1
|
Wu E, Wei GF, Li Y, Du MK, Ni JT. Serum urea concentration and risk of 16 site-specific cancers, overall cancer, and cancer mortality in individuals with metabolic syndrome: a cohort study. BMC Med 2024; 22:536. [PMID: 39548477 PMCID: PMC11566152 DOI: 10.1186/s12916-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The relationship between serum urea concentration and cancer in patients with metabolic syndrome (MetS) remains unclear. This study aimed to investigate the association between serum urea concentration and 16 site-specific cancers, overall cancer incidence, and cancer mortality in individuals with MetS. METHODS We analysed the data of 108,284 individuals with MetS obtained from the UK Biobank. The Cox proportional hazards model was used to determine the association between serum urea concentration at recruitment and cancer. The Benjamini-Hochberg correction was used to account for multiple comparisons. RESULTS Over the median follow-up period of 11.86 years, 18,548 new incident cases of cancer were documented. There were inverse associations of urea concentration with overall cancer incidence, and the incidence of oesophageal and lung cancers, with respective hazard ratios (95% confidence intervals) [HR (95% CI)] for the highest (Q4) vs lowest (Q1) urea quartiles of 0.95 (0.91-0.99), 0.68 (0.50-0.92), and 0.76 (0.64-0.90). However, high serum urea concentrations increased the male prostate cancer risk (HR 1.15; 95% CI 1.02-1.30). Although the Cox model indicated a protective effect of higher urea levels against stomach (HR 0.67; 95% CI 0.45-0.98; p = 0.040; FDR 0.120) and colorectal cancer (HR 0.86; 95% CI 0.74-0.99; p = 0.048; FDR 0.123), no strong evidence of association was found after applying the Benjamin-Hochberg correction. Moreover, across the median follow-up period of 13.77 years for cancer mortality outcome, 5034 cancer deaths were detected. An "L-shaped" nonlinear dose-response relationship between urea concentration and cancer mortality was discovered (p-nonlinear < 0.001), and the HR (95% CI) for urea concentration Q4 vs Q1 was 0.83 (0.77-0.91). CONCLUSIONS Serum urea concentration can be considered as a valuable biomarker for evaluating cancer risk in individuals with MetS, potentially contributing to personalised cancer screening and management strategies.
Collapse
Affiliation(s)
- E Wu
- Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, 310018, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 310023, China
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Guo-Fang Wei
- Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, 310018, China
| | - Yang Li
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| | - Meng-Kai Du
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| | - Jun-Tao Ni
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Ferenc K, Filip R. Mechanisms of Insulin Signaling as a Potential Therapeutic Method in Intestinal Diseases. Cells 2024; 13:1879. [PMID: 39594627 PMCID: PMC11593555 DOI: 10.3390/cells13221879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrointestinal diseases are becoming a growing public health problem. One of them is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). The incidence of IBD is increasing in developing countries and declining in developed countries, affecting people of all ages. Researchers have been exploring new treatment options including insulin signaling pathways in the inflammation of the gastrointestinal tract. It seems that a better understanding of the mechanism of IGF-1, GLP-1 and TL1A on the gut microbiota and inflammation may provide new advances in future therapeutic strategies for patients with IBD, but also other intestinal diseases. This review aims to synthesize insights into the effects of GLP, IGF and anti-TL1A on inflammation and the gut microbiota, which may enable their future use in therapy for people with intestinal diseases.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
3
|
Scull CE, Hu Y, Jennings S, Wang G. Normalization of Cystic Fibrosis Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of Cystic Fibrosis Mice. Cell Mol Gastroenterol Hepatol 2024; 19:101424. [PMID: 39510500 PMCID: PMC11720009 DOI: 10.1016/j.jcmgh.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation, and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis. METHODS CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction. RESULTS Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice. CONCLUSIONS CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yawen Hu
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Jennings
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
4
|
Vuković T, Kuek LE, Yu B, Makris G, Häberle J. The therapeutic landscape of citrin deficiency. J Inherit Metab Dis 2024; 47:1157-1174. [PMID: 39021261 PMCID: PMC11586593 DOI: 10.1002/jimd.12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Citrin deficiency (CD) is a recessive, liver disease caused by sequence variants in the SLC25A13 gene encoding a mitochondrial aspartate-glutamate transporter. CD manifests as different age-dependent phenotypes and affects crucial hepatic metabolic pathways including malate-aspartate-shuttle, glycolysis, gluconeogenesis, de novo lipogenesis and the tricarboxylic acid and urea cycles. Although the exact pathophysiology of CD remains unclear, impaired use of glucose and fatty acids as energy sources due to NADH shuttle defects and PPARα downregulation, respectively, indicates evident energy deficit in CD hepatocytes. The present review summarizes current trends on available and potential treatments for CD. Baseline recommendation for CD patients is dietary management, often already present as a self-selected food preference, that includes protein and fat-rich food, and avoidance of excess carbohydrates. At present, liver transplantation remains the sole curative option for severe CD cases. Our extensive literature review indicated medium-chain triglycerides (MCT) as the most widely used CD treatment in all age groups. MCT can effectively improve symptoms across disease phenotypes by rapidly supplying energy to the liver, restoring redox balance and inducing lipogenesis. In contrast, sodium pyruvate restored glycolysis and displayed initial preclinical promise, with however limited efficacy in adult CD patients. Ursodeoxycholic acid, nitrogen scavengers and L-arginine treatments effectively address specific pathophysiological aspects such as cholestasis and hyperammonemia and are commonly administered in combination with other drugs. Finally, future possibilities including restoring redox balance, amino acid supplementation, enhancing bioenergetics, improving ureagenesis and mRNA/DNA-based gene therapy are also discussed.
Collapse
Affiliation(s)
- Toni Vuković
- University Children's Hospital Zurich and Children's Research CenterUniversity of ZurichZurichSwitzerland
| | | | | | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CenterUniversity of ZurichZurichSwitzerland
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CenterUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
6
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
7
|
Li R, Chi H, Liao X, Cen S, Zou Y. The Glabridin from Huangqin Decoction Prevents the Development of Ulcerative Colitis into Colitis-Associated Colorectal Cancer by Modulating MMP1/MMP3 Activity. Int Immunopharmacol 2024; 135:112262. [PMID: 38805906 DOI: 10.1016/j.intimp.2024.112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND AIM Huangqin decoction (HQD) is a Chinese medicine used to treat colitis and colorectal cancer (CRC). However, the specific compounds and mechanisms of HQD remain unclear despite its good curative clinical results. Through bioinformatics, network pharmacology, and experiments, this study aims to explore the progressive mechanisms of colitis-associated colorectal cancer (CAC) from ulcerative colitis (UC) while examining the protective effects of HQD and its compounds against this. METHODS Bioinformatics was utilized to identify the hub genes between UC and CRC, and their clinical predictive significance, function, and expression were validated. Employing network pharmacology in combination with hub genes, key targets of HQD for preventing the development of UC into CAC were identified. Molecular docking and molecular dynamics (MD) were utilized to procure compounds that effectively bind to these targets and their transcription factors (TFs). Finally, the expression and mechanism of key targets were demonstrated in mice with UC or CAC. RESULTS (1) Joint analysis of UC and CRC gene sets resulted in 14 hub genes, mainly related to extracellular matrix receptor binding, biological processes in the extracellular matrix, focal adhesion and neutrophil migration; (2) Network pharmacology results show HQD has 133 core targets for treating UC and CRC, acting on extracellular matrix, inflammatory bowel disease, chemical carcinogen receptor activation and other pathways; (3) The intersection of hub genes and core targets yielded two key targets, MMP1 and MMP3; (4) STAT3 is a shared TF of MMP1 and MMP3. (5) Molecular docking and MD verified that the dockings between Glabridin and STAT3/MMP1/MMP3 are stable and reliable; (6) In murine vivo experiments verified that Glabridin reduces inflammation, extracellular matrix degradation, and the occurrence of epithelial-mesenchymal transition to prevent UC transforming into CAC by inhibiting the phosphorylation of STAT3 and regulating the activity of MMP1/3.
Collapse
Affiliation(s)
- Roude Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Xiaoxia Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Shuimei Cen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Ying Zou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China; Department of Traditional Chinese Medicine, Dongguan Liaobu Hospital, Dongguan 523000, China.
| |
Collapse
|
8
|
Liang C, Lin L, Hu J, Ma Y, Li Y, Sun Z. Comprehensive pulmonary metabolic responses to silica nanoparticles exposure in Fisher 344 rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116256. [PMID: 38554605 DOI: 10.1016/j.ecoenv.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Silica nanoparticles (SiNPs) could induce adverse pulmonary effects, but the mechanism was not clear enough. Metabolomics is a sensitive and high-throughput approach that could investigate the intrinsic causes of adverse health effects caused by SiNPs. The current investigation represented the first in vivo metabolomics study examining the chronic pulmonary toxicity of SiNPs at a low dosage, mimicking real human exposure situation. The recovery process after the cessation of exposure was also taken into consideration. Fisher 344 rats were treated with either saline or SiNPs for 6 months. Half of the animals in each group received an additional six-month period for recovery. The findings indicated that chronic low-level exposure to SiNPs resulted in notable alterations in pulmonary metabolism of amino acids, lipids, carbohydrates, and nucleotides. SiNPs exerted an impact on various metabolites and metabolic pathways which are linked to oxidative stress, inflammation and tumorigenesis. These included but were not limited to L-carnitine, spermidine, taurine, xanthine, and glutathione metabolism. The metabolic alterations caused by SiNPs exhibited a degree of reversibility. However, the interference of SiNPs on two metabolic pathways related to tumorigenesis was observed to persist after a recovery period. The two metabolic pathways are glycerophospholipid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis. This study elucidated the metabolic alterations induced by chronic low-level exposure to SiNPs and presented novel evidence of the chronic pulmonary toxicity and carcinogenicity of SiNPs, from a metabolomic perspective.
Collapse
Affiliation(s)
- Chen Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
9
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Zhang C, Li Q, Xing J, Yang Y, Zhu M, Lin L, Yu Y, Cai X, Wang X. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater 2024; 177:347-360. [PMID: 38373525 DOI: 10.1016/j.actbio.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.
Collapse
Affiliation(s)
- Cong Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China; Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Mengmei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xianwen Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
11
|
Gao P, Mei Z, Liu Z, Zhu D, Yuan H, Zhao R, Xu K, Zhang T, Jiang Y, Suo C, Chen X. Association between serum urea concentrations and the risk of colorectal cancer, particularly in individuals with type 2 diabetes: A cohort study. Int J Cancer 2024; 154:297-306. [PMID: 37671773 DOI: 10.1002/ijc.34719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Dysregulation of the urea cycle (UC) has been detected in colorectal cancer (CRC). However, the impact of the UC's end product, urea, on CRC development remains unclear. We investigated the association between serum urea and CRC risk based on the data of 348 872 participants cancer-free at recruitment from the UK Biobank. Multivariable Cox proportional hazards models were fitted to conduct risk estimates. Stratification analyses based on sex, diet pattern, metabolic factors (including body mass index [BMI], the estimated glomerular filtration rate [eGFR] and type 2 diabetes [T2D]) and genetic profiles (the polygenic risk score [PRS] of CRC) were conducted to find potential modifiers. During an average of 9.0 years of follow-up, we identified 3408 (1.0%) CRC incident cases. Serum urea showed a nonlinear relationship with CRC risk (P-nonlinear: .035). Lower serum urea levels were associated with a higher CRC risk, with a fully-adjusted hazard ratio (HR) of 1.26 (95% confidence interval [CI]: 1.13-1.41) in the first quartile (Q1) of urea, compared to the Q4. This association was largely consistent across subgroups of sex, protein diet, BMI, eGFR and CRC-PRSs (P-interaction >.05); however, it was stronger in the T2D, with an interaction between urea and T2D on both additive (synergy index: 3.32, [95% CI: 1.24-8.88]) and multiplicative scales (P-interaction: .019). Lower serum urea concentrations were associated with an increased risk of CRC, with a more pronounced effect observed in individuals with T2D. Maintaining stable levels of serum urea has important implications for CRC prevention, particularly in individuals with T2D.
Collapse
Affiliation(s)
- Peipei Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Dongliang Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
12
|
Gurung S, Timmermand OV, Perocheau D, Gil-Martinez AL, Minnion M, Touramanidou L, Fang S, Messina M, Khalil Y, Spiewak J, Barber AR, Edwards RS, Pinto PL, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PGV, Ridout D, Heywood W, Hargreaves I, Heales S, Mills PB, Waddington SN, Gissen P, Eaton S, Ryten M, Feelisch M, Frassetto A, Witney TH, Baruteau J. mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria. Sci Transl Med 2024; 16:eadh1334. [PMID: 38198573 PMCID: PMC7615535 DOI: 10.1126/scitranslmed.adh1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024]
Abstract
The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.
Collapse
Affiliation(s)
- Sonam Gurung
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Dany Perocheau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ana Luisa Gil-Martinez
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Loukia Touramanidou
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sherry Fang
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Martina Messina
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Youssef Khalil
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Justyna Spiewak
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Abigail R Barber
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Richard S Edwards
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Patricia Lipari Pinto
- Santa Maria's Hospital, Lisbon North University Hospital Center, 1649-028 Lisbon, Portugal
| | | | | | | | - Lisa Rice
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Deborah Ridout
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Wendy Heywood
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ian Hargreaves
- Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool L3 5UG, UK
| | - Simon Heales
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Philippa B Mills
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of Witswatersrand, Braamfontein, 2000 Johannesburg, South Africa
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | | | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
13
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
14
|
Duff C, Alexander IE, Baruteau J. Gene therapy for urea cycle defects: An update from historical perspectives to future prospects. J Inherit Metab Dis 2024; 47:50-62. [PMID: 37026568 PMCID: PMC10953416 DOI: 10.1002/jimd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
15
|
Sun T, Ren K, Xu G, Ma R, Wang X, Min T, Xie X, Sun A, Ma Y, Wang H, Zhang Y, Zhu K, Dang C, Zhang G, Zhang H. Plasma-Activated Solutions Mitigates DSS-Induced Colitis via Restoring Redox Homeostasis and Reversing Microbiota Dysbiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304044. [PMID: 37870220 PMCID: PMC10700679 DOI: 10.1002/advs.202304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Ulcerative colitis is a chronic disease that increases the risk of developing colorectal cancer. Conventional medications are limited by drug delivery and a weak capacity to modulate the inflammatory microenvironment. Further, gut microbiota dysbiosis caused by mucosal damage and dysregulated redox homeostasis leads to frequent recurrence. Therefore, promoting mucosal healing and restoring redox homeostasis is considered the initial step in treating ulcerative colitis. Plasma-activated solutions (PAS) are liquids rich in various reactive nitrogen species (RNS) and reactive oxygen species (ROS) and are used to treat multiple diseases. However, its effect on ulcerative colitis remains to be examined. Therefore, using a DSS-induced mice colitis model, it is found that PAS has the potential to treat colitis and prevent its recurrence by promoting intestinal mucosal repair, reducing inflammation, improving redox homeostasis, and reversing gut microbiota dysbiosis. Further, an equipment is designed for preparing PAS without using nitrogen; however, after treatment with the Nitro-free PAS, the therapeutic effect of PAS is significantly weakened or even lost, indicating that RNS may be the main mediator by which PAS exerts its therapeutic effects. Overall, this study demonstrates the treatment of ulcerative colitis as a novel application of PAS.
Collapse
Affiliation(s)
- Tuanhe Sun
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kaijie Ren
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Rulan Ma
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Xueni Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Tianhao Min
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Xin Xie
- Department of Nuclear MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Anbang Sun
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yuyi Ma
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Haonan Wang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yong Zhang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kun Zhu
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Chengxue Dang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Hao Zhang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
16
|
Yan Y, Lei Y, Qu Y, Fan Z, Zhang T, Xu Y, Du Q, Brugger D, Chen Y, Zhang K, Zhang E. Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. NPJ Biofilms Microbiomes 2023; 9:56. [PMID: 37580334 PMCID: PMC10425470 DOI: 10.1038/s41522-023-00420-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is associated with gut dysbiosis and can lead to colitis-associated malignancies. Bacteroides uniformis (Bu) regulates animal intestinal homeostasis; however, the mechanism by which it alleviates colitis in mice remains unknown. We investigated the effects of B. uniformis JCM5828 and its metabolites on female C57BL/6J mice with dextran sulfate sodium salt (DSS) induced colitis. Treatment with Bu considerably alleviated colitis progression and restored the mechanical and immune barrier protein expression. Additionally, Bu increased the abundance of the symbiotic bacteria Bifidobacterium and Lactobacillus vaginalis while decreasing that of pathogenic Escherichia-Shigella, and modulated intestinal bile acid metabolism. Bu largely regulated the expression of key regulatory proteins of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in colonic tissues and the differentiation of TH17 cells. However, Bu could not directly inhibit TH17 cell differentiation in vitro; it modulated the process in the lamina propria by participating in bile acid metabolism and regulating key metabolites (alpha-muricholic, hyodeoxycholic, and isolithocholic acid), thereby modulating the intestinal immune response. Our findings suggest that Bu or bile acid supplements are potential therapies for colitis and other diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- YiTing Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ying Qu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhen Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Lu J, Shi T, Shi C, Chen F, Yang C, Xie X, Wang Z, Shen H, Xu J, Leong KW, Shao D. Thiol-Disulfide Exchange Coordinates the Release of Nitric Oxide and Dexamethasone for Synergistic Regulation of Intestinal Microenvironment in Colitis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0204. [PMID: 37533463 PMCID: PMC10393581 DOI: 10.34133/research.0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The cell-specific functions of nitric oxide (NO) in the intestinal microenvironment orchestrate its therapeutic effects in ulcerative colitis. While most biomaterials show promise by eliciting the characteristics of NO, the insufficient storage, burst release, and pro-inflammatory side effects of NO remain as challenges. Herein, we report the development of thiol-disulfide hybrid mesoporous organosilica nanoparticles (MONs) that improve the storage and sustained release of NO, broadening the therapeutic window of NO-based therapy against colitis. The tailored NO-storing nanomaterials coordinated the release of NO and the immunoregulator dexamethasone (Dex) in the intestinal microenvironment, specifically integrating the alleviation of oxidative stress in enterocytes and the reversal of NO-exacerbated macrophage activation. Mechanistically, such a synchronous operation was achieved by a self-motivated process wherein the thiyl radicals produced by NO release cleaved the disulfide bonds to degrade the matrix and release Dex via thiol-disulfide exchange. Specifically, the MON-mediated combination of NO and Dex greatly ameliorated intractable colitis compared with 5-aminosalicylic acid, even after delayed treatment. Together, our results reveal a key contribution of synergistic modulation of the intestinal microenvironment in NO-based colitis therapy and introduce thiol-disulfide hybrid nanotherapeutics for the management of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Junna Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Grüner N, Ortlepp AL, Mattner J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int J Mol Sci 2023; 24:ijms24065161. [PMID: 36982235 PMCID: PMC10048911 DOI: 10.3390/ijms24065161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Intestinal microbiota, and their mutual interactions with host tissues, are pivotal for the maintenance of organ physiology. Indeed, intraluminal signals influence adjacent and even distal tissues. Consequently, disruptions in the composition or functions of microbiota and subsequent altered host-microbiota interactions disturb the homeostasis of multiple organ systems, including the bone. Thus, gut microbiota can influence bone mass and physiology, as well as postnatal skeletal evolution. Alterations in nutrient or electrolyte absorption, metabolism, or immune functions, due to the translocation of microbial antigens or metabolites across intestinal barriers, affect bone tissues, as well. Intestinal microbiota can directly and indirectly alter bone density and bone remodeling. Intestinal dysbiosis and a subsequently disturbed gut-bone axis are characteristic for patients with inflammatory bowel disease (IBD) who suffer from various intestinal symptoms and multiple bone-related complications, such as arthritis or osteoporosis. Immune cells affecting the joints are presumably even primed in the gut. Furthermore, intestinal dysbiosis impairs hormone metabolism and electrolyte balance. On the other hand, less is known about the impact of bone metabolism on gut physiology. In this review, we summarized current knowledge of gut microbiota, metabolites and microbiota-primed immune cells in IBD and bone-related complications.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Lisa Ortlepp
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Meng Z, Yan Z, Sun W, Bao X, Feng W, Gu Y, Tian S, Wang J, Chen X, Zhu W. Azoxystrobin Disrupts Colonic Barrier Function in Mice via Metabolic Disorders Mediated by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:789-801. [PMID: 36594455 DOI: 10.1021/acs.jafc.2c05543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The widespread use of azoxystrobin (AZO) over the past few decades has drawn great attention to its environmental health effects. The objective of the present study was to explore the effects of AZO on intestinal barrier function in mice from the perspective of gut microbiota. Specifically, exposure to AZO could cause colonic barrier dysfunction in mice. Meanwhile, AZO could also cause dysbiosis of gut microbiota. Further studies revealed that the metabolic profile of the microbiota was significantly disturbed with AZO exposure. Last but not least, we confirmed that the gut microbiota played a central role in AZO-induced colonic barrier dysfunction through the gut microbiota transplantation experiment. Gut microbiota mediated colonic barrier dysfunction induced by AZO via inducing dysbiosis of the microbiota metabolic profile. The findings of this study strongly support a new insight that the gut microbiota can be a key target of health risks of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wenjing Feng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Li W, Chen F, Gao H, Xu Z, Zhou Y, Wang S, Lv Z, Zhang Y, Xu Z, Huo J, Zhao J, Zong Y, Feng W, Shen X, Wu Z, Lu A. Cytokine concentration in peripheral blood of patients with colorectal cancer. Front Immunol 2023; 14:1175513. [PMID: 37063892 PMCID: PMC10098211 DOI: 10.3389/fimmu.2023.1175513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The role of tumour secretory cytokines and peripheral circulatory cytokines in tumour progression has received increasing attention; however, the role of tumour-related inflammatory cytokines in colorectal cancer (CRC) remains unclear. In this study, the concentrations of various cytokines in the peripheral blood of healthy controls and patients with CRC at different stages were compared. Methods Peripheral blood samples from 4 healthy participants and 22 colorectal cancer patients were examined. Luminex beads were used to evaluate concentration levels of 40 inflammatory cytokines in peripheral blood samples. Results In peripheral blood, compared with healthy controls and early stage (I + II) CRC patients, advanced CRC (III + IV) patients had increased concentrations of mononuclear/macrophage chemotactic-related proteins (CCL7, CCL8, CCL15, CCL2, and MIF), M2 polarization-related factors (IL-1β, IL-4), neutrophil chemotactic and N2 polarization-related cytokines (CXCL2, CXCL5, CXCL6, IL-8), dendritic cells (DCs) chemotactic-related proteins (CCL19, CCL20, and CCL21), Natural killer (NK) cell related cytokines (CXCL9, CXCL10), Th2 cell-related cytokines (CCL1, CCL11, CCL26), CXCL12, IL-2, CCL25, and CCL27, and decreased IFN-γ and CX3CL1 concentrations. The differential upregulation of cytokines in peripheral blood was mainly concentrated in CRC patients with distant metastasis and was related to the size of the primary tumour; however, there was no significant correlation between cytokine levels in peripheral blood and the propensity and mechanism of lymph node metastasis. Discussion Different types of immune cells may share the same chemokine receptors and can co-localise in response to the same chemokines and exert synergistic pro-tumour or anti-tumour functions in the tumour microenvironment. Chemokines and cytokines affect tumour metastasis and prognosis and may be potential targets for treatment.
Collapse
Affiliation(s)
- Wenchang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Gao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shenjie Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohui Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| |
Collapse
|
21
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
22
|
Radojević D, Bekić M, Gruden-Movsesijan A, Ilić N, Dinić M, Bisenić A, Golić N, Vučević D, Đokić J, Tomić S. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes 2022; 14:2127455. [PMID: 36184742 PMCID: PMC9543149 DOI: 10.1080/19490976.2022.2127455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-γ-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.
Collapse
Affiliation(s)
- Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Bisenić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, 111042 Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,Sergej Tomić Institute for the Application of Nuclear Energy, 11080 Belgrade, Banatska 31b, Belgrade, Serbia
| |
Collapse
|
23
|
Li JY, Guo YC, Zhou HF, Yue TT, Wang FX, Sun F, Wang WZ. Arginine metabolism regulates the pathogenesis of inflammatory bowel disease. Nutr Rev 2022; 81:578-586. [PMID: 36040377 PMCID: PMC10086623 DOI: 10.1093/nutrit/nuac070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is related to genetic susceptibility, enteric dysbiosis, and uncontrolled, chronic inflammatory responses that lead to colonic tissue damage and impaired intestinal absorption. As a consequence, patients with IBD are prone to nutrition deficits after each episode of disease resurgence. Nutritional supplementation, especially for protein components, is often implemented during the remission phase of IBD. Notably, ingested nutrients could affect the progression of IBD and the prognostic outcome of patients; therefore, they should be cautiously evaluated prior to being used for IBD intervention. Arginine (Arg) is a semi-essential amino acid required for protein synthesis and intimately associated with gut pathophysiology. To help optimize arginine-based nutritional intervention strategies, the present work summarizes that during the process of IBD, patients manifest colonic Arg deficiency and the turbulence of Arg metabolic pathways. The roles of Arg–nitric oxide (catalyzed by inducible nitric oxide synthase) and Arg–urea (catalyzed by arginases) pathways in IBD are debatable; the Arg–polyamine and Arg–creatine pathways are mainly protective. Overall, supplementation with Arg is a promising therapeutic strategy for IBD; however, the dosage of Arg may need to be carefully tailored for different individuals at different disease stages. Additionally, the combination of Arg supplementation with inhibitors of Arg metabolic pathways as well as other treatment options is worthy of further exploration.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Chao Guo
- Huazhong University of Science and Technology Department of Clinical Nutrition, Tongji Medical College, , Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Huazhong University of Science and Technology Department of Clinical Nutrition, Tongji Medical College, , Wuhan, China
| | - Fa-Xi Wang
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan, China
| | - Fei Sun
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
25
|
Lin Q, Liu M, Yue GGL, Cheung MK, Lai Z, Kwok FHF, Lee JKM, Wang Z, Lau CBS, Tan N. Anti-inflammatory activities of natural cyclopeptide RA-XII in colitis-associated colon cancer mouse model and its effect on gut microbiome. Phytother Res 2022; 36:2641-2659. [PMID: 35537703 DOI: 10.1002/ptr.7482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC), the third most common cancer globally, is associated with intestinal inflammation that leads to poor prognosis. RA-XII, a natural cyclopeptide, has previously been reported to possess anti-tumor activities. Here, the anti-inflammatory activities of RA-XII were investigated in colitis-associated colon cancer mice and a co-culture in vitro model, in which colon cancer cells HCT116 and macrophages RAW264.7 were grown together to mimic the inflammatory microenvironment of CRC. Changes of inflammatory-related molecules and protein expressions in cells were evaluated after RA-XII incubation. Besides, azoxymethane and dextran sulfate sodium-induced colitis-associated colon cancer mice were treated with RA-XII for 24 days, inflammatory parameters and gut microbiome alterations were studied. Our results showed that RA-XII reversed the inflammatory responses of RAW264.7 cells induced by LPS and modulated the protein expressions of AKT, STAT3/p-STAT3, P70S6K, NF-κB and GSK3β and suppressed the expression of LC3A/B in HCT116 cells in co-culture system. RA-XII treatment restored the colitis damage in colon, reduced colon tumors numbers and decreased inflammatory factors (IL-6, IL-10 and TNF-α). The role of RA-XII on regulating gut microbiome was also demonstrated for the first time. In conclusion, our findings provided new scientific evidence for developing RA-XII as a potent anti-inflammatory agent for CRC.
Collapse
Affiliation(s)
- Qianwen Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingyu Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhixing Lai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Wu S, Luo W, Wu X, Shen Z, Wang X. Functional Phenotypes of Peritoneal Macrophages Upon AMD3100 Treatment During Colitis-Associated Tumorigenesis. Front Med (Lausanne) 2022; 9:840704. [PMID: 35615089 PMCID: PMC9126482 DOI: 10.3389/fmed.2022.840704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
CXCL12 and its receptor CXCR4 are independent prognostic factors in colorectal cancer. AMD3100 is the most frequently used FDA-approved antagonist that targets the CXCL12-CXCR4 axis in clinical trials. We aimed to explore the role of AMD3100 and its effect on peritoneal macrophages' functional phenotypes during colitis-associated tumorigenesis. We treated AMD3100 in a colitis-associated colon cancer mouse model and evaluated its effect on tumorigenesis. The phagocytosis activities of peritoneal macrophages were measured by flow cytometry. The proportions of macrophages and M1/M2 subpopulations were investigated by flow cytometry, ELISA, and immunochemistry. Serum levels of pro-inflammatory and anti-inflammatory cytokines were measured by LEGENDplex™ kits. Transwell assay and qRT-PCR were performed to investigate the direct effect of CXCL12 on macrophages in vitro. We demonstrated that AMD3100 treatment reduced the inflammatory damages in the colonic mucosal and ameliorated tumor development in experimental mice. We found that the phagocytosis activities of peritoneal macrophages fluctuated during colitis-associated tumorigenesis. The proportions of peritoneal macrophages and M1/M2 subpopulations, together with their metabolite and cytokines, changed dynamically in the process. Moreover, AMD3100 regulated the functional phenotypes of macrophages, including reducing the recruiting activity, promoting polarization to the M1 subpopulation, and reducing IL-12 and IL-23 levels in serum. Our study contributes to understanding dynamic changes of peritoneal macrophages upon AMD3100 treatment during tumorigenesis and sheds light on the potential therapeutic target of AMD3100 and peritoneal macrophages against colitis-associated colon cancer.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyan Wang
| |
Collapse
|
27
|
Zhao L, Liu Y, Zhang S, Wei L, Cheng H, Wang J, Wang J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis 2022; 13:378. [PMID: 35444235 PMCID: PMC9021207 DOI: 10.1038/s41419-022-04821-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Metabolic disorders and abnormal immune function changes occur in tumor tissues and cells to varying degrees. There is increasing evidence that reprogrammed energy metabolism contributes to the development of tumor suppressive immune microenvironment and influences the course of gastric cancer (GC). Current studies have found that tumor microenvironment (TME) also has important clinicopathological significance in predicting prognosis and therapeutic efficacy. Novel approaches targeting TME therapy, such as immune checkpoint blockade (ICB), metabolic inhibitors and key enzymes of immune metabolism, have been involved in the treatment of GC. However, the interaction between GC cells metabolism and immune metabolism and how to make better use of these immunotherapy methods in the complex TME in GC are still being explored. Here, we discuss how metabolic reprogramming of GC cells and immune cells involved in GC immune responses modulate anti-tumor immune responses, as well as the effects of gastrointestinal flora in TME and GC. It is also proposed how to enhance anti-tumor immune response by understanding the targeted metabolism of these metabolic reprogramming to provide direction for the treatment and prognosis of GC.
Collapse
Affiliation(s)
- Lin Zhao
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yuanyuan Liu
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Simiao Zhang
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Lingyu Wei
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Hongbing Cheng
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Department of Microbiology, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jinsheng Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| | - Jia Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Department of Immunology, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
28
|
Uyanga VA, Liu L, Zhao J, Wang X, Jiao H, Lin H. Central and peripheral effects of L-citrulline on thermal physiology and nitric oxide regeneration in broilers. Poult Sci 2022; 101:101669. [PMID: 35101686 PMCID: PMC8804195 DOI: 10.1016/j.psj.2021.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
The mechanism that mediates L-citrulline (L-Cit) hypothermia is poorly understood, and the involvement of nitric oxide signaling has not been fully elucidated. Therefore, this study aimed to determine L-Cit's influence on body temperature and to ascertain the central and peripheral mechanisms associated with this response. Chicks responded to intracerebroventricular (ICV) injection of L-Cit with high and low body temperatures (P < 0.05) depending on the dose tested, for both the surface and rectal temperatures. Peripheral (i.p.) L-Cit injection did not affect body temperature responses. Nitric oxide (NO) concentration and NO synthase (NOS) were influenced with varying doses of L-Cit. Hypothalamic NO was increased at 4 µg L-Cit whereas, plasma iNOS was elevated at 2µg L-Cit treatment. However, i.p. L-Cit did not change the NO content, rather it induced higher (P < 0.05) plasma tNOS and iNOS activity, and further upregulated iNOS and nNOS gene expression in the hypothalamus. In addition, ICV L-Cit potentiated a pro- versus anti-inflammatory milieu with the induction of IL-8, IL-10, and TGFβ (P < 0.05), which may be related to the changes in body temperature. Following ICV L-Cit administration, it was observed that L-Cit caused dose variable changes in the ultrastructure of hypothalamic neurons. The lowest dose was associated with a higher number of dead or degenerating neurons, whereas the highest L-Cit dose had fewer neuronal numbers with larger sizes. Therefore, this study shows that central and peripheral L-Cit administration imposes changes in body temperature, nitric oxide production, and inflammatory responses, in a dose-dependent manner.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Lei Liu
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
29
|
Uyanga VA, Amevor FK, Liu M, Cui Z, Zhao X, Lin H. Potential Implications of Citrulline and Quercetin on Gut Functioning of Monogastric Animals and Humans: A Comprehensive Review. Nutrients 2021; 13:3782. [PMID: 34836037 PMCID: PMC8621968 DOI: 10.3390/nu13113782] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
The importance of gut health in animal welfare and wellbeing is undisputable. The intestinal microbiota plays an essential role in the metabolic, nutritional, physiological, and immunological processes of animals. Therefore, the rapid development of dietary supplements to improve gut functions and homeostasis is imminent. Recent studies have uncovered the beneficial effects of dietary supplements on the immune response, microbiota, gut homeostasis, and intestinal health. The application of citrulline (a functional gut biomarker) and quercetin (a known potent flavonoid) to promote gut functions has gained considerable interest as both bioactive substances possess anti-inflammatory, anti-oxidative, and immunomodulatory properties. Research has demonstrated that both citrulline and quercetin can mediate gut activities by combating disruptions to the intestinal integrity and alterations to the gut microbiota. In addition, citrulline and quercetin play crucial roles in maintaining intestinal immune tolerance and gut health. However, the synergistic benefits which these dietary supplements (citrulline and quercetin) may afford to simultaneously promote gut functions remain to be explored. Therefore, this review summarizes the modulatory effects of citrulline and quercetin on the intestinal integrity and gut microbiota, and further expounds on their potential synergistic roles to attenuate intestinal inflammation and promote gut health.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
| | - Felix Kwame Amevor
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| |
Collapse
|
30
|
Li X, Li C, Li Y, Liu C, Liang X, Liu T, Liu Z. Sodium nitroprusside protects HFD induced gut dysfunction via activating AMPKα/SIRT1 signaling. BMC Gastroenterol 2021; 21:359. [PMID: 34600475 PMCID: PMC8487517 DOI: 10.1186/s12876-021-01934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Activation of Adenosine 5′-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the mechanism. Methods SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intestinal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 pathway and gut barrier indicators were investigated. Results SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal permeability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and the activated AMPKα/SIRT1 signaling. Conclusions The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by activating the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuanqi Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Cong Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
31
|
van der Meer JHM, de Boer RJ, Meijer BJ, Smit WL, Vermeulen JLM, Meisner S, van Roest M, Koelink PJ, Dekker E, Hakvoort TBM, Koster J, Hawinkels LJAC, Heijmans J, Struijs EA, Boermeester MA, van den Brink GR, Muncan V. Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis. Cell Death Dis 2021; 12:897. [PMID: 34599156 PMCID: PMC8486827 DOI: 10.1038/s41419-021-04173-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022]
Abstract
The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.
Collapse
Affiliation(s)
- Jonathan H M van der Meer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Ruben J de Boer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Bartolomeus J Meijer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Wouter L Smit
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jacqueline L M Vermeulen
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Sander Meisner
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Manon van Roest
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Pim J Koelink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Evelien Dekker
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jan Koster
- Amsterdam UMC, University of Amsterdam, Department of Oncogenomics, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Eduard A Struijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marja A Boermeester
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
- Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Vanesa Muncan
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q. Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. CROHN'S & COLITIS 360 2021; 3:otab073. [PMID: 36777266 PMCID: PMC9802269 DOI: 10.1093/crocol/otab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Iman Geelani Khwaja
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jocelyn Rachel Schreyer
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Ho SW, El-Nezami H, Corke H, Ho CS, Shah NP. L-citrulline enriched fermented milk with Lactobacillus helveticus attenuates dextran sulfate sodium (DSS) induced colitis in mice. J Nutr Biochem 2021; 99:108858. [PMID: 34587540 DOI: 10.1016/j.jnutbio.2021.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/28/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory gastrointestinal diseases that causes worldwide suffering. L. helveticus is a probiotic that can enhance intestinal barrier function via alleviation of excessive inflammatory response. Citrulline, a functional amino acid, has been reported to stimulate muscle synthesis and to function with a prebiotic-like action with certain Lactobacillus strains. The aim of this study was to investigate the potential synergistic effect of combining L. helveticus and citrulline on protection against damage induced by dextran sulfate sodium (DSS) in a mouse model. 6-week-old male C57BL/6J mice were fed with DSS water and randomly divided for administering with different milk treatments: 1) plain milk (control or DSS control), 2) 1% (w/v) citrulline enriched milk (Cit_milk), 3) milk fermented with L. helveticus (LHFM) and 4) DSS+milk fermented with L. helveticus with 1% (w/v) citrulline (Cit_LHFM). The treatment effects on the survival and macroscopic and microscopic signs were examined. All treatments presented different degrees of protective effects on attenuating the damages induced by DSS. All treatments reduced the body weight loss, disease activity index (DAI), histological scores, pro-inflammatory cytokine expression (IL-6, TNF-α and IFN-γ) and production (IL-4) (all P <0.05) and the tight junction (TJ) protein (zonula occluden-1 (ZO-1) expression. LHFM and Cit_LHFM improved survival rate (both at P<0.05). Particularly, Cit_LHFM showed greater effects on protecting the damages induced by DSS, especially in ameliorating colonic permeability, TJ protein (ZO-1, occludin and claudin-1) expression and distribution as well as in reducing IL-4 and IL-17 expression (all P <0.05). Our findings suggested that the combination of and citrulline had significant synergistic effect on protecting against injury from DSS-induced colitis. Therefore, citrulline enriched L. helveticus fermented milk is suggested to be a potential therapy for treating IBD.
Collapse
Affiliation(s)
- Sze Wing Ho
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani El-Nezami
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Chun Sing Ho
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
34
|
Jin Z, Kho J, Dawson B, Jiang MM, Chen Y, Ali S, Burrage LC, Grover M, Palmer DJ, Turner DL, Ng P, Nagamani SC, Lee B. Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation. J Clin Invest 2021; 131:138935. [PMID: 33373331 DOI: 10.1172/jci138935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Abstract
Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase-dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.
Collapse
Affiliation(s)
- Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jordan Kho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Saima Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Monica Grover
- Department of Pediatric Endocrinology, Stanford School of Medicine, Stanford, California, USA
| | - Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dustin L Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sandesh Cs Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
35
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Cui X, Qin F, Yu X, Xiao F, Cai G. SCISSOR™: a single-cell inferred site-specific omics resource for tumor microenvironment association study. NAR Cancer 2021; 3:zcab037. [PMID: 34514416 PMCID: PMC8428296 DOI: 10.1093/narcan/zcab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor–tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
37
|
ASL expression in ALDH1A1 + neurons in the substantia nigra metabolically contributes to neurodegenerative phenotype. Hum Genet 2021; 140:1471-1485. [PMID: 34417872 PMCID: PMC8460544 DOI: 10.1007/s00439-021-02345-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/12/2021] [Indexed: 12/29/2022]
Abstract
Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.
Collapse
|
38
|
Nevo N, Ordonez-Moreno LA, Gur-Cohen S, Avemaria F, Bhattacharya S, Khatib-Massalha E, Bertagna M, Haddad M, Chakrabarti P, Ruf W, Lapidot T, Kollet O. Enhanced thrombin/PAR1 activity promotes G-CSF- and AMD3100-induced mobilization of hematopoietic stem and progenitor cells via NO upregulation. Leukemia 2021; 35:3334-3338. [PMID: 33654208 DOI: 10.1038/s41375-021-01194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Neta Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Francesca Avemaria
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Mayla Bertagna
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Montaser Haddad
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wolfram Ruf
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Chen Y, Wang B, Yuan X, Lu Y, Hu J, Gao J, Lin J, Liang J, Hou S, Chen S. Vitexin prevents colitis-associated carcinogenesis in mice through regulating macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153489. [PMID: 33571919 DOI: 10.1016/j.phymed.2021.153489] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice. PURPOSE We aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism. METHODS The mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1β, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice. RESULTS Our results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice. CONCLUSION Vitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .
Collapse
Affiliation(s)
- Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Bingxin Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510000, PR China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xin Yuan
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (Guangzhou Branch), Guangzhou, Guangdong, 510006, PR China
| | - Yingyu Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510000, PR China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Jizong Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510000, PR China
| | - Jian Liang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (Guangzhou Branch), Guangzhou, Guangdong, 510006, PR China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510000, PR China.
| |
Collapse
|
40
|
Nitric Oxide Mediates Inflammation in Type II Diabetes Mellitus through the PPAR γ/eNOS Signaling Pathway. PPAR Res 2020; 2020:8889612. [PMID: 33293942 PMCID: PMC7718064 DOI: 10.1155/2020/8889612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammation accounts for the process of type II diabetes mellitus (T2DM), the specific mechanism of which is still to be elucidated yet. Nitric oxide (NO), a critical inflammation regulator, the role of which is the inflammation of T2DM, is rarely reported. Therefore, our study is aimed at exploring the effect of NO on the inflammation in T2DM and the corresponding mechanism. We analyzed the NO levels in plasma samples from T2DM patients and paired healthy adults by Nitric Oxide Analyzer then measured the expression of inflammatory cytokines (C-reactive protein, heptoglobin, IL-1β, TNF-α, IL-6) in insulin-induced HepG2 cells treated with NO donor or NO scavenger, and the PPARγ, eNOS, C-reactive protein, heptoglobin, IL-1β, TNF-α, and IL-6 levels were detected by RT-PCR and western blot in insulin-induced HepG2 cells transfected with si-PPARγ. The results showed that excess NO increased the inflammation marker levels in T2DM, which is activated by the PPARγ/eNOS pathway. These findings will strengthen the understanding of NO in T2DM and provide a new target for the treatment of T2DM.
Collapse
|
41
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
42
|
Keshet R, Lee JS, Adler L, Iraqi M, Ariav Y, Lim LQJ, Lerner S, Rabinovich S, Oren R, Katzir R, Weiss Tishler H, Stettner N, Goldman O, Landesman H, Galai S, Kuperman Y, Kuznetsov Y, Brandis A, Mehlman T, Malitsky S, Itkin M, Koehler SE, Zhao Y, Talsania K, Shen TW, Peled N, Ulitsky I, Porgador A, Ruppin E, Erez A. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. NATURE CANCER 2020; 1:894-908. [PMID: 35121952 DOI: 10.1038/s43018-020-0106-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/21/2020] [Indexed: 06/14/2023]
Abstract
Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammed Iraqi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Ariav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lisha Qiu Jin Lim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Katzir
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
| | - Hila Weiss Tishler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Landesman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevi Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - S Eleonore Koehler
- Department Anatomy & Embryology, Maastricht University, Maastricht, the Netherlands
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Keyur Talsania
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tsai-Wei Shen
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nir Peled
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka Medical Center and Ben-Gurion University, Beer-Sheva, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Tang Q, Zhang W, Zhang C, Guan Y, Ding J, Yuan C, Tan C, Gao X, Tan S. Oxymatrine loaded nitric oxide-releasing liposomes for the treatment of ulcerative colitis. Int J Pharm 2020; 586:119617. [DOI: 10.1016/j.ijpharm.2020.119617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
44
|
Application of film-forming solution as a transdermal delivery system of piperine-rich herbal mixture extract for anti-inflammation. Heliyon 2020; 6:e04139. [PMID: 32551384 PMCID: PMC7292918 DOI: 10.1016/j.heliyon.2020.e04139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Piperine-rich herbal mixture (PHM) used in this study is a traditional Thai medicine that contains 21 oriental herbs. It is called "Sahastara remedy" and is officially included in the Thai National List of Essential Medicine since A.D. 2011. PHM has been used orally to relieve muscle and bone pains. It contains Piper nigrum fruits as a major constituent and also Piper retrofractum fruits, PHM thus has anti-inflammatory activities that mostly come from the bioactivities of piperine consisting of these pepper fruits. Unfortunately, PHM usually causes gastrointestinal side effects. Consequently, a topical product containing an alcoholic extract of PHM (PHM-E), i.e., film-forming solution (FFS) was developed to overcome this drawback. The aims of this study were to investigate the anti-inflammatory activity of PHM-E, to evaluate physicochemical properties and the anti-inflammatory activity of FFS containing PHM-E (PHM-E FFS). Anti-inflammatory activities of PHM-E were investigated in the RAW 264.7 cells. Physicochemical properties, in vitro toxicities and anti-inflammatory activities of PHM-E FFS including its dry film (PHM-E film) were determined. PHM-E showed anti-inflammatory activities with dose dependent manners via inhibition of nitric oxide and prostaglandin E2 production by the RAW 264.7 cells and promotion of the cell phenotype polarization from M1 to M2. PHM-E FFS had low viscosity and exhibited the Newtonian behavior. It provided elastic PHM-E film with low tensile strength. The release profile of piperine from PHM-E film followed a zero-kinetic model. PHM-E FFS demonstrated compatibility with the skin cells, minimal ocular irritant when accidentally splashing into the eye and moderate-to-high potency for inhibition of inflammatory symptoms in the rats. PHM-E FFS thus had potential for use in the further clinical study to investigate its efficacy and safety in patients.
Collapse
|
45
|
Ding Z, He K, Duan Y, Shen Z, Cheng J, Zhang G, Hu J. Photo-degradable micelles for co-delivery of nitric oxide and doxorubicin. J Mater Chem B 2020; 8:7009-7017. [DOI: 10.1039/d0tb00817f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photo-degradable triblock copolymers enable the co-delivery of nitric oxide and doxorubicin exerting an improved therapeutic effect.
Collapse
Affiliation(s)
- Zhanling Ding
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University
- Hefei 230031
- China
| | - Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
46
|
Baruteau J, Diez-Fernandez C, Lerner S, Ranucci G, Gissen P, Dionisi-Vici C, Nagamani S, Erez A, Häberle J. Argininosuccinic aciduria: Recent pathophysiological insights and therapeutic prospects. J Inherit Metab Dis 2019; 42:1147-1161. [PMID: 30723942 DOI: 10.1002/jimd.12047] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.
Collapse
Affiliation(s)
- Julien Baruteau
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Giusy Ranucci
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paul Gissen
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Johannes Häberle
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP) and Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
47
|
Tristetraprolin targets Nos2 expression in the colonic epithelium. Sci Rep 2019; 9:14413. [PMID: 31595002 PMCID: PMC6783411 DOI: 10.1038/s41598-019-50957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.
Collapse
|
48
|
Nieto-Veloza A, Wang Z, Zhong Q, Krishnan HB, Dia VP. BG-4 from Bitter Gourd ( Momordica charantia) Differentially Affects Inflammation In Vitro and In Vivo. Antioxidants (Basel) 2019; 8:antiox8060175. [PMID: 31197086 PMCID: PMC6617334 DOI: 10.3390/antiox8060175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
BG-4 isolated from bitter gourd has been reported for anti-cancer properties. The objective was to evaluate the anti-inflammatory properties of BG-4 in vitro and in vivo. Comparative study of the anti-inflammatory properties of BG-4 in vitro and in vivo was conducted on lipopolysaccharide (LPS)-activated mouse macrophages, and on dextran sodium sulfate (DSS)-induced colitis in mice. BG-4 reduced the production of pro-inflammatory markers in LPS-activated macrophages. On the other hand, intraperitoneal administration of BG-4 in DSS-induced colitis led to colon shortening, elevated neutrophils infiltration and myeloperoxidase activity, presence of blood in the stool, and loss of body weight, with differential systemic and local effects on pro-inflammatory cytokines in vivo. The results demonstrated that BG-4 differentially affected inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Andrea Nieto-Veloza
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| | - Zhihong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| | - Hari B Krishnan
- Agricultural Research Service, USDA, Columbia, MO 65211, USA.
| | - Vermont P Dia
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
49
|
Glynn SA. Emerging novel mechanisms of action for nitric oxide in cancer progression. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
|