1
|
Banks SA, Abeykoon JP, Rech K, Morris P, Tan QKG, Veres LN, Schoonover KL, Aksamit AJ, Keating GF, Kissoon N, Sominidi Damodaran S, Maredia HS, Davidge-Pitts CJ, Villasboas JC, Go R, Tobin WO. SLC29A3 Pathogenic Variants Resulting in Dural Based Fibroinflammatory Mass Lesions and H Syndrome Treated With Cobimetinib: A Case Report. Neurol Genet 2024; 10:e200197. [PMID: 39421731 PMCID: PMC11481978 DOI: 10.1212/nxg.0000000000200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
Objectives Pathogenic SLC29A3 variants are known to cause autosomal recessive disease with a spectrum of systemic involvement. We sought to expand on the spectrum of SLC29A3 variants and describe potential treatment. Methods We describe a case of newly diagnosed SLC29A3-related disorder, also known as H syndrome or familial histiocytosis, associated with CNS inflammatory pseudotumor and spinal cord compression. Results We present a 25-year-old man with recurrent dural based masses resulting in spinal cord and brain compression, hyperpigmented skin patches, proptosis, short stature, and elevated serum and spinal fluid inflammatory markers. Panel genetic testing revealed homozygous pathogenic variant c.1309G>A in the SLC29A3 gene resulting in a missense alteration (p. Gly437Arg). The patient was treated with cobimetinib with clinical, serologic, and radiographic improvement at 1-month follow-up. Discussion SLC29A3 variant may cause fibroinflammatory lesions involving the dura resembling the clinical spectrum of Rosai-Dorfman disease. Patients with SLC29A3 disease and neurologic signs or symptoms should undergo screening MRI for CNS involvement. MEK inhibition represents a novel treatment for this disorder.
Collapse
Affiliation(s)
- Samantha A Banks
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Jithma P Abeykoon
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Karen Rech
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Pearse Morris
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Queenie K G Tan
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Larissa N Veres
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Kimberly L Schoonover
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Allen J Aksamit
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Gesina F Keating
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Narayan Kissoon
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Sindhuja Sominidi Damodaran
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Hasina S Maredia
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Caroline J Davidge-Pitts
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Jose C Villasboas
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - Ronald Go
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| | - W Oliver Tobin
- From the Department of Neurology (S.A.B., A.J.A., G.F.K., N.K., W.O.T.); Division of Hematology (J.P.A., J.C.V., R.G.); Division of Hematopathology (K.R.); Division of Neuroradiology (P.M.); Department of Clinical Genomics (Q.K.G.T., L.N.V.); Division of General Internal Medicine (K.L.S.); Department of Dermatology (S.S.D., H.S.M.); Division of Endocrinology (C.J.D.-P.), Diabetes, Nutrition; and Center for Multiple Sclerosis and Autoimmune Neurology at Mayo Clinic (W.O.T.), Rochester, MN
| |
Collapse
|
2
|
Pogorelov D, Bode SFN, He X, Ramiro-Garcia J, Hedin F, Ammerlaan W, Konstantinou M, Capelle CM, Zeng N, Poli A, Domingues O, Montamat G, Hunewald O, Ciré S, Baron A, Longworth J, Demczuk A, Bazon ML, Casper I, Klimek L, Neuberger-Castillo L, Revets D, Guyonnet L, Delhalle S, Zimmer J, Benes V, Codreanu-Morel F, Lehners-Weber C, Weets I, Alper P, Brenner D, Gutermuth J, Guerin C, Morisset M, Hentges F, Schneider R, Shamji MH, Betsou F, Wilmes P, Glaab E, Cosma A, Goncalves J, Hefeng FQ, Ollert M. Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Nat Commun 2024; 15:10266. [PMID: 39592626 PMCID: PMC11599746 DOI: 10.1038/s41467-024-54684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Collapse
Affiliation(s)
- Dimitrii Pogorelov
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Center of Allergy & Environment, Technical University of Munich, Munich, Germany
| | - Sebastian Felix Nepomuk Bode
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Xin He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Murilo Luiz Bazon
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Ingrid Casper
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Guyonnet
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Françoise Codreanu-Morel
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Christiane Lehners-Weber
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ilse Weets
- Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pinar Alper
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Allergy Unit, Angers University Hospital, Angers, France
| | - François Hentges
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
| | - Fay Betsou
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Ajmeriya S, Kashyap N, Gul A, Ahirwar A, Singh S, Tripathi S, Dhar R, Nayak NR, Karmakar S. Aberrant expression of solute carrier family transporters in placentas associated with pregnancy complications. Placenta 2024; 159:9-19. [PMID: 39602836 DOI: 10.1016/j.placenta.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Solute carrier family transporters (SLCs), crucial for nutrient and trace element uptake in the placenta, play a significant role in fetal growth and development. Their dysregulation is associated with various pregnancy disorders. However, a comprehensive understanding of their role and regulation in placental function and pregnancy complications is still a largely unexplored area, making this study novel and significant. METHODS We performed a rigorous meta-analysis of publicly available NCBI GEO microarray and RNA-Seq datasets followed by bioinformatics analysis of differentially expressed SLCs in PE and IUGR. The identified SLCs were then validated using qPCR on PE placental samples, ensuring the reliability and validity of the findings. RESULTS Bioinformatics analysis of preeclampsia (PE) and Intrauterine Growth restriction (IUGR) datasets revealed significant associations between specific SLC transporters with disease pathology, identified by studying differentially expressed SLCs. Subsequent validation using qPCR on placental samples confirmed considerable downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3, highlighting their dysregulation in the pathogenesis of PE and IUGR. DISCUSSION The significant downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3 observed by bioinformatics analyses and validated by qPCR indicates atypical expression of these SLCs in gestational disorders. Our findings underscore the potential contribution of multiple SLC gene families to the development of placental pathologies associated with diverse pregnancy complications.
Collapse
Affiliation(s)
- Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anamta Gul
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ashok Ahirwar
- Department of Laboratory Medicine, AIl India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, 110029, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, University of Missouri, Kansas City, USA
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Lu YS, Hung WC, Hsieh YT, Tsai PY, Tsai TH, Fan HH, Chang YG, Cheng HK, Huang SY, Lin HC, Lee YH, Shen TH, Hung BY, Tsai JW, Dzhagalov I, Cheng IHJ, Lin CJ, Chern Y, Hsu CL. Equilibrative nucleoside transporter 3 supports microglial functions and protects against the progression of Huntington's disease in the mouse model. Brain Behav Immun 2024; 120:413-429. [PMID: 38925413 DOI: 10.1016/j.bbi.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.
Collapse
Affiliation(s)
- Ying-Sui Lu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Chien Hung
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsai-Hsien Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Han Fan
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Gin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hui-Kuei Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shen-Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Chuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yan-Hua Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Hsiang Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bing-Yu Hung
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kose H, Baskaya MD, Kilic SS. Cases with the H syndrome presenting with skin and bone findings. Australas J Dermatol 2024; 65:337-341. [PMID: 38421823 DOI: 10.1111/ajd.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The H syndrome is an autosomal recessive disease characterized by hyperpigmentation, hypertrichosis and sensorineural hearing loss. METHODS A mutation in the coding of the human equilibrative nucleoside transporter 3 (hENT3) within the SLC29A3 gene on chromosome 10q22 leads to the manifestation of this disease. In this report, we present two cases of H syndrome. RESULTS The first patient exhibits hyperpigmentation, hypogonadism, Type 1 diabetes mellitus, arthritis and osteoporosis. The second patient experiences hyperpigmentation, hypertrichosis, osteopenia and hypogonadism. CONCLUSION Our objective is to broaden the clinical spectrum of H syndrome, highlighting the involvement of arthritis, hyperinflammation and low bone mineral density in individuals with this disorder.
Collapse
Affiliation(s)
- Hulya Kose
- Department of Pediatric Immunology and Rheumatology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Merve Deniz Baskaya
- Department of Pediatric Immunology and Rheumatology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Uludag University Faculty of Medicine, Bursa, Turkey
| |
Collapse
|
6
|
Du J, Liu F, Liu X, Zhao D, Wang D, Sun H, Yan C, Zhao Y. Lysosomal dysfunction and overload of nucleosides in thymidine phosphorylase deficiency of MNGIE. J Transl Med 2024; 22:449. [PMID: 38741129 PMCID: PMC11089807 DOI: 10.1186/s12967-024-05275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.
Collapse
Affiliation(s)
- Jixiang Du
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
- Department of Rheumatology and Immunology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Xihan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Hongsheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Rheumatology and Immunology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
8
|
Shiloh R, Lubin R, David O, Geron I, Okon E, Hazan I, Zaliova M, Amarilyo G, Birger Y, Borovitz Y, Brik D, Broides A, Cohen-Kedar S, Harel L, Kristal E, Kozlova D, Ling G, Shapira Rootman M, Shefer Averbuch N, Spielman S, Trka J, Izraeli S, Yona S, Elitzur S. Loss of function of ENT3 drives histiocytosis and inflammation through TLR-MAPK signaling. Blood 2023; 142:1740-1751. [PMID: 37738562 DOI: 10.1182/blood.2023020714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.
Collapse
Affiliation(s)
- Ruth Shiloh
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ruth Lubin
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Odeya David
- Pediatric Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ifat Geron
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Elimelech Okon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Hazan
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Gil Amarilyo
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Yehudit Birger
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Nephrology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dafna Brik
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Sarit Cohen-Kedar
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Division of Gastroenterology, Rabin Medical Center, Petach Tikva, Israel
| | - Liora Harel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Daria Kozlova
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Galina Ling
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Noa Shefer Averbuch
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- The Jesse and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Shiri Spielman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Shai Izraeli
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Sarah Elitzur
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Qin P, Yan J, Huang H, Wang Q, Li M, Zhang Y, Wang J, Jiang T, Zhang X, Zhou Y. Equilibrative nucleoside transporter 3 promotes the progression of hepatocellular carcinoma by regulating the AKT/mTOR signaling pathway. Int J Biol Macromol 2023; 241:124323. [PMID: 37023875 DOI: 10.1016/j.ijbiomac.2023.124323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Equilibrative nucleoside transporter 3 (ENT3) belongs to the solute carrier family 29. Nucleoside transporters encoded by ENT3 play an important role in the uptake of nucleosides, nucleobases, and their nucleoside analogs, as well as participate in and regulate several physiological activities. However, no study has so far reported the role of ENT3 in hepatocellular carcinoma (HCC). We employed bioinformatics to analyze the expression, prognosis, and mechanism of ENT3 in HCC, as well as verified the same through biological experiments including cell proliferation, cell migration and invasion, and cell cycle and apoptosis, along with the detection of the AKT/mTOR protein expression in the pathway by Western blotting. ENT3 was widely and highly expressed in pan-cancer and upregulated in HCC. The upregulated ENT3 was related to the poor prognosis and clinical features in HCC patients. ENT3 knockdown inhibited cell proliferation, migration, and invasion and promoted cell apoptosis. ENT3 knockdown reduced the p-AKT and p-mTOR protein phosphorylation level, inhibited p-p70S6K1 and increased the p-4EBP1-the downstream effector of the AKT/mTOR pathway-protein phosphorylation level. Our study findings demonstrated that the expression of ENT3 was upregulated in HCC, which represents a poor prognosis. Thus, ENT3 promotes the progression of HCC through the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Haitao Huang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jiahui Wang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Tingting Jiang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Xiaoling Zhang
- Department of Physiology, Guilin Medical University, Guilin 541004, China.
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China; Institute of Pathogenic Biology, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
10
|
Hsieh Y, Tsai T, Huang S, Heng J, Huang Y, Tsai P, Tu C, Chao T, Tsai Y, Chang P, Lee C, Yu G, Chang S, Dzhagalov IL, Hsu C. IFN-stimulated metabolite transporter ENT3 facilitates viral genome release. EMBO Rep 2023; 24:e55286. [PMID: 36652307 PMCID: PMC9986816 DOI: 10.15252/embr.202255286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.
Collapse
Affiliation(s)
- Yu‐Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tsung‐Lin Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Shen‐Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jian‐Wen Heng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Chia Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Pei‐Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Chun Tu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | | | - Ya‐Min Tsai
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Kuo Lee
- Graduate Institute of Immunology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Guann‐Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoliTaiwan
| | - Sui‐Yuan Chang
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ivan L. Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| |
Collapse
|
11
|
Miotelo L, Ferro M, Maloni G, Otero IVR, Nocelli RCF, Bacci M, Malaspina O. Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158086. [PMID: 35985603 DOI: 10.1016/j.scitotenv.2022.158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The concern about pesticide exposure to neotropical bees has been increasing in the last few years, and knowledge gaps have been identified. Although stingless bees, (e.g.: Melipona scutellaris), are more diverse than honeybees and they stand out in the pollination of several valuable economical crops, toxicity assessments with stingless bees are still scarce. Nowadays new approaches in ecotoxicological studies, such as omic analysis, were pointed out as a strategy to reveal mechanisms of how bees deal with these stressors. To date, no molecular techniques have been applied for the evaluation of target and/or non-target organs in stingless bees, such as the Malpighian tubules (Mt). Therefore, in the present study, we evaluated the differentially expressed genes (DEGs) in the Mt of M. scutellaris after one and eight days of exposure to LC50/100 (0.000543 ng a.i./μL) of thiamethoxam (TMX). Through functional annotation analysis of four transcriptome libraries, the time course line approach revealed 237 DEGs (nine clusters) associated with carbon/energy metabolism and cellular processes (lysosomes, autophagy, and glycan degradation). The expression profiles of Mt were altered by TMX in processes, such as detoxification, excretion, tissue regeneration, oxidative stress, apoptosis, and DNA repair. Transcriptome analysis showed that cell metabolism in Mt was mainly affected after 8 days of exposure. Nine genes were selected from different clusters and validated by RT-qPCR. According to our findings, TMX promotes several types of damage in Mt cells at the molecular level. Therefore, interference of different cellular processes directly affects the health of M. scutellaris by compromising the function of Mt.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Geovana Maloni
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | | - Mauricio Bacci
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
12
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
13
|
A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism. Biosens Bioelectron 2022; 220:114826. [DOI: 10.1016/j.bios.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 02/03/2023]
|
14
|
Pastor-Anglada M, Mata-Ventosa A, Pérez-Torras S. Inborn Errors of Nucleoside Transporter (NT)-Encoding Genes ( SLC28 and SLC29). Int J Mol Sci 2022; 23:8770. [PMID: 35955904 PMCID: PMC9369021 DOI: 10.3390/ijms23158770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
The proper regulation of nucleotide pools is essential for all types of cellular functions and depends on de novo nucleotide biosynthesis, salvage, and degradation pathways. Despite the apparent essentiality of these processes, a significant number of rare diseases associated with mutations in genes encoding various enzymes of these pathways have been already identified, and others are likely yet to come. However, knowledge on genetic alterations impacting on nucleoside and nucleobase transporters is still limited. At this moment three gene-encoding nucleoside and nucleobase transporter proteins have been reported to be mutated in humans, SLC29A1, SLC29A3, and SLC28A1, impacting on the expression and function of ENT1, ENT3, and CNT1, respectively. ENT1 alterations determine Augustine-null blood type and cause ectopic calcification during aging. ENT3 deficiency translates into various clinical manifestations and syndromes, altogether listed in the OMIM catalog as histiocytosis-lymphoadenopathy plus syndrome (OMIM#602782). CNT1 deficiency causes uridine-cytidineuria (URCTU) (OMIM#618477), a unique type of pyrimidineuria with an as yet not well-known clinical impact. Increasing knowledge on the physiological, molecular and structural features of these transporter proteins is helping us to better understand the biological basis behind the biochemical and clinical manifestations caused by these deficiencies. Moreover, they also support the view that some metabolic compensation might occur in these disturbances, because they do not seem to significantly impact nucleotide homeostasis, but rather other biological events associated with particular subtypes of transporter proteins.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aida Mata-Ventosa
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sandra Pérez-Torras
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Ali SS, Raj R, Kaur T, Weadick B, Nayak D, No M, Protos J, Odom H, Desai K, Persaud AK, Wang J, Govindarajan R. Solute Carrier Nucleoside Transporters in Hematopoiesis and Hematological Drug Toxicities: A Perspective. Cancers (Basel) 2022; 14:cancers14133113. [PMID: 35804885 PMCID: PMC9264962 DOI: 10.3390/cancers14133113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Anticancer nucleoside analogs are promising treatments that often result in damaging toxicities and therefore ineffective treatment. Mechanisms of this are not well-researched, but cellular nucleoside transport research in mice might provide additional insight given transport’s role in mammalian hematopoiesis. Cellular nucleoside transport is a notable component of mammalian hematopoiesis due to how mutations within it relate to hematological abnormities. This review encompasses nucleoside transporters, focusing on their inherent properties, hematopoietic role, and their interplay in nucleoside drug treatment side effects. We then propose potential mechanisms to explain nucleoside transport involvement in blood disorders. Finally, we point out and advocate for future research areas that would improve therapeutic outcomes for patients taking nucleoside analog therapies. Abstract Anticancer nucleoside analogs produce adverse, and at times, dose-limiting hematological toxicities that can compromise treatment efficacy, yet the mechanisms of such toxicities are poorly understood. Recently, cellular nucleoside transport has been implicated in normal blood cell formation with studies from nucleoside transporter-deficient mice providing additional insights into the regulation of mammalian hematopoiesis. Furthermore, several idiopathic human genetic disorders have revealed nucleoside transport as an important component of mammalian hematopoiesis because mutations in individual nucleoside transporter genes are linked to various hematological abnormalities, including anemia. Here, we review recent developments in nucleoside transporters, including their transport characteristics, their role in the regulation of hematopoiesis, and their potential involvement in the occurrence of adverse hematological side effects due to nucleoside drug treatment. Furthermore, we discuss the putative mechanisms by which aberrant nucleoside transport may contribute to hematological abnormalities and identify the knowledge gaps where future research may positively impact treatment outcomes for patients undergoing various nucleoside analog therapies.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Ruchika Raj
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Tejinder Kaur
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Minnsung No
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Jane Protos
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Hannah Odom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Kajal Desai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Joanne Wang
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-8269; Fax: +1-614-292-2588
| |
Collapse
|
16
|
Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A, Marson A, Wells JA. Hypoxia Is a Dominant Remodeler of the Effector T Cell Surface Proteome Relative to Activation and Regulatory T Cell Suppression. Mol Cell Proteomics 2022; 21:100217. [PMID: 35217172 PMCID: PMC9006863 DOI: 10.1016/j.mcpro.2022.100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/02/2023] Open
Abstract
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA
| | - Julia Carnevale
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
17
|
Phenotypic intrafamilial variability including H syndrome and Rosai-Dorfman disease associated with the same c.1088G > A mutation in the SLC29A3 gene. Hum Genomics 2021; 15:63. [PMID: 34657628 PMCID: PMC8522101 DOI: 10.1186/s40246-021-00362-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Background Mutations in the SLC29A3 gene, which encodes the nucleoside transporter hENT3, have been implicated in syndromic forms of histiocytosis including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, Faisalabad histiocytosis and Familial Rosai–Dorfman disease (RDD). Herein, we report five new patients from a single family who present with phenotypes that associate features of H syndrome and Familial Rosai–Dorfman disease. Methods We investigated the clinical, biochemical, histopathological and molecular findings in five Tunisian family members' diagnosed with Familial RDD and/or H syndrome. The solute carrier family 29 (nucleoside transporters), member 3 (SLC29A3) gene was screened for molecular diagnosis using direct Sanger sequencing. Results Genetic analysis of all affected individuals revealed a previously reported missense mutation c.1088 G > A [p.Arg363Gln] in exon 6 of the SLC29A3 gene. Four affected members presented with clinical features consistent with the classical H syndrome phenotype. While their cousin’s features were in keeping with Familial Rosai–Dorfman disease diagnosis with a previously undescribed cutaneous RDD presenting as erythematous nodular plaques on the face. This report underlines the clinical variability of SLC29A3 disorders even with an identical mutation in the same family. Conclusion We report a rare event of 5 Tunisian family members' found to be homozygous for SLC29A3 gene mutations but showing a different phenotype severity. Our study reveals that despite a single mutation, the clinical expression of the SLC29A3 disorders may be significantly heterogeneous suggesting a poor genotype–phenotype correlation for the disease.
Collapse
|
18
|
Chen R, Ram A, Albeck JG, Overholtzer M. Entosis is induced by ultraviolet radiation. iScience 2021; 24:102902. [PMID: 34401679 PMCID: PMC8353511 DOI: 10.1016/j.isci.2021.102902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Entosis is a cell death mechanism that is executed through neighbor cell ingestion and killing that occurs in cancer tissues and during development. Here, we identify JNK and p38 stress-activated kinase signaling as an inducer of entosis in cells exposed to ultraviolet (UV) radiation. Cells with high levels of stress signaling are ingested and killed by those with low levels, a result of heterogeneity arising within cell populations over time. In stressed cells, entosis occurs as part of mixed-cell death response with parallel induction of apoptosis and necrosis, and we find that inhibition of one form of cell death leads to increased rates of another. Together, these findings identify stress-activated kinase signaling as a new inducer of entosis and demonstrate cross talk between different forms of cell death that can occur in parallel in response to UV radiation.
Collapse
Affiliation(s)
- Ruoyao Chen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Long SY, Wang L, Jiang HQ, Shi Y, Zhang WY, Xiong JS, Sun PW, Chen YQ, Mei YM, Pan C, Ge G, Wang ZZ, Wu ZW, Yu MW, Wang HS. Single-Nucleotide Polymorphisms Related to Leprosy Risk and Clinical Phenotypes Among Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:813-821. [PMID: 34285550 PMCID: PMC8285297 DOI: 10.2147/pgpm.s314861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Background Genome-wide association studies (GWASs) have identified some immune-related single-nucleotide polymorphisms (SNPs) to be associated with leprosy. Methods This study investigated the association of 17 SNPs based on previously published GWAS studies with susceptibility to leprosy, different polar forms and immune states of leprosy in a case–control study from southwestern China, including 1344 leprosy patients and 2732 household contacts (HHCs) (1908 relatives and 824 genetically unrelated contact individuals). The differences of allele distributions were analyzed using chi-squared analysis and logistic regression. Results After adjusting covariate factors, rs780668 and rs3764147 polymorphisms influenced susceptibilities to genetically related or unrelated leprosy contact individuals. rs142179458 was associated with onset early cases, rs73058713 A allele and rs3764147 A allele increased the risk of reversal reaction, while rs3764147 G allele had higher risk to present lepromatous leprosy and erythema nodosum leprosum. Conclusion Our results demonstrated that genetic variants in the LACC1, HIF1A, SLC29A3 and CDH18 genes were positively correlated with the occurrence of leprosy and leprosy clinical phenotypes, providing new insights into the immunogenetics of the disease.
Collapse
Affiliation(s)
- Si-Yu Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Le Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hai-Qin Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Ying Shi
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Wen-Yue Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Jing-Shu Xiong
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Pei-Wen Sun
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Yan-Qing Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - You-Ming Mei
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Chun Pan
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Gai Ge
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zhen-Zhen Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zi-Wei Wu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Mei-Wen Yu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hong-Sheng Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China.,Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
21
|
Schneider EH, Hofmeister O, Kälble S, Seifert R. Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1251-1267. [PMID: 32313990 PMCID: PMC7314729 DOI: 10.1007/s00210-020-01864-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The effects of 100 μM of 3',5'-cGMP, cAMP, cCMP, and cUMP as well as of the corresponding membrane-permeant acetoxymethyl esters on anti-CD3-antibody (OKT3)-induced IL-2 production of HuT-78 cutaneous T cell lymphoma (Sézary lymphoma) cells were analyzed. Only 3',5'-cGMP significantly reduced IL-2 production. Flow cytometric analysis of apoptotic (propidium iodide/annexin V staining) and anti-proliferative (CFSE staining) effects revealed that 3',5'-cGMP concentrations > 50 μM strongly inhibited proliferation and promoted apoptosis of HuT-78 cells (cultured in the presence of αCD3 antibody). Similar effects were observed for the positional isomer 2',3'-cGMP and for 2',-GMP, 3'-GMP, 5'-GMP, and guanosine. By contrast, guanosine and guanosine-derived nucleotides had no cytotoxic effect on peripheral blood mononuclear cells (PBMCs) or acute lymphocytic leukemia (ALL) xenograft cells. The anti-proliferative and apoptotic effects of guanosine and guanosine-derived compounds on HuT-78 cells were completely eliminated by the nucleoside transport inhibitor NBMPR (S-(4-Nitrobenzyl)-6-thioinosine). By contrast, the ecto-phosphodiesterase inhibitor DPSPX (1,3-dipropyl-8-sulfophenylxanthine) and the CD73 ecto-5'-nucleotidase inhibitor AMP-CP (adenosine 5'-(α,β-methylene)diphosphate) were not protective. We hypothesize that HuT-78 cells metabolize guanosine-derived nucleotides to guanosine by yet unknown mechanisms. Guanosine then enters the cells by an NBMPR-sensitive nucleoside transporter and exerts cytotoxic effects. This transporter may be ENT1 because NBMPR counteracted guanosine cytotoxicity in HuT-78 cells with nanomolar efficacy (IC50 of 25-30 nM). Future studies should further clarify the mechanism of the observed effects and address the question, whether guanosine or guanosine-derived nucleotides may serve as adjuvants in the therapy of cancers that express appropriate nucleoside transporters and are sensitive to established nucleoside-derived cytostatic drugs.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Olga Hofmeister
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Solveig Kälble
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
22
|
Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, Nabel CS, Lewis CA, Romero R, Mercer KL, Bhutkar A, Phat S, Myers DT, Muzumdar MD, Westcott PMK, Beytagh MC, Farago AF, Vander Heiden MG, Dyson NJ, Jacks T. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019; 11:eaaw7852. [PMID: 31694929 PMCID: PMC7401885 DOI: 10.1126/scitranslmed.aaw7852] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.
Collapse
Affiliation(s)
- Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caterina I Colón
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Peggy P Hsu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhaoqi Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher S Nabel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rodrigo Romero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Mandar Deepak Muzumdar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Clare Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Zou J. Autoinflammatory characteristics and short-term effects of delivering high-dose steroids to the surface of the intact endolymphatic sac and incus in refractory Ménière's disease. J Otol 2019; 14:40-50. [PMID: 31223300 PMCID: PMC6570643 DOI: 10.1016/j.joto.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate immune-related genetic background in intractable Meniere’s disease (MD) and the immediate results of a novel therapy by delivering steroids to the surface of the intact endolymphatic sac (ES) and incus in a sustainable manner. Case report and methods Candidate genes involved in immune regulation were sequenced using a next-generation sequencing method in a patient with intractable MD. Mutations were confirmed using the Sanger sequencing method. The ES was exposed, and gelatin sponge particles were immersed in high-dose methylprednisolone solution and placed onto the surface of ES. “L”-shaped gelatin sponge strips were immersed in dexamethasone solution and served as a guiding device for the steroids by touching the incus and gelatin sponge particles on the surface of the ES. Gelatin sponge particles immersed in dexamethasone solution were placed around the gelatin sponge strips and sealed using fibrin glue. Results Autoinflammation in the refractory MD case was indicated by genotype, including novel heterozygous mutations of PRF1, UNC13D, SLC29A3, ITCH, and JAK3, as well as phenotype. The vertigo was fully relieved immediately after operation. Tinnitus and aural fullness were resolved 3 weeks after operation, whereas hearing improved in 2 mon postoperation. No recurrence was noted during the 5-monfollow-up, and the final MRI supported the novel therapeutic hypothesis. Conclusion Autoinflammation was involved in a refractory MD. This novel therapy, which involves the delivery of steroids to the surface of the intact ES and incus, is effective in relieving vertigo and tinnitus and improves hearing function of refractory MD.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Deficiency of perforin and hCNT1, a novel inborn error of pyrimidine metabolism, associated with a rapidly developing lethal phenotype due to multi-organ failure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1182-1191. [PMID: 30658162 DOI: 10.1016/j.bbadis.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/25/2023]
Abstract
Pyrimidine nucleotides are essential for a vast number of cellular processes and dysregulation of pyrimidine metabolism has been associated with a variety of clinical abnormalities. Inborn errors of pyrimidine metabolism affecting enzymes in the pyrimidine de novo and degradation pathway have been identified but no patients have been described with a deficiency in proteins affecting the cellular import of ribonucleosides. In this manuscript, we report the elucidation of the genetic basis of the observed uridine-cytidineuria in a patient presenting with fever, hepatosplenomegaly, persistent lactate acidosis, severely disturbed liver enzymes and ultimately multi-organ failure. Sequence analysis of genes encoding proteins directly involved in the metabolism of uridine and cytidine showed two variants c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in SLC28A1, encoding concentrative nucleotide transporter 1 (hCNT1). Functional analysis showed that these variants affected the three-dimensional structure of hCNT1, altered glycosylation and decreased the half-life of the mutant proteins which resulted in impaired transport activity. Co-transfection of both variants, mimicking the trans disposition of c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in the patient, significantly impaired hCNT1 biological function. Whole genome sequencing identified two pathogenic variants c.50delT; p.(Leu17Argfs*34) and c.853_855del; p.(Lys285del) in the PRF1 gene, indicating that our patient was also suffering from Familial Hemophagocytic Lymphohistiocytosis type 2. The identification of two co-existing monogenic defects might have resulted in a blended phenotype. Thus, the clinical presentation of isolated hCNT1 deficiency remains to be established.
Collapse
|