1
|
Zhang L, Zhou J. Zebrafish: A smart tool for heart disease research. JOURNAL OF FISH BIOLOGY 2024; 105:1487-1500. [PMID: 37824489 DOI: 10.1111/jfb.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The increasing prevalence of heart disease poses a significant threat to human survival and safety. However, the current treatments available for heart disease are quite limited. Therefore, it is important to utilize suitable animal models that can accurately simulate the physiological characteristics of heart disease. This would help improve our understanding of this disease and aid in the development of new treatment methods and drugs. Zebrafish heart not only exhibits similarities to mammalian hearts, but they also share ~70% of homologous genes with humans. Utilizing zebrafish as an alternative to expensive and time-consuming mammalian models offers numerous advantages. Zebrafish models can be easily established and maintained, and compound screening and genetic methods allow for the development of various economical and easily controlled zebrafish and zebrafish embryonic heart disease models in a short period of time. Consequently, zebrafish have become a powerful tool for exploring the pathological mechanisms of heart disease and identifying new effective genes. In this review, we summarize recent studies on different zebrafish models of heart disease. We also describe the techniques and protocols used to develop zebrafish models of myocardial infarction, heart failure, and congenital heart disease, including surgical procedures, forward and reverse genetics, and drug and combination screening. This review aims to promote the utilization of zebrafish models in investigating diverse pathological mechanisms of heart disease, enhancing our knowledge and comprehension of heart disease, and offering novel insights and objectives for exploring the prevention and treatment of heart disease.
Collapse
Affiliation(s)
- Lantian Zhang
- Education Branch, Chongqing Publishing Group, Chongqing, China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2024:cvae230. [PMID: 39460530 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid Aortic Valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSIONS Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| |
Collapse
|
3
|
Bernadskaya YY, Kuan A, Tjärnberg A, Brandenburg J, Zheng P, Wiechecki K, Kaplan N, Failla M, Bikou M, Madilian O, Wang W, Christiaen L. Cell cycle-driven transcriptome maturation confers multilineage competence to cardiopharyngeal progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604718. [PMID: 39091743 PMCID: PMC11291048 DOI: 10.1101/2024.07.23.604718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During development, stem and progenitor cells divide and transition through germ layer- and lineage-specific multipotent states to generate the diverse cell types that compose an animal. Defined changes in biomolecular composition underlie the progressive loss of potency and acquisition of lineage-specific characteristics. For example, multipotent cardiopharyngeal progenitors display multilineage transcriptional priming, whereby both the cardiac and pharyngeal muscle programs are partially active and coexist in the same progenitor cells, while their daughter cells engage in a cardiac or pharyngeal muscle differentiation path only after cell division. Here, using the tunicate Ciona, we studied the acquisition of multilineage competence and the coupling between fate decisions and cell cycle progression. We showed that multipotent cardiopharyngeal progenitors acquire the competence to produce distinct Tbx1/10(+) and (-) daughter cells shortly before mitosis, which is necessary for Tbx1/10 activation. By combining transgene-based sample barcoding with single cell RNA-seq (scRNA-seq), we uncovered transcriptome-wide dynamics in migrating cardiopharyngeal progenitors as cells progress through G1, S and G2 phases. We termed this process "transcriptome maturation", and identified candidate "mature genes", including the Rho GAP-coding gene Depdc1, which peak in late G2. Functional assays indicated that transcriptome maturation fosters cardiopharyngeal competence, in part through multilineage priming and proper oriented and asymmetric division that influences subsequent fate decisions, illustrating the concept of "behavioral competence". Both classic feedforward circuits and coupling with cell cycle progression drive transcriptome maturation, uncovering distinct levels of coupling between cell cycle progression and fateful molecular transitions. We propose that coupling competence and fate decision with the G2 and G1 phases, respectively, ensures the timely deployment of lineage-specific programs.
Collapse
Affiliation(s)
| | - Ariel Kuan
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Ping Zheng
- Fang Centre, Ocean University of China, Qingdao, China
| | - Keira Wiechecki
- Department of Biology, New York University, New York, NY, USA
| | - Nicole Kaplan
- Department of Biology, New York University, New York, NY, USA
| | - Margaux Failla
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| | - Maria Bikou
- Department of Biology, New York University, New York, NY, USA
| | - Oliver Madilian
- Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Department of Biology, New York University, New York, NY, USA
- Fang Centre, Ocean University of China, Qingdao, China
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
4
|
Liu J, Zhang M, Dong H, Liu J, Mao A, Ning G, Cao Y, Zhang Y, Wang Q. Chemokine signaling synchronizes angioblast proliferation and differentiation during pharyngeal arch artery vasculogenesis. Development 2022; 149:285824. [PMID: 36468454 PMCID: PMC10114070 DOI: 10.1242/dev.200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/14/2022] [Indexed: 12/09/2022]
Abstract
Developmentally, the great vessels of the heart originate from the pharyngeal arch arteries (PAAs). During PAA vasculogenesis, PAA precursors undergo sequential cell fate decisions that are accompanied by proliferative expansion. However, how these two processes are synchronized remains poorly understood. Here, we find that the zebrafish chemokine receptor Cxcr4a is expressed in PAA precursors, and genetic ablation of either cxcr4a or the ligand gene cxcl12b causes PAA stenosis. Cxcr4a is required for the activation of the downstream PI3K/AKT cascade, which promotes not only PAA angioblast proliferation, but also differentiation. AKT has a well-known role in accelerating cell-cycle progression through the activation of cyclin-dependent kinases. Despite this, we demonstrate that AKT phosphorylates Etv2 and Scl, the key regulators of angioblast commitment, on conserved serine residues, thereby protecting them from ubiquitin-mediated proteasomal degradation. Altogether, our study reveals a central role for chemokine signaling in PAA vasculogenesis through orchestrating angioblast proliferation and differentiation.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Haojian Dong
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jingwen Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
6
|
Sharpe M, González-Rosa JM, Wranitz F, Jeffrey S, Copenhaver K, Burns CG, Burns CE. Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Front Cell Dev Biol 2022; 10:800594. [PMID: 35178388 PMCID: PMC8844374 DOI: 10.3389/fcell.2022.800594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocyte proliferation is an important source of new myocardium during heart development and regeneration. Consequently, mutations in drivers of cardiomyocyte proliferation cause congenital heart disease, and infarcted human hearts scar because cardiomyocytes exit the cell cycle postnatally. To boost cardiomyocyte proliferation in either setting, critical regulators must be identified. Through an ENU screen in zebrafish, the liebeskummer (lik) mutant was isolated and described as having elevated cardiomyocyte numbers during embryogenesis. The lik mutation results in a three amino acid insertion into Ruvbl2, a highly conserved ATPase. Because both gain- and loss-of-function properties have been described for ruvbl2lik, it remains unclear whether Ruvbl2 positively or negatively regulates cardiomyocyte proliferation. Here, we demonstrate that Ruvbl2 is a suppressor of cardiomyocyte proliferation during zebrafish heart development and regeneration. First, we confirmed speculation that augmented cardiomyocyte numbers in ruvbl2lik/lik hearts arise by hyperproliferation. To characterize bona fide ruvbl2 null animals, we created a ruvbl2 locus deletion allele (ruvbl2Δ). Like ruvbl2lik/lik mutants, ruvbl2Δ/Δ and compound heterozygote ruvbl2lik/Δ animals display ventricular hyperplasia, demonstrating that lik is a loss of function allele and that ruvbl2 represses cardiomyocyte proliferation. This activity is autonomous because constitutive myocardial overexpression of Ruvbl2 is sufficient to suppress cardiomyocyte proliferation in control hearts and rescue the hyperproliferation observed in ruvbl2Δ/Δ mutant hearts. Lastly, heat-shock inducible overexpression of Ruvbl2 suppresses cardiomyocyte proliferation during heart regeneration and leads to scarring. Together, our data demonstrate that Ruvbl2 functions autonomously as a suppressor of cardiomyocyte proliferation during both zebrafish heart development and adult heart regeneration.
Collapse
Affiliation(s)
- Michka Sharpe
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Juan Manuel González-Rosa
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Felicia Wranitz
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Spencer Jeffrey
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Katherine Copenhaver
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
7
|
Zebrafish foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression. J Genet Genomics 2021; 49:559-568. [PMID: 34923164 DOI: 10.1016/j.jgg.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Chamber maturation is a significant process in cardiac development. Disorders of this crucial process lead to a range of congenital heart defects. Foxc1a is a critical transcription factor reported to regulate the specification of cardiac progenitor cells. However, little is known about the role of Foxc1a in modulating chamber maturation. Previously, we reported that foxc1a-null zebrafish embryos exhibit disrupted heart structures and functions. In this study, we observed that ventricle structure and cardiomyocyte proliferation were abolished during chamber maturation in foxc1a-null zebrafish embryos. To observe the endogenous localization of Foxc1a in the hearts of living embryos, we inserted eyfp at the foxc1a genomic locus using TALEN. Analysis of the knockin zebrafish showed that foxc1a was widely expressed in ventricular cardiomyocytes during chamber development. Cardiac RNA sequencing analysis revealed downregulated expression of the Hippo signaling effector wwtr1. Dual-luciferase and chromatin immunoprecipitation assays revealed that Foxc1a could bind directly to three sites in the wwtr1 promoter region. Furthermore, wwtr1 mRNA overexpression was sufficient to reverse the ventricle defects during chamber maturation. Conditional overexpression of nkx2.5 also partially rescued the ventricular defects during chamber development. These findings demonstrate that wwtr1 and nkx2.5 are direct targets of Foxc1a during ventricular chamber maturation.
Collapse
|
8
|
Lescroart F, Dumas CE, Adachi N, Kelly RG. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm. Exp Cell Res 2021; 410:112931. [PMID: 34798131 DOI: 10.1016/j.yexcr.2021.112931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.
Collapse
Affiliation(s)
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France.
| |
Collapse
|
9
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
10
|
Warkala M, Chen D, Ramirez A, Jubran A, Schonning M, Wang X, Zhao H, Astrof S. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circ Res 2021; 128:e27-e44. [PMID: 33249995 PMCID: PMC7864893 DOI: 10.1161/circresaha.120.318200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Defects in the morphogenesis of the fourth pharyngeal arch arteries (PAAs) give rise to lethal birth defects. Understanding genes and mechanisms regulating PAA formation will provide important insights into the etiology and treatments for congenital heart disease. OBJECTIVE Cell-ECM (extracellular matrix) interactions play essential roles in the morphogenesis of PAAs and their derivatives, the aortic arch artery and its major branches; however, their specific functions are not well-understood. Previously, we demonstrated that integrin α5β1 and Fn1 (fibronectin) expressed in the Isl1 lineages regulate PAA formation. The objective of the current studies was to investigate cellular mechanisms by which integrin α5β1 and Fn1 regulate aortic arch artery morphogenesis. METHODS AND RESULTS Using temporal lineage tracing, whole-mount confocal imaging, and quantitative analysis of the second heart field (SHF) and endothelial cell (EC) dynamics, we show that the majority of PAA EC progenitors arise by E7.5 in the SHF and contribute to pharyngeal arch endothelium between E7.5 and E9.5. Consequently, SHF-derived ECs in the pharyngeal arches form a plexus of small blood vessels, which remodels into the PAAs by 35 somites. The remodeling of the vascular plexus is orchestrated by signals dependent on the pharyngeal ECM microenvironment, extrinsic to the endothelium. Conditional ablation of integrin α5β1 or Fn1 in the Isl1 lineages showed that signaling by the ECM regulates aortic arch artery morphogenesis at multiple steps: (1) accumulation of SHF-derived ECs in the pharyngeal arches, (2) remodeling of the EC plexus in the fourth arches into the PAAs, and (3) differentiation of neural crest-derived cells adjacent to the PAA endothelium into vascular smooth muscle cells. CONCLUSIONS PAA formation is a multistep process entailing dynamic contribution of SHF-derived ECs to pharyngeal arches, the remodeling of endothelial plexus into the PAAs, and the remodeling of the PAAs into the aortic arch artery and its major branches. Cell-ECM interactions regulated by integrin α5β1 and Fn1 play essential roles at each of these developmental stages.
Collapse
Affiliation(s)
- Michael Warkala
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Dongying Chen
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ali Jubran
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
11
|
Mao A, Zhang M, Li L, Liu J, Ning G, Cao Y, Wang Q. Pharyngeal pouches provide a niche microenvironment for arch artery progenitor specification. Development 2021; 148:dev.192658. [PMID: 33334861 PMCID: PMC7847271 DOI: 10.1242/dev.192658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
Abstract
The paired pharyngeal arch arteries (PAAs) are transient blood vessels connecting the heart with the dorsal aorta during embryogenesis. Although PAA malformations often occur along with pharyngeal pouch defects, the functional interaction between these adjacent tissues remains largely unclear. Here, we report that pharyngeal pouches are essential for PAA progenitor specification in zebrafish embryos. We reveal that the segmentation of pharyngeal pouches coincides spatiotemporally with the emergence of PAA progenitor clusters. These pouches physically associate with pharyngeal mesoderm in discrete regions and provide a niche microenvironment for PAA progenitor commitment by expressing BMP proteins. Specifically, pouch-derived BMP2a and BMP5 are the primary niche cues responsible for activating the BMP/Smad pathway in pharyngeal mesoderm, thereby promoting progenitor specification. In addition, BMP2a and BMP5 play an inductive function in the expression of the cloche gene npas4l in PAA progenitors. cloche mutants exhibit a striking failure to specify PAA progenitors and display ectopic expression of head muscle markers in the pharyngeal mesoderm. Therefore, our results support a crucial role for pharyngeal pouches in establishing a progenitor niche for PAA morphogenesis via BMP2a/5 expression.
Collapse
Affiliation(s)
- Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Linwei Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Abstract
How vertebrates evolved from their invertebrate ancestors has long been a central topic of discussion in biology. Evolutionary developmental biology (evodevo) has provided a new tool-using gene expression patterns as phenotypic characters to infer homologies between body parts in distantly related organisms-to address this question. Combined with micro-anatomy and genomics, evodevo has provided convincing evidence that vertebrates evolved from an ancestral invertebrate chordate, in many respects resembling a modern amphioxus. The present review focuses on the role of evodevo in addressing two major questions of chordate evolution: (1) how the vertebrate brain evolved from the much simpler central nervous system (CNS) in of this ancestral chordate and (2) whether or not the head mesoderm of this ancestor was segmented.
Collapse
|
13
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
14
|
Holowiecki A, Linstrum K, Ravisankar P, Chetal K, Salomonis N, Waxman JS. Pbx4 limits heart size and fosters arch artery formation by partitioning second heart field progenitors and restricting proliferation. Development 2020; 147:dev185652. [PMID: 32094112 PMCID: PMC7063670 DOI: 10.1242/dev.185652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Vertebrate heart development requires the integration of temporally distinct differentiating progenitors. However, few signals are understood that restrict the size of the later-differentiating outflow tract (OFT). We show that improper specification and proliferation of second heart field (SHF) progenitors in zebrafish lazarus (lzr) mutants, which lack the transcription factor Pbx4, produces enlarged hearts owing to an increase in ventricular and smooth muscle cells. Specifically, Pbx4 initially promotes the partitioning of the SHF into anterior progenitors, which contribute to the OFT, and adjacent endothelial cell progenitors, which contribute to posterior pharyngeal arches. Subsequently, Pbx4 limits SHF progenitor (SHFP) proliferation. Single cell RNA sequencing of nkx2.5+ cells revealed previously unappreciated distinct differentiation states and progenitor subpopulations that normally reside within the SHF and arterial pole of the heart. Specifically, the transcriptional profiles of Pbx4-deficient nkx2.5+ SHFPs are less distinct and display characteristics of normally discrete proliferative progenitor and anterior, differentiated cardiomyocyte populations. Therefore, our data indicate that the generation of proper OFT size and arch arteries requires Pbx-dependent stratification of unique differentiation states to facilitate both homeotic-like transformations and limit progenitor production within the SHF.
Collapse
Affiliation(s)
- Andrew Holowiecki
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Kelsey Linstrum
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Bioinformatics Division, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Bioinformatics Division, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Mao A, Zhang M, Liu J, Cao Y, Wang Q. PDGF signaling from pharyngeal pouches promotes arch artery morphogenesis. J Genet Genomics 2019; 46:551-559. [DOI: 10.1016/j.jgg.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/05/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023]
|
16
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
17
|
Dohn TE, Ravisankar P, Tirera FT, Martin KE, Gafranek JT, Duong TB, VanDyke TL, Touvron M, Barske LA, Crump JG, Waxman JS. Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genet 2019; 15:e1007962. [PMID: 30721228 PMCID: PMC6377147 DOI: 10.1371/journal.pgen.1007962] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/15/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple syndromes share congenital heart and craniofacial muscle defects, indicating there is an intimate relationship between the adjacent cardiac and pharyngeal muscle (PM) progenitor fields. However, mechanisms that direct antagonistic lineage decisions of the cardiac and PM progenitors within the anterior mesoderm of vertebrates are not understood. Here, we identify that retinoic acid (RA) signaling directly promotes the expression of the transcription factor Nr2f1a within the anterior lateral plate mesoderm. Using zebrafish nr2f1a and nr2f2 mutants, we find that Nr2f1a and Nr2f2 have redundant requirements restricting ventricular cardiomyocyte (CM) number and promoting development of the posterior PMs. Cre-mediated genetic lineage tracing in nr2f1a; nr2f2 double mutants reveals that tcf21+ progenitor cells, which can give rise to ventricular CMs and PM, more frequently become ventricular CMs potentially at the expense of posterior PMs in nr2f1a; nr2f2 mutants. Our studies reveal insights into the molecular etiology that may underlie developmental syndromes that share heart, neck and facial defects as well as the phenotypic variability of congenital heart defects associated with NR2F mutations in humans.
Collapse
Affiliation(s)
- Tracy E. Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Fouley T. Tirera
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Master’s Program in Genetics, Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Kendall E. Martin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular Genetics and Human Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Jacob T. Gafranek
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Tiffany B. Duong
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Master’s Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Terri L. VanDyke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Melissa Touvron
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lindsey A. Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|