat
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Gerwald Jogl
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
21
|
Saito K, Green R, Buskirk AR. Ribosome recycling is not critical for translational coupling in Escherichia coli. eLife 2020; 9:59974. [PMID: 32965213 PMCID: PMC7538156 DOI: 10.7554/elife.59974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
We used ribosome profiling to characterize the biological role of ribosome recycling factor (RRF) in Escherichia coli. As expected, RRF depletion leads to enrichment of post-termination 70S complexes in 3′-UTRs. We also observe that elongating ribosomes are unable to complete translation because they are blocked by non-recycled ribosomes at stop codons. Previous studies have suggested a role for recycling in translational coupling within operons; if a ribosome remains bound to an mRNA after termination, it may re-initiate downstream. We found, however, that RRF depletion did not significantly affect coupling efficiency in reporter assays or in ribosome density genome-wide. These findings argue that re-initiation is not a major mechanism of translational coupling in E. coli. Finally, RRF depletion has dramatic effects on the activity of ribosome rescue factors tmRNA and ArfA. Our results provide a global view of the effects of the loss of ribosome recycling on protein synthesis in E. coli.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Molecular Biology and Genetics, Baltimore, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Baltimore, United States
| |
Collapse
|
22
|
Basu A, Shields KE, Yap MNF. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus. J Biol Chem 2020; 295:6053-6063. [PMID: 32209660 PMCID: PMC7196661 DOI: 10.1074/jbc.ra119.012307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Kathryn E Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Mee-Ngan F Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
23
|
Structural basis for ribosome recycling by RRF and tRNA. Nat Struct Mol Biol 2019; 27:25-32. [PMID: 31873307 DOI: 10.1038/s41594-019-0350-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
The bacterial ribosome is recycled into subunits by two conserved proteins, elongation factor G (EF-G) and the ribosome recycling factor (RRF). The molecular basis for ribosome recycling by RRF and EF-G remains unclear. Here, we report the crystal structure of a posttermination Thermus thermophilus 70S ribosome complexed with EF-G, RRF and two transfer RNAs at a resolution of 3.5 Å. The deacylated tRNA in the peptidyl (P) site moves into a previously unsuspected state of binding (peptidyl/recycling, p/R) that is analogous to that seen during initiation. The terminal end of the p/R-tRNA forms nonfavorable contacts with the 50S subunit while RRF wedges next to central inter-subunit bridges, illuminating the active roles of tRNA and RRF in dissociation of ribosomal subunits. The structure uncovers a missing snapshot of tRNA as it transits between the P and exit (E) sites, providing insights into the mechanisms of ribosome recycling and tRNA translocation.
Collapse
|
24
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
25
|
Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD. Relating Structure and Dynamics in RNA Biology. Cold Spring Harb Perspect Biol 2019; 11:11/7/a032474. [PMID: 31262948 DOI: 10.1101/cshperspect.a032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
26
|
The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Nat Commun 2019; 10:2579. [PMID: 31189921 PMCID: PMC6561943 DOI: 10.1038/s41467-019-10608-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms. Translation termination is under strong selection pressure for high speed and accuracy. Here the authors provide a 3D view of the dynamics of a translating bacterial ribosome as it recruits a class-1 release factor (RF1 or RF2) upon encountering a stop codon, and propose a structure-based kinetic model for the early steps in bacterial translation termination.
Collapse
|
27
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
28
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
29
|
Duss O, Stepanyuk GA, Grot A, O'Leary SE, Puglisi JD, Williamson JR. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts. Nat Commun 2018; 9:5087. [PMID: 30504830 PMCID: PMC6269517 DOI: 10.1038/s41467-018-07423-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation. The early steps of ribosome assembly occur co-transcriptionally on the nascent ribosomal RNA. Here the authors demonstrate an approach that allows simultaneous monitoring of transcription and ribosomal protein assembly at the single-molecule level in real time.
Collapse
Affiliation(s)
- Olivier Duss
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Structural Biology, Stanford University School of Medicine, CA, 94305, California, USA
| | - Galina A Stepanyuk
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Annette Grot
- Department of Research and Development, Pacific Biosciences Inc, Menlo Park, CA, 94025, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, CA, 94305, California, USA.,Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, CA, 94305, California, USA.
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
31
|
Ayyub SA, Lahry K, Dobriyal D, Mondal S, Varshney U. Antimicrobial activity of fusidic acid in Escherichia coli is dependent on the relative levels of ribosome recycling factor and elongation factor G. FEMS Microbiol Lett 2018; 365:5004850. [PMID: 29846570 DOI: 10.1093/femsle/fny133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
During protein synthesis, elongation factor G (EFG) participates at the steps of translocation and ribosome recycling. Fusidic acid (FA) is a bacteriostatic antibiotic, which traps EFG on ribosomes, stalling them on mRNAs. How the bacterial susceptibility to FA is determined, and which of the two functions of EFG (translocation or ribosome recycling) is more vulnerable, has remained debatable. The in vivo studies addressing these aspects of FA mediated inhibition of protein synthesis are lacking. Here, we used a system of Escherichia coli strains and their complementation/supplementation with the plasmid borne copies of the inducible versions of EFG and ribosome recycling factor (RRF) genes. Additionally, we investigated FA sensitivity in a strain with increased proportion of stalled ribosomes. We show that the cells with high EFG/RRF (or low RRF/EFG) ratios are more susceptible to FA than those with low EFG/RRF (or high RRF/EFG) ratios. Our in vivo observations are consistent with the recent in vitro reports of dependence of FA susceptibility on EFG/RRF ratios, and the notion that an overriding target of FA is the translocation function of EFG. An applied outcome of our in vivo study is that FA mediated growth inhibition could be facilitated by depletion or inactivation of cellular RRF.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Divya Dobriyal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sanjay Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064
| |
Collapse
|
32
|
Casy W, Prater AR, Cornish PV. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State. Biochemistry 2018; 57:1954-1966. [PMID: 29499110 DOI: 10.1021/acs.biochem.7b00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During translation, the small subunit of the ribosome rotates with respect to the large subunit primarily between two states as mRNA is being translated into a protein. At the termination of bacterial translation, class I release factors (RFs) bind to a stop codon in the A-site and catalyze the release of the peptide chain from the ribosome. Periodically, mRNA is truncated prematurely, and the translating ribosome stalls at the end of the mRNA forming a nonstop complex requiring one of several ribosome rescue factors to intervene. One factor, YaeJ, is structurally homologous with the catalytic region of RFs but differs by binding to the ribosome directly through its C-terminal tail. Structures of the ribosome show that the ribosome adopts the nonrotated state conformation when these factors are bound. However, these studies do not elucidate the influence of binding to cognate or noncognate codons on the dynamics of intersubunit rotation. Here, we investigate the effects of wild-type and mutant forms of RF1, RF2, and YaeJ binding on ribosome intersubunit rotation using single-molecule Förster resonance energy transfer. We show that both RF1 binding and RF2 binding are sufficient to shift the population of posthydrolysis ribosome complexes from primarily the rotated to the nonrotated state only when a cognate stop codon is present in the A-site. Similarly, YaeJ binding stabilizes nonstop ribosomal complexes in the nonrotated state. Along with previous studies, these results are consistent with the idea that directed conformational changes and binding of subsequent factors to the ribosome are requisite for efficient termination and ribosome recycling.
Collapse
Affiliation(s)
- Widler Casy
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Austin R Prater
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peter V Cornish
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|