1
|
McCarthy L, Baijal K, Downey M. A framework for understanding and investigating polyphosphate-protein interactions. Biochem Soc Trans 2025:BST20240678. [PMID: 39836110 DOI: 10.1042/bst20240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.
Collapse
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Qian K, Hanf B, Cummins C, Fiedler D. Monodisperse Chemical Oligophosphorylation of Peptides via Protected Oligophosphorimidazolide Reagents. Angew Chem Int Ed Engl 2024:e202419147. [PMID: 39625829 DOI: 10.1002/anie.202419147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Protein poly- and oligophosphorylation are recently discovered post-translational modifications that remain poorly characterized due to (1) the difficulty of extracting endogenously polyphosphorylated species without degradation and (2) the absence of synthetic and analytical tools to prepare and characterize poly- and oligophosphorylated species in biochemical contexts. Herein, we report a methodology for the selective oligophosphorylation of peptides with monodisperse phosphate chain lengths (Pn=3-6). A library of oligophosphorimidazolide (oligoP-imidazolide) reagents featuring benzyl and o-nitrophenylethyl protecting groups was synthesized in moderate-to-good yields (65-93 %). These oligoP-imidazolide reagents enabled the selective and simultaneous conjugation of multiple phosphate units to phosphoryl nucleophiles, circumventing tedious iterative processes. The generalizability of this approach is illustrated by a substrate scope study that includes several biologically relevant phosphopeptide sequences, culminating in the synthesis of >60 examples of peptide oligophosphates (Pn=2-6). Moreover, we report the preparation of oligoP-diimidazolides (Pn=3-5) and discuss their application in generating unique condensed phosphate-peptide conjugates. We also demonstrate that human phospho-ubiquitin (pS65-Ub) is amenable to functionalization by our reagents. Overall, we envision the methods described here will enable future studies that characterize these newly discovered but poorly understood phosphorylation modes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Björn Hanf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christopher Cummins
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Houles T, Yoon SO, Roux PP. The expanding landscape of canonical and non-canonical protein phosphorylation. Trends Biochem Sci 2024; 49:986-999. [PMID: 39266329 DOI: 10.1016/j.tibs.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Thibault Houles
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Institute of Molecular Genetics of Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France.
| | - Sang-Oh Yoon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Crowe LP, Gioseffi A, Bertolini MS, Docampo R. Inorganic Polyphosphate Is in the Surface of Trypanosoma cruzi but Is Not Significantly Secreted. Pathogens 2024; 13:776. [PMID: 39338967 PMCID: PMC11434814 DOI: 10.3390/pathogens13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that can lead to the development of cardiac fibrosis, which is characterized by the deposition of extracellular matrix (ECM) components in the interstitial region of the myocardium. The parasite itself can induce myofibroblast differentiation of cardiac fibroblast in vitro, leading to increased expression of ECM. Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that can also induce myofibroblast differentiation and deposition of ECM components and is highly abundant in T. cruzi. PolyP can modify proteins post-translationally by non-enzymatic polyphosphorylation of lysine residues of poly-acidic, serine-(S) and lysine (K)-rich (PASK) motifs. In this work, we used a bioinformatics screen and identified the presence of PASK domains in several surface proteins of T. cruzi. We also detected polyP in the external surface of its different life cycle stages and confirmed the stimulation of host cell fibrosis by trypomastigote infection. However, we were not able to detect significant secretion of the polymer or activation of transforming growth factor beta (TGF-β), an important factor for the generation of fibrosis by inorganic polyP- or trypomastigote-conditioned medium.
Collapse
Affiliation(s)
- Logan P Crowe
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anna Gioseffi
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Mayara S Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Neville N, Lehotsky K, Jia Z. Back on the chain gang: polyphosphate modification of proteins. Trends Biochem Sci 2024; 49:757-760. [PMID: 38945730 DOI: 10.1016/j.tibs.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Polyphosphate (polyP) mediates a plethora of biological functions. Understanding the polyP-protein interactome will help clarify the mechanisms underpinning these functions. Recent studies demonstrating a strong but noncovalent modification of lysine and histidine repeat proteins by polyP have provided new insights into polyP-protein biochemistry with implications for research and therapeutics.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
6
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Borghi F, Azevedo C, Johnson E, Burden JJ, Saiardi A. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state. CELL REPORTS METHODS 2024; 4:100814. [PMID: 38981472 PMCID: PMC11294840 DOI: 10.1016/j.crmeth.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
9
|
Lehotsky K, Neville N, Jia Z. Protocol for detecting histidine polyphosphate modification of human proteins via MBP-tagged expression in E. coli. STAR Protoc 2024; 5:102947. [PMID: 38470910 PMCID: PMC10943961 DOI: 10.1016/j.xpro.2024.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Polyphosphate exhibits a unique post-translational modification-like function, known as histidine polyphosphate modification (HPM), marked by a robust non-covalent interaction with histidine repeat proteins. Here, we present a protocol for detecting HPM of human proteins via maltose-binding protein-tagged expression in E. coli. We describe steps for detecting HPM by observing electrophoretic mobility shifts on NuPAGE gels followed by western blot. We then detail procedures for analyzing the influence of ionic strength and pH on HPM. For complete details on the use and execution of this protocol, please refer to Neville et al.1.
Collapse
Affiliation(s)
- Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada.
| |
Collapse
|
10
|
Zhou Z, Jin J, Deng X, Jia Z. Protein purification via consecutive histidine-polyphosphate interaction. Protein Sci 2024; 33:e5021. [PMID: 38747394 PMCID: PMC11094774 DOI: 10.1002/pro.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.
Collapse
Affiliation(s)
- Zihao Zhou
- School of Pharmaceutical SciencesCentral South UniversityChangshaHunanChina
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Jin Jin
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Xu Deng
- School of Pharmaceutical SciencesCentral South UniversityChangshaHunanChina
| | - Zongchao Jia
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
11
|
Azevedo C, Borghi F, Su XB, Saiardi A. On the covalent nature of lysine polyphosphorylation. Mol Cell 2024; 84:1811-1815.e3. [PMID: 38701742 DOI: 10.1016/j.molcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.
Collapse
Affiliation(s)
- Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; InnovPlantProtect, Estrada Gil Vaz, 7350-478 Elvas, Portugal
| | - Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Xue Bessie Su
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Neville N, Lehotsky K, Klupt KA, Downey M, Jia Z. Polyphosphate attachment to lysine repeats is a non-covalent protein modification. Mol Cell 2024; 84:1802-1810.e4. [PMID: 38701741 DOI: 10.1016/j.molcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
13
|
Khan A, Mallick M, Ladke JS, Bhandari R. The ring rules the chain - inositol pyrophosphates and the regulation of inorganic polyphosphate. Biochem Soc Trans 2024; 52:567-580. [PMID: 38629621 DOI: 10.1042/bst20230256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.
Collapse
Affiliation(s)
- Azmi Khan
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Manisha Mallick
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayashree S Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
14
|
Akosah Y, Yang J, Pavlov E. Inorganic polyphosphate and ion transport across biological membranes. Biochem Soc Trans 2024; 52:671-679. [PMID: 38630434 DOI: 10.1042/bst20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.
Collapse
Affiliation(s)
- Yaw Akosah
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| | - Jingyi Yang
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| |
Collapse
|
15
|
Da Costa RT, Solesio ME. Could mammalian inorganic polyphosphate be a crucial signaling molecule in neurological disorders? Neural Regen Res 2024; 19:701-702. [PMID: 37843192 PMCID: PMC10664113 DOI: 10.4103/1673-5374.382242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023] Open
|
16
|
Seif E, Francis NJ. A Two-Step Mechanism for Creating Stable, Condensed Chromatin with the Polycomb Complex PRC1. Molecules 2024; 29:323. [PMID: 38257239 PMCID: PMC10821450 DOI: 10.3390/molecules29020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The Drosophila PRC1 complex regulates gene expression by modifying histone proteins and chromatin architecture. Two PRC1 subunits, PSC and Ph, are most implicated in chromatin architecture. In vitro, PRC1 compacts chromatin and inhibits transcription and nucleosome remodeling. The long disordered C-terminal region of PSC (PSC-CTR) is important for these activities, while Ph has little effect. In cells, Ph is important for condensate formation, long-range chromatin interactions, and gene regulation, and its polymerizing sterile alpha motif (SAM) is implicated in these activities. In vitro, truncated Ph containing the SAM and two other conserved domains (mini-Ph) undergoes phase separation with chromatin, suggesting a mechanism for SAM-dependent condensate formation in vivo. How the distinct activities of PSC and Ph on chromatin function together in PRC1 is not known. To address this question, we analyzed structures formed with large chromatin templates and PRC1 in vitro. PRC1 bridges chromatin into extensive fibrillar networks. Ph, its SAM, and SAM polymerization activity have little effect on these structures. Instead, the PSC-CTR controls their growth, and is sufficient for their formation. To understand how phase separation driven by Ph SAM intersects with the chromatin bridging activity of the PSC-CTR, we used mini-Ph to form condensates with chromatin and then challenged them with PRC1 lacking Ph (PRC1ΔPh). PRC1ΔPh converts mini-Ph chromatin condensates into clusters of small non-fusing condensates and bridged fibers. These condensates retain a high level of chromatin compaction and do not intermix. Thus, phase separation of chromatin by mini-Ph, followed by the action of the PSC-CTR, creates a unique chromatin organization with regions of high nucleosome density and extraordinary stability. We discuss how this coordinated sequential activity of two proteins found in the same complex may occur and the possible implications of stable chromatin architectures in maintaining transcription states.
Collapse
Affiliation(s)
- Elias Seif
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
| | - Nicole J. Francis
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
17
|
Gauthier CM, LeGallais J, Savic N, Moradi-Fard S, Grew A, Loe M, Kirlikaya B, Cobb J, Nelson CJ. Intrinsic disorder of a nucleoplasmin-like histone chaperone specifies its discrete nuclear and nucleolar functions. FEBS Lett 2024; 598:187-198. [PMID: 38058218 DOI: 10.1002/1873-3468.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Nucleoplasmin (NPM) histone chaperones regulate distinct processes in the nucleus and nucleolus. While intrinsically disordered regions (IDRs) are hallmarks of NPMs, it is not clear whether all NPM functions require these unstructured features. We assessed the importance of IDRs in a yeast NPM-like protein and found that regulation of rDNA copy number and genetic interactions with the nucleolar RNA surveillance machinery require the highly conserved FKBP prolyl isomerase domain, but not the NPM domain or IDRs. By contrast, transcriptional repression in the nucleus requires IDRs. Furthermore, multiple lysines in polyacidic serine/lysine motifs of IDRs are required for both lysine polyphosphorylation and NPM-mediated transcriptional repression. These results demonstrate that this NPM-like protein relies on IDRs only for some of its chromatin-related functions.
Collapse
Affiliation(s)
| | - Josey LeGallais
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Neda Savic
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Arden Grew
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Martin Loe
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Baran Kirlikaya
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Jennifer Cobb
- Department of Biochemistry and Microbiology, University of Victoria, Canada
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
18
|
Borghi F, Saiardi A. Evolutionary perspective on mammalian inorganic polyphosphate (polyP) biology. Biochem Soc Trans 2023; 51:1947-1956. [PMID: 37844192 PMCID: PMC10657179 DOI: 10.1042/bst20230483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Inorganic polyphosphate (polyP), the polymeric form of phosphate, is attracting ever-growing attention due to the many functions it appears to perform within mammalian cells. This essay does not aim to systematically review the copious mammalian polyP literature. Instead, we examined polyP synthesis and functions in various microorganisms and used an evolutionary perspective to theorise key issues of this field and propose solutions. By highlighting the presence of VTC4 in distinct species of very divergent eucaryote clades (Opisthokonta, Viridiplantae, Discoba, and the SAR), we propose that whilst polyP synthesising machinery was present in the ancestral eukaryote, most lineages subsequently lost it during evolution. The analysis of the bacteria-acquired amoeba PPK1 and its unique polyP physiology suggests that eukaryote cells must have developed mechanisms to limit cytosolic polyP accumulation. We reviewed the literature on polyP in the mitochondria from the perspective of its endosymbiotic origin from bacteria, highlighting how mitochondria could possess a polyP physiology reminiscent of their 'bacterial' beginning that is not yet investigated. Finally, we emphasised the similarities that the anionic polyP shares with the better-understood negatively charged polymers DNA and RNA, postulating that the nucleus offers an ideal environment where polyP physiology might thrive.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, U.K
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, U.K
| |
Collapse
|
19
|
Neville N, Lehotsky K, Yang Z, Klupt KA, Denoncourt A, Downey M, Jia Z. Modification of histidine repeat proteins by inorganic polyphosphate. Cell Rep 2023; 42:113082. [PMID: 37660293 DOI: 10.1016/j.celrep.2023.113082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that is present in nearly all organisms studied to date. A remarkable function of polyP involves its attachment to lysine residues via non-enzymatic post-translational modification (PTM), which is presumed to be covalent. Here, we show that proteins containing tracts of consecutive histidine residues exhibit a similar modification by polyP, which confers an electrophoretic mobility shift on NuPAGE gels. Our screen uncovers 30 human and yeast histidine repeat proteins that undergo histidine polyphosphate modification (HPM). This polyP modification is histidine dependent and non-covalent in nature, although remarkably it withstands harsh denaturing conditions-a hallmark of covalent PTMs. Importantly, we show that HPM disrupts phase separation and the phosphorylation activity of the human protein kinase DYRK1A, and inhibits the activity of the transcription factor MafB, highlighting HPM as a potential protein regulatory mechanism.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Zhiyun Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
20
|
Umeda C, Nakajima T, Maruhashi T, Tanigawa M, Maeda T, Mukai Y. Overexpression of polyphosphate polymerases and deletion of polyphosphate phosphatases shorten the replicative lifespan in yeast. FEBS Lett 2023; 597:2316-2333. [PMID: 37574219 DOI: 10.1002/1873-3468.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
We previously found that overexpression of phosphate starvation-responsive genes by disrupting PHO80 led to a shortened replicative lifespan in yeast. To identify lifespan-related genes, we screened upregulated genes in the pho80Δ mutant and focused on the VTC genes, which encode the vacuolar polyphosphate (polyP) polymerase complex. VTC1/VTC2/VTC4 deletion restored the lifespan and intracellular polyP levels in pho80Δ. In the wild type, overexpression of VTC5 or a combination of the other VTCs caused high polyP accumulation and shortened lifespan. Similar phenotypes were caused by the deletion of polyP phosphatase genes-vacuolar PPN1 and cytosolic PPX1. The polyP-accumulating strains exhibited stress sensitivities. Thus, we demonstrated that polyP metabolic enzymes participate in replicative lifespan, and extreme polyP accumulation shortens the lifespan.
Collapse
Affiliation(s)
- Chiharu Umeda
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Tsubasa Maruhashi
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
21
|
Liu W, Wang J, Comte‐Miserez V, Zhang M, Yu X, Chen Q, Jessen HJ, Mayer A, Wu S, Ye S. Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 2023; 42:e113320. [PMID: 37066886 PMCID: PMC10183816 DOI: 10.15252/embj.2022113320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (Pi ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation.
Collapse
Affiliation(s)
- Wei Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Jiening Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | | | - Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Qingfeng Chen
- School of Life SciencesYunnan UniversityKunmingChina
| | - Henning Jacob Jessen
- Institute of Organic ChemistryUniversity of FreiburgFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Andreas Mayer
- Département d'ImmunobiologieUniversité de LausanneEpalingesSwitzerland
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
22
|
Sanchez AM, Garg A, Schwer B, Shuman S. Inorganic polyphosphate abets silencing of a sub-telomeric gene cluster in fission yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000744. [PMID: 36820394 PMCID: PMC9938405 DOI: 10.17912/micropub.biology.000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Inorganic polyphosphate is a ubiquitous polymer with myriad roles in cell and organismal physiology. Whereas there is evidence for nuclear polyphosphate, its impact on transcriptional regulation in eukaryotes is unkown. Transcriptional profiling of fission yeast cells lacking polyphosphate (via deletion of the catalytic subunit Vtc4 of the Vtc4/Vtc2 polyphosphate polymerase complex) elicited de-repression of four protein-coding genes located within the right sub-telomeric arm of chromosome I that is known to be transcriptionally silenced by the TORC2 complex. These genes were equally de-repressed in vtc2 ∆ cells and in cells expressing polymerase-dead Vtc4, signifying that polyphosphate synthesis is required for repression of these sub-telomeric genes.
Collapse
Affiliation(s)
- Ana M. Sanchez
- Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States
| | - Angad Garg
- Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Beate Schwer
- Microbiology and Immunology, Weill Cornell Medicine, New York, New York, United States
| | - Stewart Shuman
- Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| |
Collapse
|
23
|
Krenzlin V, Roewe J, Strueve M, Martínez-Negro M, Sharma A, Reinhardt C, Morsbach S, Bosmann M. Bacterial-Type Long-Chain Polyphosphates Bind Human Proteins in the Phosphatidylinositol Signaling Pathway. Thromb Haemost 2022; 122:1943-1947. [PMID: 35909349 PMCID: PMC9798540 DOI: 10.1055/s-0042-1751280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Viola Krenzlin
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Marcel Strueve
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - María Martínez-Negro
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Svenja Morsbach
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
24
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
25
|
Abstract
In diverse cells from bacterial to mammalian species, inorganic phosphate is stored in long chains called polyphosphate (polyP). These nearly universal polymers, ranging from three to thousands of phosphate moieties in length, are associated with molecular functions, including energy homeostasis, protein folding, and cell signaling. In many cell types, polyphosphate is concentrated in subcellular compartments or organelles. In the budding yeast Saccharomyces cerevisiae, polyP synthesis by the membrane-bound vacuolar transporter chaperone (VTC) complex is coupled to its translocation into the lumen of the vacuole, a lysosome-like organelle, where it is stored at high concentrations. In contrast, the ectopic expression of the bacterial polyphosphate kinase (PPK) results in the toxic accumulation of polyP outside the vacuole. In this study, we used label-free mass spectrometry to investigate the mechanisms underlying this toxicity. We find that PPK expression results in the activation of a stress response mediated in part by the Hog1 and Yak1 kinases and the Msn2/Msn4 transcription factors as well as by changes in protein kinase A (PKA) activity. This response is countered by the combined action of the Ddp1 and Ppx1 polyphosphatases that function together to counter polyP accumulation and downstream toxicity. In contrast, the ectopic expression of previously proposed mammalian polyphosphatases did not impact PPK-mediated toxicity in this model, suggesting either that these enzymes do not function directly as polyphosphatases in vivo or that they require cofactors unique to higher eukaryotes. Our work provides insight into why polyP accumulation outside lysosome-like organelles is toxic. Furthermore, it serves as a resource for exploring how polyP may impact conserved biological processes at a molecular level.
Collapse
|
26
|
Cleavage-Polyadenylation Factor Cft1 and SPX Domain Proteins Are Agents of Inositol Pyrophosphate Toxicosis in Fission Yeast. mBio 2022; 13:e0347621. [PMID: 35012333 PMCID: PMC8749416 DOI: 10.1128/mbio.03476-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.
Collapse
|
27
|
Neville N, Roberge N, Jia Z. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence. Int J Mol Sci 2022; 23:ijms23020670. [PMID: 35054854 PMCID: PMC8776046 DOI: 10.3390/ijms23020670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Inorganic polyphosphate (polyP) has been implicated in an astonishing array of biological functions, ranging from phosphorus storage to molecular chaperone activity to bacterial virulence. In bacteria, polyP is synthesized by polyphosphate kinase (PPK) enzymes, which are broadly subdivided into two families: PPK1 and PPK2. While both enzyme families are capable of catalyzing polyP synthesis, PPK1s preferentially synthesize polyP from nucleoside triphosphates, and PPK2s preferentially consume polyP to phosphorylate nucleoside mono- or diphosphates. Importantly, many pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii encode at least one of each PPK1 and PPK2, suggesting these enzymes may be attractive targets for antibacterial drugs. Although the majority of bacterial polyP studies to date have focused on PPK1s, PPK2 enzymes have also begun to emerge as important regulators of bacterial physiology and downstream virulence. In this review, we specifically examine the contributions of PPK2s to bacterial polyP homeostasis. Beginning with a survey of the structures and functions of biochemically characterized PPK2s, we summarize the roles of PPK2s in the bacterial cell, with a particular emphasis on virulence phenotypes. Furthermore, we outline recent progress on developing drugs that inhibit PPK2 enzymes and discuss this strategy as a novel means of combatting bacterial infections.
Collapse
|
28
|
The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions. mBio 2021; 12:e0198121. [PMID: 34724827 PMCID: PMC8561398 DOI: 10.1128/mbio.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL), an enzyme that catalyzes histidine deamination with production of ammonia (NH3) and urocanate, is responsible for acidocalcisome alkalinization. Histidine addition to live parasites expressing HAL fused to the pH-sensitive emission biosensor green fluorescent protein (GFP) variant pHluorin induced alkalinization of acidocalcisomes. PolyP decreased HAL activity of epimastigote lysates or the recombinant protein but did not cause its polyphosphorylation, as determined by the lack of HAL electrophoretic shift on NuPAGE gels using both in vitro and in vivo conditions. We demonstrate that HAL binds strongly to polyP and localizes to the acidocalcisomes and cytosol of the parasite. Four lysine residues localized in the HAL C-terminal region are instrumental for its polyP binding, its inhibition by polyP, its function inside acidocalcisomes, and parasite survival under starvation conditions. Expression of HAL in yeast deficient in polyP degradation decreased cell fitness. This effect was enhanced by histidine and decreased when the lysine-rich C-terminal region was deleted. In conclusion, this study highlights a mechanism for stimulation of acidocalcisome alkalinization linked to amino acid metabolism.
Collapse
|
29
|
Vtc5 Is Localized to the Vacuole Membrane by the Conserved AP-3 Complex to Regulate Polyphosphate Synthesis in Budding Yeast. mBio 2021; 12:e0099421. [PMID: 34544285 PMCID: PMC8510523 DOI: 10.1128/mbio.00994-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Polyphosphates (polyP) are energy-rich polymers of inorganic phosphates assembled into chains ranging from 3 residues to thousands of residues in length. They are thought to exist in all cells on earth and play roles in an eclectic mix of functions ranging from phosphate homeostasis to cell signaling, infection control, and blood clotting. In the budding yeast Saccharomyces cerevisiae, polyP chains are synthesized by the vacuole-bound vacuolar transporter chaperone (VTC) complex, which synthesizes polyP while simultaneously translocating it into the vacuole lumen, where it is stored at high concentrations. VTC’s activity is promoted by an accessory subunit called Vtc5. In this work, we found that the conserved AP-3 complex is required for proper Vtc5 localization to the vacuole membrane. In human cells, previous work has demonstrated that mutation of AP-3 subunits gives rise to Hermansky-Pudlak syndrome, a rare disease with molecular phenotypes that include decreased polyP accumulation in platelet dense granules. In yeast AP-3 mutants, we found that Vtc5 is rerouted to the vacuole lumen by the endosomal sorting complex required for transport (ESCRT), where it is degraded by the vacuolar protease Pep4. Cells lacking functional AP-3 have decreased levels of polyP, demonstrating that membrane localization of Vtc5 is required for its VTC stimulatory activity in vivo. Our work provides insight into the molecular trafficking of a critical regulator of polyP metabolism in yeast. We speculate that AP-3 may also be responsible for the delivery of polyP regulatory proteins to platelet dense granules in higher eukaryotes.
Collapse
|
30
|
Semenyuk PI. Effect of Polyphosphorylation on Behavior of Protein Disordered Regions. Int J Mol Sci 2021; 22:ijms22157883. [PMID: 34360648 PMCID: PMC8345927 DOI: 10.3390/ijms22157883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Proteins interact with many charged biological macromolecules (polyelectrolytes), including inorganic polyphosphates. Recently a new protein post-translational modification, polyphosphorylation, or a covalent binding of polyphosphate chain to lysine, was demonstrated in human and yeast. Herein, we performed the first molecular modeling study of a possible effect of polyphosphorylation on behavior of the modified protein using replica exchange molecular dynamics simulations in atomistic force field with explicit water. Human endoplasmin (GRP-94), a member of heat shock protein 90 family, was selected as a model protein. Intrinsically disordered region in N-terminal domain serving as a charged linker between domains and containing a polyacidic serine and lysine-rich motif, was selected as a potent polyphosphorylation site according to literature data. Polyphosphorylation, depending on exact modification site, has been shown to influence on the disordered loop flexibility and induce its further expanding, as well as induce changes in interaction with ordered part of the molecule. As a result, polyphosphorylation in N-terminal domain might affect interaction of HSP90 with client proteins since these chaperones play a key role in protein folding.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
31
|
Asgharzadeh F, Barneh F, Fakhraie M, Adel Barkhordar SL, Shabani M, Soleimani A, Rahmani F, Ariakia F, Mehraban S, Avan A, Hashemzehi M, Arjmand MH, Behnam-Rassouli R, Jaberi N, Sayyed-Hosseinian SH, Ferns GA, Ryzhikov M, Jafari M, Khazaei M, Hassanian SM. Metformin inhibits polyphosphate-induced hyper-permeability and inflammation. Int Immunopharmacol 2021; 99:107937. [PMID: 34271418 DOI: 10.1016/j.intimp.2021.107937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Circulating inflammatory factor inorganic polyphosphate (polyP) released from activated platelets could enhance factor XII and bradykinin resulted in increased capillary leakage and vascular permeability. PolyP induce inflammatory responses through mTOR pathway in endothelial cells, which is being reported in several diseases including atherosclerosis, thrombosis, sepsis, and cancer. Systems and molecular biology approaches were used to explore the regulatory role of the AMPK activator, metformin, on polyP-induced hyper-permeability in different organs in three different models of polyP-induced hyper-permeability including local, systemic short- and systemic long-term approaches in murine models. Our results showed that polyP disrupts endothelial barrier integrity in skin, liver, kidney, brain, heart, and lung in all three study models and metformin abrogates the disruptive effect of polyP. We also showed that activation of AMPK signaling pathway, regulation of oxidant/anti-oxidant balance, as well as decrease in inflammatory cell infiltration constitute a set of molecular mechanisms through which metformin elicits it's protective responses against polyP-induced hyper-permeability. These results support the clinical values of AMPK activators including the FDA-approved metformin in attenuating vascular damage in polyP-associated inflammatory diseases.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Barneh
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maryam Fakhraie
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Shabani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fatemeh Ariakia
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Hashemzehi
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reyhaneh Behnam-Rassouli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Jaberi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Mohieddin Jafari
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Regulation of inorganic polyphosphate is required for proper vacuolar proteolysis in fission yeast. J Biol Chem 2021; 297:100891. [PMID: 34147496 PMCID: PMC8294586 DOI: 10.1016/j.jbc.2021.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.
Collapse
|
33
|
Baijal K, Downey M. The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. Bioessays 2021; 43:e2100058. [PMID: 33998006 DOI: 10.1002/bies.202100058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Polyphosphate (polyP) is a ubiquitous biomolecule thought to be present in all cells on Earth. PolyP is deceivingly simple, consisting of repeated units of inorganic phosphates polymerized in long energy-rich chains. PolyP is involved in diverse functions in mammalian systems-from cell signaling to blood clotting. One exciting avenue of research is a new nonenzymatic post-translational modification, termed lysine polyphosphorylation, wherein polyP chains are covalently attached to lysine residues of target proteins. While the modification was first characterized in budding yeast, recent work has now identified the first human targets. There is significant promise in this area of biomedical research, but a number of technical issues and knowledge gaps present challenges to rapid progress. In this review, the current state of the field is summarized and existing roadblocks related to the study of lysine polyphosphorylation in higher eukaryotes are introduced. It is discussed how limited methods to identify targets of polyphosphorylation are further impacted by low concentration, unknown regulatory enzymes, and sequestration of polyP into compartments in mammalian systems. Furthermore, suggestions on how these obstacles could be addressed or what their physiological relevance may be within mammalian cells are presented.
Collapse
Affiliation(s)
- Kanchi Baijal
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
35
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
Affiliation(s)
- Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
36
|
Bondy-Chorney E, Abramchuk I, Nasser R, Holinier C, Denoncourt A, Baijal K, McCarthy L, Khacho M, Lavallée-Adam M, Downey M. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Rep 2020; 33:108318. [PMID: 33113373 DOI: 10.1016/j.celrep.2020.108318] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Iryna Abramchuk
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rawan Nasser
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Charlotte Holinier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
37
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
38
|
Inorganic polyphosphate in mammals: where's Wally? Biochem Soc Trans 2020; 48:95-101. [PMID: 32049314 PMCID: PMC7054745 DOI: 10.1042/bst20190328] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer of tens to hundreds of orthophosphate residues linked by high-energy phosphoanhydride bonds. In prokaryotes and lower eukaryotes, both the presence of polyP and of the biosynthetic pathway that leads to its synthesis are well-documented. However, in mammals, polyP is more elusive. Firstly, the mammalian enzyme responsible for the synthesis of this linear biopolymer is unknown. Secondly, the low sensitivity and specificity of available polyP detection methods make it difficult to confidently ascertain polyP presence in mammalian cells, since in higher eukaryotes, polyP exists in lower amounts than in yeast or bacteria. Despite this, polyP has been given a remarkably large number of functions in mammals. In this review, we discuss some of the proposed functions of polyP in mammals, the limitations of the current detection methods and the urgent need to understand how this polymer is synthesized.
Collapse
|
39
|
Khong ML, Li L, Solesio ME, Pavlov EV, Tanner JA. Inorganic polyphosphate controls cyclophilin B-mediated collagen folding in osteoblast-like cells. FEBS J 2020; 287:4500-4524. [PMID: 32056376 DOI: 10.1111/febs.15249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Evidence is emerging that inorganic polyphosphate (polyP) is a fundamental molecule involved in a wide range of biological processes. In higher eukaryotes, polyP is abundant in osteoblasts but questions remain as to its functions. Here, we find that polyP is particularly enriched in endoplasmic reticulum (ER) where it colocalizes with cyclophilin B (CypB) using osteoblastic SaOS-2 model cell line. PolyP binds directly and specifically to CypB, inhibiting its peptidyl-prolyl cis-trans isomerase activity which is critical for collagen folding. PolyP sequestration by spermine and ER-specific polyP reduction by polyphosphatase expression in cells reduced collagen misfolding and confirmed that endogenous polyP acts as a molecular control of CypB-mediated collagen folding. We propose that polyP is a previously unrecognized critical regulator of protein homeostasis in ER.
Collapse
Affiliation(s)
- Mei Li Khong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Lina Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Maria E Solesio
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
40
|
Abstract
Lysine polyphosphorylation (K-PPn) is a relatively new post-translational modification, the full targets and functional consequences of which are unknown. A critical problem in the study of endogenous K-PPn of proteins in the yeast model system is that its nonenzymatic nature and its susceptibility to polyphosphatases make it potentially susceptible to artifacts during extraction. A new study confirms that K-PPn modifications can be altered during sample handling, provides new insights into the mechanism of K-PPn, and develops a yeast model strain, devoid of both vacuolar polyP and polyphosphatases, that allows detection of authentic endogenous K-PPn.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
41
|
Azevedo C, Desfougères Y, Jiramongkol Y, Partington H, Trakansuebkul S, Singh J, Steck N, Jessen HJ, Saiardi A. Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation. J Biol Chem 2020; 295:1439-1451. [PMID: 31844018 PMCID: PMC7008358 DOI: 10.1074/jbc.ra119.011680] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
A recently-discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The nonenzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well-characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could nonphysiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | - Yann Desfougères
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Yannasittha Jiramongkol
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Hamish Partington
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Sasanan Trakansuebkul
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Steck
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
42
|
Lorenzo‐Orts L, Couto D, Hothorn M. Identity and functions of inorganic and inositol polyphosphates in plants. THE NEW PHYTOLOGIST 2020; 225:637-652. [PMID: 31423587 PMCID: PMC6973038 DOI: 10.1111/nph.16129] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Inorganic polyphosphates (polyPs) and inositol pyrophosphates (PP-InsPs) form important stores of inorganic phosphate and can act as energy metabolites and signaling molecules. Here we review our current understanding of polyP and inositol phosphate (InsP) metabolism and physiology in plants. We outline methods for polyP and InsP detection, discuss the known plant enzymes involved in their synthesis and breakdown, and summarize the potential physiological and signaling functions for these enigmatic molecules in plants.
Collapse
Affiliation(s)
- Laura Lorenzo‐Orts
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Daniel Couto
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Michael Hothorn
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| |
Collapse
|
43
|
Xie L, Rajpurkar A, Quarles E, Taube N, Rai AS, Erba J, Sliwinski B, Markowitz M, Jakob U, Knoefler D. Accumulation of Nucleolar Inorganic Polyphosphate Is a Cellular Response to Cisplatin-Induced Apoptosis. Front Oncol 2019; 9:1410. [PMID: 31921667 PMCID: PMC6920253 DOI: 10.3389/fonc.2019.01410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
The chemotherapeutic drug cisplatin, which targets DNA, serves as one of the main staples in cancer treatment. Yet, the therapeutic application of cisplatin is limited by two major challenges: the occurrence of reversible and irreversible side effects due to non-specific toxicity, and the intrinsic or developing resistance of tumor cells toward cisplatin. Here we demonstrate that cancer cells respond to cisplatin treatment with the nucleolar accumulation of inorganic polyphosphate (polyP), a universally conserved high-energy compound. PolyP accumulation positively correlates with the levels of activated caspase-3, suggesting a novel role of polyP in cisplatin-mediated apoptosis. In support of this finding, we discovered that administration of exogenous polyP increases cisplatin-induced toxicity in select cancer cell lines, raising the exciting possibility that enhancing endogenous polyP levels might be a novel mechanism to sensitize cancer cells to cisplatin treatment.
Collapse
Affiliation(s)
- Lihan Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Asavari Rajpurkar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ellen Quarles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Taube
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Akash S Rai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jake Erba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Sliwinski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Moses Markowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Daniela Knoefler
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Savic N, Shortill SP, Bilenky M, Dobbs JM, Dilworth D, Hirst M, Nelson CJ. Histone Chaperone Paralogs Have Redundant, Cooperative, and Divergent Functions in Yeast. Genetics 2019; 213:1301-1316. [PMID: 31604797 PMCID: PMC6893378 DOI: 10.1534/genetics.119.302235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Gene duplications increase organismal robustness by providing freedom for gene divergence or by increasing gene dosage. The yeast histone chaperones Fpr3 and Fpr4 are paralogs that can assemble nucleosomes in vitro; however, the genomic locations they target and their functional relationship is poorly understood. We refined the yeast synthetic genetic array approach to enable the functional dissection of gene paralogs. Applying this method to Fpr3 and Fpr4 uncovered redundant, cooperative, and divergent functions. While Fpr3 is uniquely involved in chromosome segregation, Fpr3 and Fpr4 cooperate to regulate genes involved in polyphosphate metabolism and ribosome biogenesis. We find that the TRAMP5 RNA exosome is critical for fitness in Δfpr3Δfpr4 yeast and leverage this information to identify an important role for Fpr4 at the 5' ends of protein coding genes. Additionally, Fpr4 and TRAMP5 negatively regulate RNAs from the nontranscribed spacers of ribosomal DNA. Yeast lacking Fpr3 and Fpr4 exhibit a genome instability phenotype at the ribosomal DNA, which implies that these histone chaperones regulate chromatin structure and DNA access at this location. Taken together. we provide genetic and transcriptomic evidence that Fpr3 and Fpr4 operate separately, cooperatively, and redundantly to regulate a variety of chromatin environments.
Collapse
Affiliation(s)
- Neda Savic
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Shawn P Shortill
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joseph M Dobbs
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - David Dilworth
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Nelson
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| |
Collapse
|
45
|
McCarthy L, Bentley‐DeSousa A, Denoncourt A, Tseng Y, Gabriel M, Downey M. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Lett 2019; 594:21-30. [DOI: 10.1002/1873-3468.13588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Amanda Bentley‐DeSousa
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Yi‐Chieh Tseng
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Matthew Gabriel
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| |
Collapse
|
46
|
Zarin T, Strome B, Nguyen Ba AN, Alberti S, Forman-Kay JD, Moses AM. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 2019; 8:e46883. [PMID: 31264965 PMCID: PMC6634968 DOI: 10.7554/elife.46883] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered regions make up a large part of the proteome, but the sequence-to-function relationship in these regions is poorly understood, in part because the primary amino acid sequences of these regions are poorly conserved in alignments. Here we use an evolutionary approach to detect molecular features that are preserved in the amino acid sequences of orthologous intrinsically disordered regions. We find that most disordered regions contain multiple molecular features that are preserved, and we define these as 'evolutionary signatures' of disordered regions. We demonstrate that intrinsically disordered regions with similar evolutionary signatures can rescue function in vivo, and that groups of intrinsically disordered regions with similar evolutionary signatures are strongly enriched for functional annotations and phenotypes. We propose that evolutionary signatures can be used to predict function for many disordered regions from their amino acid sequences.
Collapse
Affiliation(s)
- Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
A Stringent Analysis of Polyphosphate Dynamics in Escherichia coli. J Bacteriol 2019; 201:JB.00070-19. [PMID: 30782636 DOI: 10.1128/jb.00070-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During stress, bacterial cells activate a conserved pathway called the stringent response that promotes survival. Polyphosphates are long chains of inorganic phosphates that modulate this response in diverse bacterial species. In this issue, Michael J. Gray provides an important correction to the model of how polyphosphate accumulation is regulated during the stringent response in Escherichia coli (M. J. Gray, J. Bacteriol, 201:e00664-18, 2019, https://doi.org/10.1128/JB.00664-18). With other recent publications, this study provides a revised framework for understanding how bacterial polyphosphate dynamics might be exploited in infection control and industrial applications.
Collapse
|
48
|
Singh J, Steck N, De D, Hofer A, Ripp A, Captain I, Keller M, Wender PA, Bhandari R, Jessen HJ. A Phosphoramidite Analogue of Cyclotriphosphate Enables Iterative Polyphosphorylations. Angew Chem Int Ed Engl 2019; 58:3928-3933. [DOI: 10.1002/anie.201814366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jyoti Singh
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Nicole Steck
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Debaditya De
- Laboratory of Cell Signaling, CDFD Hyderabad India
| | - Alexandre Hofer
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Alexander Ripp
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Ilya Captain
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Manfred Keller
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| | - Paul A. Wender
- Stanford UniversityChemistry Department 333 Campus Drive Stanford CA 94305-5080 USA
| | | | - Henning J. Jessen
- University of FreiburgInstitute of Organic Chemistry Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
49
|
Mordhorst S, Singh J, Mohr MKF, Hinkelmann R, Keppler M, Jessen HJ, Andexer JN. Several Polyphosphate Kinase 2 Enzymes Catalyse the Production of Adenosine 5'-Polyphosphates. Chembiochem 2019; 20:1019-1022. [PMID: 30549179 DOI: 10.1002/cbic.201800704] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 11/08/2022]
Abstract
Polyphosphate kinases (PPKs) are involved in many metabolic processes; enzymes of the second family (PPK2) are responsible for nucleotide synthesis fuelled by the consumption of inorganic polyphosphate. They catalyse the phosphorylation of nucleotides with various numbers of phosphate residues, such as monophosphates or diphosphates. Hence, these enzymes are promising candidates for cofactor regeneration systems. Besides adenosine 5'-triphosphate, PPK2s also catalyse the synthesis of highly phosphorylated nucleotides in vitro, as shown here for adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. These unusually phosphorylated adenosine 5'-polyphosphates add up to 50 % of the whole adenosine nucleotides in the assay. The two new products were chemically synthesised to serve as standards and compared with the two enzymatically produced compounds by high-performance ion chromatography and 31 P NMR analysis. This study shows that PPK2s are highly suitable for biocatalytic synthesis of different phosphorylated nucleotides.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Michael K F Mohr
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
50
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|