1
|
Virtuoso A, Galanis C, Lenz M, Papa M, Vlachos A. Regional Microglial Response in Entorhino-Hippocampal Slice Cultures to Schaffer Collateral Lesion and Metalloproteinases Modulation. Int J Mol Sci 2024; 25:2346. [PMID: 38397023 PMCID: PMC10889226 DOI: 10.3390/ijms25042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Michele Papa
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks–BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
2
|
Niu L, Song X, Li Q, Peng L, Dai H, Zhang J, Chen K, Lee TMC, Zhang R. Age-related positive emotional reactivity decline associated with the anterior insula based resting-state functional connectivity. Hum Brain Mapp 2024; 45:e26621. [PMID: 38339823 PMCID: PMC10858337 DOI: 10.1002/hbm.26621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Recent studies have suggested that emotional reactivity changes with age, but the neural basis is still unclear. The insula may be critical for the emotional reactivity. The current study examined how ageing affects emotional reactivity using the emotional reactivity task data from a human sample (Cambridge Center for Age and Neuroscience, N = 243, age 18-88 years). The resting-state magnetic resonance measurements from the same sample were used to investigate the potential mechanisms of the insula. In the initial analysis, we conducted partial correlation assessments to examine the associations between emotional reactivity and age, as well as between the gray matter volume (GMV) of the insula and age. Our results revealed that emotional reactivity, especially positive emotional reactivity, decreased with age and that the GMV of the insula was negatively correlated with age. Subsequently, the bilateral insula was divided into six subregions to calculate the whole brain resting-state functional connectivity (rsFC). The mediating effect of the rsFC on age and emotional reactivity was then calculated. The results showed that the rsFC of the left anterior insula (AI) with the right hippocampus, and the rsFCs of the right AI with the striatum and the thalamus were mediated the relationship between positive emotional reactivity and age. Our findings suggest that attenuating emotional reactivity with age may be a strategic adaptation fostering emotional stability and diminishing emotional vulnerability. Meanwhile, the findings implicate a key role for the AI in the changes in positive emotional reactivity with age.
Collapse
Affiliation(s)
- Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Haowei Dai
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jiayuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Keyin Chen
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhouChina
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- Department of Psychiatry, Zhujiang HospitalSouthern Medical UniversityGuangzhouPR China
| |
Collapse
|
3
|
da Silva Beraldo IJ, Prates Rodrigues M, Polanczyk RS, Verano-Braga T, Lopes-Aguiar C. Proteomic-Based Studies on Memory Formation in Normal and Neurodegenerative Disease-Affected Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:129-158. [PMID: 38409419 DOI: 10.1007/978-3-031-50624-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A critical aspect of cognition is the ability to acquire, consolidate, and evoke memories, which is considerably impaired by neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. These mnemonic processes are dependent on signaling cascades, which involve protein expression and degradation. Recent mass spectrometry (MS)-based proteomics has opened a range of possibilities for the study of memory formation and impairment, making it possible to research protein systems not studied before. However, in the context of synaptic proteome related to learning processes and memory formation, a deeper understanding of the synaptic proteome temporal dynamics after induction of synaptic plasticity and the molecular changes underlying the cognitive deficits seen in neurodegenerative diseases is needed. This review analyzes the applications of proteomics for understanding memory processes in both normal and neurodegenerative conditions. Moreover, the most critical experimental studies have been summarized using the PANTHER overrepresentation test. Finally, limitations associated with investigations of memory studies in physiological and neurodegenerative disorders have also been discussed.
Collapse
Affiliation(s)
- Ikaro Jesus da Silva Beraldo
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Mateus Prates Rodrigues
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Rafaela Schuttenberg Polanczyk
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Núcleo de Proteômica Funcional (NPF), Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Cleiton Lopes-Aguiar
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Hypertension Status Moderated the Relationship between the Hippocampal Subregion of the Left GC-ML-DG and Cognitive Performance in Subjective Cognitive Decline. DISEASE MARKERS 2022; 2022:7938001. [PMID: 36284989 PMCID: PMC9588336 DOI: 10.1155/2022/7938001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Background. To investigate the relationship between hypertension status, hippocampus/hippocampal subregion structural alteration, and cognitive performance in subjective cognitive decline (SCD). Methods. All participants were divided into two groups according to blood pressure status: SCD without hypertension and SCD with hypertension. The cognitive assessments and T1-MPRAGE brain MRI were performed to measure the cognitive function and the volume of the hippocampus and hippocampal subregions. Association and mediating/moderating effects were analyzed between the volume of hippocampus/hippocampal subregions and cognitive scores. Results. Compared to the SCD without hypertension, we found (1) increased reaction time (RT) of the Go/No go test, compatible test, and divided attention visual task and (2) decreased volume of the left whole hippocampal/left subiculum/left CA1/left presubiculum/left parasubiculum/left molecular layer HP/left GC-ML-DG/left HATA in SCD with hypertension. There was a significant negative association between the volume of the left GC-ML-DG and Go/No go test RT in SCD without hypertension. A significant moderating effect of hypertension status on the relationship between the volume of the left GC-ML-DG and Go/No go test RT was found. Conclusion. The results suggested that hypertension status affects inhibitory control function and visual divided attention which may be related to the reduction of hippocampus/hippocampal subregion volume in SCD. Limitations. The study has several limitations. First, this study does not include a healthy control group. In further studies, healthy controls may need to assess the interaction between hypertension status and disease status on cognitive function. Second, we defined the hypertension status using with or without hypertension disease. More detailed parameters of hypertension status need to be further studied. Third, our study was a small number of participants/single-center and cross-sectional study, which may hinder its generalization. A large-sample/multicenter, longitudinal study is helpful to comprehensively understand the relationship between hypertension status and cognitive function in SCD patients.
Collapse
|
5
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
von Ziegler LM, Floriou-Servou A, Waag R, Das Gupta RR, Sturman O, Gapp K, Maat CA, Kockmann T, Lin HY, Duss SN, Privitera M, Hinte L, von Meyenn F, Zeilhofer HU, Germain PL, Bohacek J. Multiomic profiling of the acute stress response in the mouse hippocampus. Nat Commun 2022; 13:1824. [PMID: 35383160 PMCID: PMC8983670 DOI: 10.1038/s41467-022-29367-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress. Acute stress can help individuals to respond to challenging events, although chronic stress leads to maladaptive changes. Here, the authors present a multi omic analysis profiling acute stress-induced changes in the mouse hippocampus, providing a resource for the scientific community.
Collapse
Affiliation(s)
- Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca R Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Gapp
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christina A Maat
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanns U Zeilhofer
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Krasny L, Huang PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics 2020; 17:29-42. [PMID: 33034323 DOI: 10.1039/d0mo00072h] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data-independent acquisition mass spectrometry (DIA-MS) is a next generation proteomic methodology that generates permanent digital proteome maps offering highly reproducible retrospective analysis of cellular and tissue specimens. The adoption of this technology has ushered a new wave of oncology studies across a wide range of applications including its use in molecular classification, oncogenic pathway analysis, drug and biomarker discovery and unravelling mechanisms of therapy response and resistance. In this review, we provide an overview of the experimental workflows commonly used in DIA-MS, including its current strengths and limitations versus conventional data-dependent acquisition mass spectrometry (DDA-MS). We further summarise a number of key studies to illustrate the power of this technology when applied to different facets of oncology. Finally we offer a perspective of the latest innovations in DIA-MS technology and machine learning-based algorithms necessary for driving the development of high-throughput, in-depth and reproducible proteomic assays that are compatible with clinical diagnostic workflows, which will ultimately enable the delivery of precision cancer medicine to achieve optimal patient outcomes.
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
9
|
Krasny L, Bland P, Burns J, Lima NC, Harrison PT, Pacini L, Elms ML, Ning J, Martinez VG, Yu YR, Acton SE, Ho PC, Calvo F, Swain A, Howard BA, Natrajan RC, Huang PH. A mouse SWATH-mass spectrometry reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts. Dis Model Mech 2020; 13:dmm044586. [PMID: 32493768 PMCID: PMC7375474 DOI: 10.1242/dmm.044586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in multiple model organisms including the mouse. Here, we present a comprehensive mouse reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597 proteins (62.2% of the mouse proteome) by SWATH-MS. We exploit MouseRefSWATH to develop an analytical pipeline for species-specific deconvolution of proteomic alterations in human tumour xenografts (XenoSWATH). This method overcomes the challenge of high sequence similarity between mouse and human proteins, facilitating the study of host microenvironment-tumour interactions from 'bulk tumour' measurements. We apply the XenoSWATH pipeline to characterize an intraductal xenograft model of breast ductal carcinoma in situ and uncover complex regulation consistent with stromal reprogramming, where the modulation of cell migration pathways is not restricted to tumour cells but also operates in the mouse stroma upon progression to invasive disease. MouseRefSWATH and XenoSWATH open new opportunities for in-depth and reproducible proteomic assessment to address wide-ranging biological questions involving this important model organism.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Communication
- Cell Line, Tumor
- Chromatography, Liquid
- Databases, Protein
- Female
- Heterografts
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- NIH 3T3 Cells
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Proteome
- Proteomics
- Species Specificity
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tandem Mass Spectrometry
- Tumor Microenvironment
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Philip Bland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Peter T Harrison
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Laura Pacini
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark L Elms
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jian Ning
- Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Victor Garcia Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London WC1E 6BT, London, UK
| | - Yi-Ru Yu
- Department of Oncology, University of Lausanne, Lausanne CH-1066, Switzerland
- Ludwig Institute for Cancer Research, Lausanne CH-1066, Switzerland
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London WC1E 6BT, London, UK
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne CH-1066, Switzerland
- Ludwig Institute for Cancer Research, Lausanne CH-1066, Switzerland
| | - Fernando Calvo
- The Tumour Microenvironment Team, Institute of Biomedicine and Biotechnology of Cantabria, Santander 39011, Spain
| | - Amanda Swain
- Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachael C Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
10
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
11
|
Ásgeirsdóttir HN, Cohen SJ, Stackman RW. Object and place information processing by CA1 hippocampal neurons of C57BL/6J mice. J Neurophysiol 2020; 123:1247-1264. [PMID: 32023149 DOI: 10.1152/jn.00278.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Medial and lateral entorhinal cortices convey spatial/contextual and item/object information to the hippocampus, respectively. Whether the distinct inputs are integrated as one cognitive map by hippocampal neurons to represent location and the objects therein, or whether they remain as parallel outputs, to be integrated in a downstream region, remains unclear. Principal, or complex spike bursting, neurons of hippocampus exhibit location-specific firing, and it is likely that the activity of "place cells" supports spatial memory/navigation in rodents. Consistent with cognitive map theory, the activity of CA1 hippocampal neurons is also critical for nonspatial memory, such as object recognition. However, the degree to which CA1 neuronal activity represents the associations of object-context or object-in-place memory is not well understood. Here, the contributions of mouse CA1 neuronal activity to object recognition memory and the emergence of object-place conjunctive representations were tested using in vivo recordings and functional inactivation. Independent of arena configuration, CA1 place fields were stable throughout testing and object-place representations were not identified in CA1, although the number of fields per cell increased during object sessions, and few object-related firing CA1 neurons (nonplace) were recorded. The results of the inactivation studies confirmed the significant contribution of CA1 neuronal activity to object recognition memory when a delay of 20 min, but not 5 min, was imposed between encoding and retrieval. Together, our results confirm the delay-dependent contribution of the CA1 region to object memory and suggest that object information is processed in parallel with the ongoing spatial mapping function that is a hallmark of hippocampal memory.NEW & NOTEWORTHY We developed variations of the object recognition task to examine the contribution of mouse CA1 neuronal activity to object memory and the degree to which object-context conjunctive representations are formed during object training. Our results indicate that, within the CA1 region, object information is processed in a parallel but delay-dependent manner, with ongoing spatial mapping.
Collapse
Affiliation(s)
- Herborg N Ásgeirsdóttir
- Department of Psychology, Florida Atlantic University, Jupiter, Florida.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Sarah J Cohen
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida
| | - Robert W Stackman
- Department of Psychology, Florida Atlantic University, Jupiter, Florida.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida.,Florida Atlantic University Brain Institute, Jupiter, Florida
| |
Collapse
|
12
|
Kushwaha A, Thakur MK. Increase in hippocampal histone H3K9me3 is negatively correlated with memory in old male mice. Biogerontology 2019; 21:175-189. [DOI: 10.1007/s10522-019-09850-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
|
13
|
Kaptan Z, Dar KA, Kapucu A, Bulut H, Üzüm G. Effect of enriched environment and predictable chronic stress on spatial memory in adolescent rats: Predominant expression of BDNF, nNOS, and interestingly malondialdehyde in the right hippocampus. Brain Res 2019; 1721:146326. [PMID: 31299186 DOI: 10.1016/j.brainres.2019.146326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/27/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Little is known about the mechanisms that promote divergence of function between left and right in the hippocampus, which is most affected by external factors and critical for spatial memory. We investigated the levels of memory-related mediators in the left and right hippocampus and spatial memory in rats exposed to predictable chronic stress (PCS) and an enriched environment (EE) during adolescence. Twenty-eight-day-old Sprague-Dawley rats were divided into control (standard cages), PCS (15 min/day immobilization stress for four weeks), and EE (one hour/day environmentally enriched cages for four weeks) groups. After the applications, spatial memory was tested with the Morris water maze, and the serum levels of corticosterone were evaluated. The levels of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS), which are critical for synaptic plasticity; malondialdehyde (MDA; lipid-peroxidation indicator); protein carbonyl (protein-oxidation indicator); and superoxide dismutase (antioxidant enzyme) were evaluated in the left and right hippocampus. Corticosterone levels in both the PCS and EE groups did not change compared with control. In both the PCS and EE groups, spatial memory improved and BDNF was increased in both halves of the hippocampus, still there was an asymmetry. nNOS levels were increased in the dentate gyrus and CA1 regions of the right hippocampus in both PCS and EE groups. MDA levels were increased but PCO levels were decreased in the right hippocampus in both the PCS and EE groups, but SOD did not change in either half of the hippocampus. Our results suggest that both PCS and EE improved spatial memory by increasing BDNF and nNOS in the right hippocampus and that, interestingly; MDA could be the physiological signal molecule in the right hippocampus for spatial memory process.
Collapse
Affiliation(s)
- Zülal Kaptan
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Turkey
| | - Kadriye Akgün Dar
- Istanbul University, Faculty of Science, Department of Biology, Turkey
| | - Ayşegül Kapucu
- Istanbul University, Faculty of Science, Department of Biology, Turkey
| | - Huri Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Biochemistry, Turkey
| | - Gülay Üzüm
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Turkey.
| |
Collapse
|
14
|
Gerber KJ, Dammer EB, Duong DM, Deng Q, Dudek SM, Seyfried NT, Hepler JR. Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. J Proteome Res 2019; 18:2571-2584. [PMID: 31059263 DOI: 10.1021/acs.jproteome.9b00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.
Collapse
Affiliation(s)
- Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Qiudong Deng
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States.,Department of Neurology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| |
Collapse
|
15
|
Ragu-Varman D, Macedo-Mendoza M, Labrada-Moncada FE, Reyes-Ortega P, Morales T, Martínez-Torres A, Reyes-Haro D. Anorexia increases microglial density and cytokine expression in the hippocampus of young female rats. Behav Brain Res 2019; 363:118-125. [PMID: 30690107 DOI: 10.1016/j.bbr.2019.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022]
Abstract
Anorexia by osmotic dehydration is an adaptive response to hypernatremia and hyperosmolaemia induced by ingestion of a hypertonic solution. Dehydration-induced anorexia (DIA) reproduces weight loss and avoidance of food, despite its availability. By using this model, we previously showed increased reactive astrocyte density in the rat dorsal hippocampus, suggesting a pro-inflammatory environment where microglia may play an important role. However, whether such anorexic condition increases a pro-inflammatory response is unknown. The aim of this study was to test if DIA increases microglial density in the dorsal hippocampus, as well as the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β) in the hippocampus of young female rats. Our results showed that DIA significantly increased microglial density in CA2-CA3 and dentate gyrus (DG) but not in CA1. However, forced food restriction (FFR) only increased microglial density in the DG. Accordingly, the activated/resting microglia ratio was significantly increased in CA2-CA3 and DG, in DIA and FFR groups. Finally, western blot analysis showed increased expression of IBA1, TNF-α, IL-6 and IL-1β in the hippocampus of both experimental groups. We conclude that anorexia triggers increased reactive microglial density and expression of TNF-α, IL-6 and IL-1β; this environment may result in hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Durairaj Ragu-Varman
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Mayra Macedo-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Francisco Emmanuel Labrada-Moncada
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Pamela Reyes-Ortega
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, CP76230, Mexico.
| |
Collapse
|