1
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake CG, Pardoll DM. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578284. [PMID: 38352414 PMCID: PMC10862906 DOI: 10.1101/2024.01.31.578284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo D. A. Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: University of Pittsburgh, Carnegie Mellon
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G. Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
3
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
4
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
Perez-Gianmarco L, Kurt B, Kukley M. Technical approaches and challenges to study AMPA receptors in oligodendrocyte lineage cells: Past, present, and future. Glia 2023; 71:819-847. [PMID: 36453615 DOI: 10.1002/glia.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Receptors for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) are ligand-gated ionotropic receptors for glutamate that is a major excitatory neurotransmitter in the central nervous system. AMPARs are located at postsynaptic sites of neuronal synapses where they mediate fast synaptic signaling and synaptic plasticity. Remarkably, AMPARs are also expressed by glial cells. Their expression by the oligodendrocyte (OL) lineage cells is of special interest because AMPARs mediate fast synaptic communication between neurons and oligodendrocyte progenitor cells (OPCs), modulate proliferation and differentiation of OPCs, and may also be involved in regulation of myelination. On the other hand, during pathological conditions, AMPARs may mediate damage of the OL lineage cells. In the present review, we focus on the technical approaches that have been used to study AMPARs in the OL lineage cells, and discuss future perspectives of AMPAR research in these glial cells.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begüm Kurt
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Kukley
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Choquet D, Opazo P. The role of AMPAR lateral diffusion in memory. Semin Cell Dev Biol 2022; 125:76-83. [PMID: 35123863 DOI: 10.1016/j.semcdb.2022.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
The accumulation of AMPARs to synapses is a fundamental step in Long-term potentiation (LTP) of synaptic transmission, a well-established cellular correlate of learning and memory. The discovery of a sizeable and highly mobile population of extrasynaptic AMPARs - randomly scanning the synaptic surface under basal conditions - provided a conceptual framework for a simplified model: LTP can be induced by the capture, and hence accumulation, of laterally diffusing extrasynaptic AMPARs. Here, we review the evidence supporting a rate-limiting role of AMPAR lateral diffusion in LTP and as consequence, in learning and memory. We propose that there are "multiple solutions" for achieving the diffusional trapping of AMPAR during LTP, mainly mediated by the interaction between interchangeable AMPAR auxiliary subunits and cell-adhesion molecules containing PDZ-binding domains and synaptic scaffolds containing PDZ-domains. We believe that this molecular degeneracy in the diffusional trapping of AMPAR during LTP serve to ensure the robustness of this crucial step in the making of memories. All in all, the role of AMPAR lateral diffusion in LTP is not only a conceptual leap in our understanding of memory, but it might also hold the keys for the development of therapeutics against disorders associated with memory deficits such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Choquet
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, Bordeaux, France.
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, Tzouros M, Martí Y, Banfai B, Patsch C, Rasmussen S, Hoener M, Berrera M, Kremer T, Dunkley T, Ebeling M, Distel B, Elgersma Y, Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med 2021; 2:100360. [PMID: 34467244 PMCID: PMC8385294 DOI: 10.1016/j.xcrm.2021.100360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.
Collapse
Affiliation(s)
- Nikhil J. Pandya
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Congwei Wang
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Veronica Costa
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paul Lopatta
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sonja Meier
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - F. Isabella Zampeta
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A. Mattijs Punt
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Philip Grossen
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tania Distler
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manuel Tzouros
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Yasmina Martí
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Balazs Banfai
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Patsch
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Soren Rasmussen
- Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche, Copenhagen, Denmark
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ben Distel
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ype Elgersma
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ravi Jagasia
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
9
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Delgado JY. Lack of support for surface diffusion of postsynaptic AMPARs in tuning synaptic transmission. Biophys J 2021; 120:3409-3417. [PMID: 34214532 DOI: 10.1016/j.bpj.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022] Open
Abstract
Repetitive stimulation of excitatory synapses triggers molecular events required for signal transfer across neuronal synapses. It has been hypothesized that one of these molecular events, the diffusion of extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs) (i.e., the diffusion hypothesis), is necessary to help synapses recover from paired-pulse depression. To examine this presumed role of AMPAR diffusion during repetitive presynaptic stimulation, a biophysical model based on published physiological results was developed to track the localization and gating of each AMPAR. The model demonstrates that AMPAR gating in short intervals of fewer than 100 ms is controlled by their position in relation to the glutamate release site and by their recovery from desensitization, but it is negligibly influenced by their diffusion. Therefore, these simulations failed to demonstrate a role for AMPAR diffusion in helping synapses recover from paired-pulse depression.
Collapse
Affiliation(s)
- Jary Y Delgado
- Department of Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Bali KK, Gandla J, Rangel DR, Castaldi L, Mouritzen P, Agarwal N, Schmelz M, Heppenstall P, Kuner R. A genome-wide screen reveals microRNAs in peripheral sensory neurons driving painful diabetic neuropathy. Pain 2021; 162:1334-1351. [PMID: 33492037 DOI: 10.1097/j.pain.0000000000002159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Diabetes is a leading cause of peripheral neuropathy (diabetic peripheral neuropathy, DPN), and uncontrolled long-lasting hyperglycemia leads to severe complications. A major proportion of diabetics develop excruciating pain with a variable course. Mechanisms leading to painful DPN are not completely understood and treatment options limited. We hypothesized that epigenetic modulation at the level of microRNA (miRNA) expression triggered by metabolic imbalance and nerve damage regulates the course of pain development. We used clinically relevant preclinical models, genome-wide screening, in silico analyses, cellular assays, miRNA fluorescent in situ hybridization, in vivo molecular manipulations, and behavioral analyses in the current study. We identified miRNAs and their targets that critically impact on nociceptive hypersensitivity in painful DPN. Our analyses identify miR-33 and miR-380 expressed in nociceptive neurons as critical denominators of diabetic pain and miR-124-1 as a mediator of physiological nociception. Our comprehensive analyses on the putative mRNA targets for miR-33 or miR-124-1 identified a set of mRNAs that are regulated after miR-33 or miR-124-1 overexpression in dorsal root ganglia in vivo. Our results shed light on the regulation of DPN pathophysiology and implicate specific miRNAs as novel therapeutic targets for treating painful DPN.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jagadeesh Gandla
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Rojas Rangel
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Nitin Agarwal
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Rohini Kuner
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
13
|
Auxiliary subunits of the AMPA receptor: The Shisa family of proteins. Curr Opin Pharmacol 2021; 58:52-61. [PMID: 33892364 DOI: 10.1016/j.coph.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
AMPA receptors mediate fast synaptic transmission in the CNS and can assemble with several types of auxiliary proteins in a spatio-temporal manner, from newly synthesized AMPA receptor tetramers to mature AMPA receptors in the cell membrane. As such, the interaction of auxiliary subunits with the AMPA receptor plays a major role in the regulation of AMPA receptor biogenesis, trafficking, and biophysical properties. Throughout the years, various 'families' of proteins have been identified and today the approximate full complement of AMPAR auxiliary proteins is known. This review presents the current knowledge on the most prominent AMPA-receptor-interacting auxiliary proteins, highlights recent results regarding the Shisa protein family, and provides a discussion on future research that might contribute to the discovery of novel pharmacological targets of auxiliary subunits.
Collapse
|
14
|
Livingstone RW, Elder MK, Singh A, Westlake CM, Tate WP, Abraham WC, Williams JM. Secreted Amyloid Precursor Protein-Alpha Enhances LTP Through the Synthesis and Trafficking of Ca 2+-Permeable AMPA Receptors. Front Mol Neurosci 2021; 14:660208. [PMID: 33867938 PMCID: PMC8047154 DOI: 10.3389/fnmol.2021.660208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of AMPA receptor expression by neuronal activity and neuromodulators is critical to the expression of both long-term potentiation (LTP) and memory. In particular, Ca2+-permeable AMPARs (CP-AMPAR) play a unique role in these processes due to their transient, activity-regulated expression at synapses. Secreted amyloid precursor protein-alpha (sAPPα), a metabolite of the parent amyloid precursor protein (APP) has been previously shown to enhance hippocampal LTP as well as memory formation in both normal animals and in Alzheimer’s disease models. In earlier work we showed that sAPPα promotes trafficking of GluA1-containing AMPARs to the cell surface and specifically enhances synthesis of GluA1. To date it is not known whether de novo synthesized GluA1 form CP-AMPARs or how they contribute to sAPPα-mediated plasticity. Here, using fluorescent non-canonical amino acid tagging–proximity ligation assay (FUNCAT-PLA), we show that brief treatment of primary rat hippocampal neurons with sAPPα (1 nM, 30 min) rapidly enhanced the cell-surface expression of de novo GluA1 homomers and reduced levels of de novo GluA2, as well as extant GluA2/3-AMPARs. The de novo GluA1-containing AMPARs were localized to extrasynaptic sites and later internalized by sAPPα-driven expression of the activity-regulated cytoskeletal-associated protein, Arc. Interestingly, longer exposure to sAPPα increased synaptic levels of GluA1/2 AMPARs. Moreover, the sAPPα-mediated enhancement of LTP in area CA1 of acute hippocampal slices was dependent on CP-AMPARs. Together, these findings show that sAPPα engages mechanisms which specifically enhance the synthesis and cell-surface expression of GluA1 homomers, underpinning the sAPPα-driven enhancement of synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Rhys W Livingstone
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Courteney M Westlake
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
The extracellular matrix regulates cortical layer dynamics and cross-columnar frequency integration in the auditory cortex. Commun Biol 2021; 4:322. [PMID: 33692502 PMCID: PMC7946889 DOI: 10.1038/s42003-021-01837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
In the adult vertebrate brain, enzymatic removal of the extracellular matrix (ECM) is increasingly recognized to promote learning, memory recall, and restorative plasticity. The impact of the ECM on translaminar dynamics during cortical circuit processing is still not understood. Here, we removed the ECM in the primary auditory cortex (ACx) of adult Mongolian gerbils using local injections of hyaluronidase (HYase). Using laminar current-source density (CSD) analysis, we found layer-specific changes of the spatiotemporal synaptic patterns with increased cross-columnar integration and simultaneous weakening of early local sensory input processing within infragranular layers Vb. These changes had an oscillatory fingerprint within beta-band (25-36 Hz) selectively within infragranular layers Vb. To understand the laminar interaction dynamics after ECM digestion, we used time-domain conditional Granger causality (GC) measures to identify the increased drive of supragranular layers towards deeper infragranular layers. These results showed that ECM degradation altered translaminar cortical network dynamics with a stronger supragranular lead of the columnar response profile.
Collapse
|
16
|
Fossati M, Charrier C. Trans-synaptic interactions of ionotropic glutamate receptors. Curr Opin Neurobiol 2020; 66:85-92. [PMID: 33130410 DOI: 10.1016/j.conb.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Trans-synaptic interactions organize the multiple steps of synaptic development and are critical to generate fully functional neuronal circuits. While trans-synaptic interactions are primarily mediated by cell adhesion molecules (CAMs), some directly involve ionotropic glutamate receptors (iGluRs). Here, we review the expanding extracellular and trans-synaptic proteome of iGluRs. We discuss the role of these molecular networks in specifying the formation of excitatory and inhibitory circuits and in the input-specific recruitment of iGluRs at synapses in various cell types and brain regions. We also shed light on human-specific mutations affecting iGluR-mediated trans-synaptic interactions that may provide unique features to the human brain and contribute to its susceptibility to neurodevelopmental disorders. Together, these data support a view in which iGluR function goes far beyond fast excitatory synaptic transmission by shaping the wiring and the functional properties of neural circuits.
Collapse
Affiliation(s)
- Matteo Fossati
- CNR - Institute of Neuroscience, via Manzoni 56, Rozzano (MI), 20089, Italy; Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano (MI), 20089, Italy.
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris, 75005, France.
| |
Collapse
|
17
|
Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nat Commun 2020; 11:5171. [PMID: 33057002 PMCID: PMC7560607 DOI: 10.1038/s41467-020-18956-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function. Mossy fiber synapses are key in CA3 microcircuit function. Here, the authors profile the mossy fiber synapse proteome and cell-surface interactome. They uncover a diverse repertoire of cell-surface proteins and identify the receptor IgSF8 as a regulator of CA3 microcircuit connectivity and function.
Collapse
|
18
|
CPG15/Neuritin Mimics Experience in Selecting Excitatory Synapses for Stabilization by Facilitating PSD95 Recruitment. Cell Rep 2020; 28:1584-1595.e5. [PMID: 31390571 PMCID: PMC6740334 DOI: 10.1016/j.celrep.2019.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022] Open
Abstract
A key feature of brain plasticity is the experience-dependent selection of optimal connections· implemented by a set of activity-regulated genes that dynamically adjust synapse strength and number. The activity-regulated gene cpg15/neuritin has been previously implicated in stabilization and maturation of excitatory synapses. Here· we combine two-photon microscopy with genetic and sensory manipulations to dissect excitatory synapse formation in vivo and examine the role of activity and CPG15 in dendritic spine formation, PSD95 recruitment, and synapse stabilization. We find that neither visual experience nor CPG15 is required for spine formation. However, PSD95 recruitment to nascent spines and their subsequent stabilization requires both. Further, cell-autonomous CPG15 expression is sufficient to replace experience in facilitating PSD95 recruitment and spine stabilization. CPG15 directly interacts with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on immature dendritic spines, suggesting a signaling mode for this small extracellular molecule acting as an experience-dependent “selector” for spine stabilization and synapse maturation. Experience plays a key role in formation and continuous optimization of brain circuits. Subramanian et al. show that the molecule CPG15/neuritin can replace experience in selecting which nascent contacts between neurons are retained, facilitating the recruitment of proteins that promote synapse maturation and stabilization.
Collapse
|
19
|
AMPA receptor nanoscale dynamic organization and synaptic plasticities. Curr Opin Neurobiol 2020; 63:137-145. [DOI: 10.1016/j.conb.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
20
|
Abstract
Regulation of neurotransmitter receptor content at synapses is achieved through a dynamic equilibrium between biogenesis and degradation pathways, receptor stabilization at synaptic sites, and receptor trafficking in and out synapses. In the past 20 years, the movements of receptors to and from synapses have emerged as a series of highly regulated processes that mediate postsynaptic plasticity. Our understanding of the properties and roles of receptor movements has benefited from technological advances in receptor labeling and tracking capacities, as well as from new methods to interfere with their movements. Focusing on two key glutamatergic receptors, we review here our latest understanding of the characteristics of receptor movements and their role in tuning the efficacy of synaptic transmission in health and brain disease.
Collapse
Affiliation(s)
- Laurent Groc
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146, rue Léo-Saignat, 33076 Bordeaux, France
- IINS, University of Bordeaux, UMR5297, Bordeaux, France
| | - Daniel Choquet
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146, rue Léo-Saignat, 33076 Bordeaux, France
- IINS, University of Bordeaux, UMR5297, Bordeaux, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
21
|
Wang Z, Jin T, Le Q, Liu C, Wang X, Wang F, Ma L. Retrieval-Driven Hippocampal NPTX2 Plasticity Facilitates the Extinction of Cocaine-Associated Context Memory. Biol Psychiatry 2020; 87:979-991. [PMID: 31836174 DOI: 10.1016/j.biopsych.2019.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Postretrieval extinction attenuates the pathological memory associated with psychiatric states such as drug addiction in both humans and rodents. The extinction of a learned response requires gene transcription and protein synthesis after memory retrieval in a time-dependent manner, yet the precise physiological basis after retrieval to allow extinction to neutralize a learned behavior is not fully understood. METHODS In a cocaine conditioned place preference paradigm, we used a ribosomal tagging strategy to measure the translational state of hippocampal pyramidal neurons after the retrieval of cocaine-associated context memory. Using approaches of electrophysiology, neuronal tracing, and a doxycycline-dependent robust activity marking system, we investigated the cellular and molecular basis of retrieval-induced plasticity that facilitated the extinction. RESULTS Bioinformatics analysis discovered the specific translational regulation of signaling pathways by retrieval and revealed Nptx2 as the hub gene. Manipulating Nptx2 in dorsal hippocampus bidirectionally regulated the extinction of cocaine-associated context memory as well as the retrieval-driven synaptic remodeling. The pentraxin (PTX) domain of NPTX2 recruited GluA1-AMPA receptors and enhanced the extinction and excitatory synaptic transmission that was prevented by overexpressing carboxyl cytoplasmic tail of GluA1. Furthermore, Nptx2 in retrieval-activated neurons was required for the extinction. CONCLUSIONS The retrieval-driven upregulation of Nptx2 contributes to the synaptic remodeling in dorsal hippocampus and facilitates the extinction of cocaine-associated context memory, indicating a potential target for the treatment of cue-induced cocaine seeking.
Collapse
Affiliation(s)
- Zhilin Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiumin Le
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cao Liu
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xueying Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Lan Ma
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Gonzalez-Lozano MA, Koopmans F, Sullivan PF, Protze J, Krause G, Verhage M, Li KW, Liu F, Smit AB. Stitching the synapse: Cross-linking mass spectrometry into resolving synaptic protein interactions. SCIENCE ADVANCES 2020; 6:eaax5783. [PMID: 32128395 PMCID: PMC7030922 DOI: 10.1126/sciadv.aax5783] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Synaptic transmission is the predominant form of communication in the brain. It requires functionally specialized molecular machineries constituted by thousands of interacting synaptic proteins. Here, we made use of recent advances in cross-linking mass spectrometry (XL-MS) in combination with biochemical and computational approaches to reveal the architecture and assembly of synaptic protein complexes from mouse brain hippocampus and cerebellum. We obtained 11,999 unique lysine-lysine cross-links, comprising connections within and between 2362 proteins. This extensive collection was the basis to identify novel protein partners, to model protein conformational dynamics, and to delineate within and between protein interactions of main synaptic constituents, such as Camk2, the AMPA-type glutamate receptor, and associated proteins. Using XL-MS, we generated a protein interaction resource that we made easily accessible via a web-based platform (http://xlink.cncr.nl) to provide new entries into exploration of all protein interactions identified.
Collapse
Affiliation(s)
- M. A. Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - F. Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - P. F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - J. Protze
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - G. Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - M. Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - K. W. Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - F. Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - A. B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
24
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
25
|
An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron 2019; 104:680-692.e9. [DOI: 10.1016/j.neuron.2019.08.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/15/2022]
|
26
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Li Q, Liu A, Gu X, Su Z. Olfactomedin domain-containing proteins: evolution, functional divergence, expression patterns and damaging SNPs. Mol Genet Genomics 2019; 294:875-885. [PMID: 30915543 DOI: 10.1007/s00438-019-01549-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Olfactomedin domain-containing proteins appear to facilitate neurodevelopment, cell adhesion, intercellular interactions, and protein-protein interactions, and the disruption of their expression will lead to dramatic developmental perturbations and lethality. The aim of the present work was to study how these genes evolved in metazoans and diverged after their duplication as well as to characterize their expression profiles and detrimental mutations. We conducted an exhaustive survey of olfactomedin domain-containing genes in genomic databases, identifying 235 olfactomedin-like (OLF) proteins in 29 representative species covering all the main metazoan lineages. Phylogenetic analyses allowed us to define nine different subfamilies of OLF genes, and subfamily IX, which specifically includes two immunoglobulin domains, was identified for the first time in arthropods. Functional divergence analysis suggested that the function of this arthropod-specific OLF subfamily might have diverged from that of other subfamilies. Expression pattern analysis of OLF genes in humans and rats showed that human OLF genes tended to be highly expressed in the brain, while rat OLF genes were inclined to be expressed in the ovary and brain. We used the SIFT and PolyPhen servers in dbNSFP to distinguish deleterious mutations from neutral mutations for each member of the OLF gene family. The results showed that OLFML2B contains the most destructive SNPs (up to 61), while none of the mutations in OLFM2, OLFM4 and LPHN2 were predicted to be harmful. Taken together, these findings may not only enhance understanding of the phylogenetic relationships of the OLF family but also aid future studies on OLF protein regulation of nervous system development and immune function.
Collapse
Affiliation(s)
- Qin Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Singlera Genomics Inc, Shanghai, China.
| |
Collapse
|