1
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
2
|
Tafazzoli K, Ghavami M, Khosravi-Darani K. Investigation of impact of siderophore and process variables on production of iron enriched Saccharomyces boulardii by Plackett-Burman design. Sci Rep 2024; 14:22813. [PMID: 39353969 PMCID: PMC11445229 DOI: 10.1038/s41598-024-70467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.
Collapse
Affiliation(s)
- Kiyana Tafazzoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mangrum MM, Vogel AK, Wagner AS, King AE, Miao J, Zhou Y, Phillips EK, Peters BM, Reynolds TB. Disruption to de novo uridine biosynthesis alters β-1,3-glucan masking in Candida albicans. mSphere 2024; 9:e0028724. [PMID: 39115319 PMCID: PMC11423711 DOI: 10.1128/msphere.00287-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 08/18/2024] Open
Abstract
The uridine derivatives UDP-glucose and UDP-N-acetylglucosamine are important for cell wall construction as they are the precursors for the synthesis of β-1,3-glucan and chitin, respectively. Previous studies have demonstrated attenuated virulence of uridine auxotrophs in mice, which has been attributed to insufficient uridine levels for growth in the host. We have discovered that uridine deprivation in the uridine auxotroph ura3ΔΔ disrupts cell wall architecture by increasing surface mannans, exposing β-1,3-glucan and chitin, and decreasing UDP-sugar levels. Cell wall architecture and UDP-sugars can be rescued with uridine supplementation. The cell wall architectural disruptions in the ura3ΔΔ mutant also impact immune activation since the mutant elicited greater TNFα secretion from RAW264.7 macrophages than wild type. To determine if cell wall defects contributed to decreased virulence in the ura3ΔΔ mutant, we used a murine model of systemic infection. Mice infected with the ura3ΔΔ mutant exhibited increased survival and reduced kidney fungal burden compared with mice infected with wild type. However, suppression of the immune response with cyclophosphamide did not rescue virulence in mice infected with the ura3ΔΔ mutant, indicating the attenuation in virulence of uridine auxotrophs can be attributed to decreased growth in the host but not increased exposure of β-1,3-glucan. Moreover, the ura3ΔΔ mutant is unable to grow on ex vivo kidney agar, which demonstrates its inability to colonize the kidneys due to poor growth. Thus, although uridine auxotrophy elicits changes to cell wall architecture that increase the exposure of immunogenic polymers, metabolic fitness costs more strongly drive the observed virulence attenuation.IMPORTANCECandida albicans is a common cause of bloodstream infections (candidemia). Treatment of these bloodstream infections is made difficult because of increasing antifungal resistance and drug toxicity. Thus, new tactics are needed for antifungal drug development, with immunotherapy being of particular interest. The cell wall of C. albicans is composed of highly immunogenic polymers, particularly β-1,3-glucan. However, β-1,3-glucan is naturally masked by an outer layer of mannoproteins, which hampers the detection of the fungus by the host immune system. Alteration in cell wall components has been shown to increase β-1,3-glucan exposure; however, it is unknown how the inability to synthesize precursors to cell wall components affects unmasking. Here, we demonstrate how cell wall architecture is altered in response to a deficit in precursors for cell wall synthesis and how uridine is a crucial component of these precursors.
Collapse
Affiliation(s)
- Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Amanda K. Vogel
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
4
|
Rosati D, Pradhan A, van Heck JIP, Helder L, Jaeger M, Gow NAR, Joosten LAB, Williams DL, Brown AJP, Bruno M, Netea MG. Candida albicans N-Linked Mannans Potentiate the Induction of Trained Immunity via Dectin-2. J Infect Dis 2024; 230:768-777. [PMID: 38446996 PMCID: PMC11420807 DOI: 10.1093/infdis/jiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to β-glucans, for an effective induction of trained immunity by C. albicans.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Julia I P van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Jin P, Wang L, Chen D, Chen Y. Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence. J Oral Microbiol 2024; 16:2339161. [PMID: 38606339 PMCID: PMC11008315 DOI: 10.1080/20002297.2024.2339161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Objective To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification. Methods A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity. Results C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC. Conclusion The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.
Collapse
Affiliation(s)
- Pingping Jin
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Lu Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|
6
|
Ma Z, Ensley HE, Graves B, Kruppa MD, Rice PJ, Lowman DW, Williams DL. Synthesis of a unique mannose α-1-phosphate side chain moiety found in Candida auris cell wall mannan. Carbohydr Res 2024; 537:109059. [PMID: 38408423 PMCID: PMC10957239 DOI: 10.1016/j.carres.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Candida auris is an emerging fungal pathogen that has become a world-wide public health threat. While there have been numerous studies into the nature, composition and structure of the cell wall of Candida albicans and other Candida species, much less is known about the C. auris cell wall. We have shown that C. auris cell wall mannan contains a unique phosphomannan structure which distinguishes C. auris mannan from the mannans found in other fungal species. Specifically, C. auris exhibits two unique acid-labile mannose α-1-phosphate (Manα1PO4) sidechains that are absent in other fungal mannans and fungal pathogens. This unique mannan structural feature presents an opportunity for the development of vaccines, therapeutics, diagnostic tools and/or research reagents that target C. auris. Herein, we describe the successful synthesis and structural characterization of a Manα1PO4-containing disaccharide moiety that mimics the phosphomannan found in C. auris. Additionally, we present evidence that the synthetic Manα1PO4 glycomimetic is specifically recognized and bound by cell surface pattern recognition receptors, i.e. rhDectin-2, rhMannose receptor and rhMincle, that are known to play important roles in the innate immune response to C. auris as well as other fungal pathogens. The synthesis of the Manα1PO4 glycomimetic may represent an important starting point in the development of vaccines, therapeutics, diagnostics and research reagents which target a number of C. auris clinical strains. In addition, these data provide new insights and understanding into the structural biology of this unique fungal pathogen.
Collapse
Affiliation(s)
- Zuchao Ma
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Harry E Ensley
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Bridget Graves
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Douglas W Lowman
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - David L Williams
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA; Drug Discovery and Synthesis Core, East Tennessee State University, Johnson City, TN, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
7
|
de Macêdo LS, de Pinho SS, Silva AJD, de Moura IA, Espinoza BCF, da Conceição Viana Invenção M, Novis PVS, da Gama MATM, do Nascimento Carvalho M, Leal LRS, Cruz BIS, Bandeira BMA, Santos VEP, de Freitas AC. Understanding yeast shells: structure, properties and applications. ADMET AND DMPK 2024; 12:299-317. [PMID: 38720922 PMCID: PMC11075163 DOI: 10.5599/admet.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
Background and purpose The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as β-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil
| |
Collapse
|
8
|
Avelar GM, Pradhan A, Ma Q, Hickey E, Leaves I, Liddle C, Rodriguez Rondon AV, Kaune AK, Shaw S, Maufrais C, Sertour N, Bain JM, Larcombe DE, de Assis LJ, Netea MG, Munro CA, Childers DS, Erwig LP, Brown GD, Gow NAR, Bougnoux ME, d'Enfert C, Brown AJP. A CO 2 sensing module modulates β-1,3-glucan exposure in Candida albicans. mBio 2024; 15:e0189823. [PMID: 38259065 PMCID: PMC10865862 DOI: 10.1128/mbio.01898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases β-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to β-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Alejandra V. Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ann-Kristin Kaune
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Carol A. Munro
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Gordon D. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Nielson JA, Jezewski AJ, Wellington M, Davis JM. Survival in macrophages induces enhanced virulence in Cryptococcus. mSphere 2024; 9:e0050423. [PMID: 38073033 PMCID: PMC10826345 DOI: 10.1128/msphere.00504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 01/31/2024] Open
Abstract
Cryptococcus is a ubiquitous environmental fungus and frequent colonizer of human lungs. Colonization can lead to diverse outcomes, from clearance to long-term colonization to life-threatening meningoencephalitis. Regardless of the outcome, the process starts with an encounter with phagocytes. Using the zebrafish model of this infection, we have noted that cryptococcal cells first spend time inside macrophages before they become capable of pathogenic replication and dissemination. What "licensing" process takes place during this initial encounter, and how are licensed cryptococcal cells different? To address this, we isolated cryptococcal cells after phagocytosis by cultured macrophages and found these macrophage-experienced cells to be markedly more virulent in both zebrafish and mouse models. Despite producing a thick polysaccharide capsule, they were still subject to phagocytosis by macrophages in the zebrafish. Analysis of antigenic cell wall components in these licensed cells demonstrated that components of mannose and chitin are more available for staining than they are in culture-grown cells or cells with capsule production induced in vitro. Cryptococcus is capable of exiting or transferring between macrophages in vitro, raising the likelihood that this fungus alternates between intracellular and extracellular life during growth in the lungs. Our results raise the possibility that intracellular life has its advantages over time, and phagocytosis-induced alteration in mannose and chitin exposure is one way that makes subsequent rounds of phagocytosis more beneficial to the fungus.IMPORTANCECryptococcosis begins in the lungs and can ultimately travel through the bloodstream to cause devastating infection in the central nervous system. In the zebrafish model, small amounts of cryptococcus inoculated into the bloodstream are initially phagocytosed and become far more capable of dissemination after they exit macrophages. Similarly, survival in the mouse lung produces cryptococcal cell types with enhanced dissemination. In this study, we have evaluated how phagocytosis changes the properties of Cryptococcus during pathogenesis. Macrophage-experienced cells (MECs) become "licensed" for enhanced virulence. They out-disseminate culture-grown cells in the fish and out-compete non-MECs in the mouse lung. Analysis of their cell surface demonstrates that MECs have increased availability of cell wall components mannose and chitin substances involved in provoking phagocytosis. These findings suggest how Cryptococcus might tune its cell surface to induce but survive repeated phagocytosis during early pathogenesis in the lung.
Collapse
Affiliation(s)
- Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew J. Jezewski
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melanie Wellington
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - J. Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Sah SK, Yadav A, Kruppa MD, Rustchenko E. Identification of 10 genes on Candida albicans chromosome 5 that control surface exposure of the immunogenic cell wall epitope β-glucan and cell wall remodeling in caspofungin-adapted mutants. Microbiol Spectr 2023; 11:e0329523. [PMID: 37966256 PMCID: PMC10714753 DOI: 10.1128/spectrum.03295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
11
|
Anaya EU, Amin AE, Wester MJ, Danielson ME, Michel KS, Neumann AK. Dectin-1 multimerization and signaling depends on fungal β-glucan structure and exposure. Biophys J 2023; 122:3749-3767. [PMID: 37515324 PMCID: PMC10541497 DOI: 10.1016/j.bpj.2023.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dectin-1A is a C-type lectin innate immunoreceptor that recognizes β-(1,3;1,6)-glucan, a structural component of Candida species cell walls. β-Glucans can adopt solution structures ranging from random coil to insoluble fiber due to tertiary (helical) and quaternary structure. Fungal β-glucans of medium and high molecular weight are highly structured, but low molecular weight glucan is much less structured. Despite similar affinity for Dectin-1, the ability of glucans to induce Dectin-1A-mediated signaling correlates with degree of structure. Glucan denaturation experiments showed that glucan structure determines agonistic potential, but not receptor binding affinity. We explored the impact of glucan structure on molecular aggregation of Dectin-1A. Stimulation with glucan signaling decreased Dectin-1A diffusion coefficient. Fluorescence measurements provided direct evidence of ligation-induced Dectin-1A aggregation, which positively correlated with increasing glucan structure content. In contrast, Dectin-1A is predominantly in a low aggregation state in resting cells. Molecular aggregates formed during interaction with highly structured, agonistic glucans did not exceed relatively small (<15 nm) clusters of a few engaged receptors. Finally, we observed increased molecular aggregation of Dectin-1A at fungal particle contact sites in a manner that positively correlated with the degree of exposed glucan on the particle surface. These results indicate that Dectin-1A senses the solution conformation of β-glucans through their varying ability to drive receptor dimer/oligomer formation and activation of membrane proximal signaling events.
Collapse
Affiliation(s)
- Eduardo U Anaya
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Akram Etemadi Amin
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico; Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | | | | | - Aaron K Neumann
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
12
|
Wagner AS, Lumsdaine SW, Mangrum MM, Reynolds TB. Caspofungin-induced β(1,3)-glucan exposure in Candida albicans is driven by increased chitin levels. mBio 2023; 14:e0007423. [PMID: 37377417 PMCID: PMC10470516 DOI: 10.1128/mbio.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
To successfully induce disease, Candida albicans must effectively evade the host immune system. One mechanism used by C. albicans to achieve this is to mask immunogenic β(1,3)-glucan epitopes within its cell wall under an outer layer of mannosylated glycoproteins. Consequently, induction of β(1,3)-glucan exposure (unmasking) via genetic or chemical manipulation increases fungal recognition by host immune cells in vitro and attenuates disease during systemic infection in mice. Treatment with the echinocandin caspofungin is one of the most potent drivers of β(1,3)-glucan exposure. Several reports using murine infection models suggest a role for the immune system, and specifically host β(1,3)-glucan receptors, in mediating the efficacy of echinocandin treatment in vivo. However, the mechanism by which caspofungin-induced unmasking occurs is not well understood. In this report, we show that foci of unmasking co-localize with areas of increased chitin within the yeast cell wall in response to caspofungin, and that inhibition of chitin synthesis via nikkomycin Z attenuates caspofungin-induced β(1,3)-glucan exposure. Furthermore, we find that both the calcineurin and Mkc1 mitogen-activated protein kinase pathways work synergistically to regulate β(1,3)-glucan exposure and chitin synthesis in response to drug treatment. When either of these pathways are interrupted, it results in a bimodal population of cells containing either high or low chitin content. Importantly, increased unmasking correlates with increased chitin content within these cells. Microscopy further indicates that caspofungin-induced unmasking correlates with actively growing cells. Collectively, our work presents a model in which chitin synthesis induces unmasking within the cell wall in response to caspofungin in growing cells. IMPORTANCE Systemic candidiasis has reported mortality rates ranging from 20% to 40%. The echinocandins, including caspofungin, are first-line antifungals used to treat systemic candidiasis. However, studies in mice have shown that echinocandin efficacy relies on both its cidal impacts on Candida albicans, as well as a functional immune system to successfully clear invading fungi. In addition to direct C. albicans killing, caspofungin increases exposure (unmasking) of immunogenic β(1,3)-glucan moieties. To evade immune detection, β(1,3)-glucan is normally masked within the C. albicans cell wall. Consequently, unmasked β(1,3)-glucan renders these cells more visible to the host immune system and attenuates disease progression. Therefore, discovery of how caspofungin-induced unmasking occurs is needed to elucidate how the drug facilitates host immune system-mediated clearance in vivo. We report a strong and consistent correlation between chitin deposition and unmasking in response to caspofungin and propose a model in which altered chitin synthesis drives increased unmasking during drug exposure.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Son S, Nam J, Kim AS, Ahn J, Park KS, Phoo MT, Sherren B, Zou W, Lee SH, Farokhzad OC, Shi J, Moon JJ. Induction of T-helper-17-cell-mediated anti-tumour immunity by pathogen-mimicking polymer nanoparticles. Nat Biomed Eng 2023; 7:72-84. [PMID: 36564626 PMCID: PMC9877201 DOI: 10.1038/s41551-022-00973-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
The effectivity of cancer immunotherapies is hindered by immunosuppressive tumour microenvironments that are poorly infiltrated by effector T cells and natural killer cells. In infection and autoimmune disease, the recruitment and activation of effector immune cells is coordinated by pro-inflammatory T helper 17 (TH17) cells. Here we show that pathogen-mimicking hollow nanoparticles displaying mannan (a polysaccharide that activates TH17 cells in microbial cell walls) limit the fraction of regulatory T cells and induce TH17-cell-mediated anti-tumour responses. The nanoparticles activate the pattern-recognition receptor Dectin-2 and Toll-like receptor 4 in dendritic cells, and promote the differentiation of CD4+ T cells into the TH17 phenotype. In mice, intra-tumoural administration of the nanoparticles decreased the fraction of regulatory T cells in the tumour while markedly increasing the fractions of TH17 cells (and the levels of TH17-cell-associated cytokines), CD8+ T cells, natural killer cells and M1-like macrophages. The anti-tumoural activity of the effector cells was amplified by an agonistic antibody against the co-stimulatory receptor OX40 in multiple mouse models. Nanomaterials that induce TH17-cell-mediated immune responses may have therapeutic potential.
Collapse
Affiliation(s)
- Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea.
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, Republic of Korea.
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - April S Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brett Sherren
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Seer, Inc., Redwood City, CA, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
de Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, Yuecel R, Bebes A, Stead D, Childers DS, Pradhan A, Mackenzie K, Lagree K, Larcombe DE, Ma Q, Avelar GM, Netea MG, Erwig LP, Mitchell AP, Brown GD, Gow NAR, Brown AJP. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio 2022; 13:e0260522. [PMID: 36218369 PMCID: PMC9765427 DOI: 10.1128/mbio.02605-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/15/2023] Open
Abstract
Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as β-1,3-glucan. In C. albicans, most β-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some β-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed β-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that β-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed β-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces β-1,3-glucan exposure at bud scars and at punctate foci. β-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates β-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that β-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP β-1,3-glucan, which is an essential component of its cell wall. Most of this β-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed β-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of β-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that β-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.
Collapse
Affiliation(s)
- Leandro José de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Judith M. Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | | | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - Attila Bebes
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - David Stead
- Aberdeen Proteomics Facility, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel E. Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Loor A, Wang D, Bossier P, Nevejan N. β-1,3-Glucan/chitin unmasking in the Saccharomyces cerevisiae mutant, Δmnn9, promotes immune response and resistance of the Pacific oyster (Crassostrea gigas) to Vibrio coralliilyticus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:470-479. [PMID: 36115606 DOI: 10.1016/j.fsi.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Yeast cells can play a crucial role in immune activation in fish and shellfish predominantly due to the cell wall component β-1,3-glucan, providing protection against bacterial or viral infections. However, the immunostimulatory capacity of dietary yeast cells remains poorly studied in bivalves. To understand the role of yeast cell wall components (mannan, β-glucan and chitin) as immune activators, this study characterized the surface carbohydrate exposure of the wild-type baker's yeast Saccharomyces cerevisiae (WT) and its Δmnn9 mutant, which presents a defective mannan structure, and compared these profiles with that of β-glucan particles, using fluorescein isothiocyanate (FITC)-labeled lectin binding analysis. Then, a first trial evaluated the immunological response in Crassostrea gigas juveniles after being fed for 24 h with an algae-based diet (100A) and its 50% substituted version (based on dry weight) with WT (50A50WT) and Δmnn9 (50A50Y), and the posterior resistance of the juveniles against Vibrio coralliilyticus infection (trial 1). The mRNA expression was measured for β-glucan-binding protein (CgβGBP), Toll-like receptor 4 (CgTLR4), C-type lectin receptor 3 (CgCLec-3), myeloid differentiation factor 88 (CgMyD88), nuclear factor-kappa B (CgNFκB), lysozyme (CgLys), interleukin 17-5 (CgIL17-5), and superoxide dismutase (CgSOD), in oysters, before and 24 h after the bacterial inoculation. A second trial tested the effect of incorporating Δmnn9 into the 100A diet for 24 h at different substitution levels: 0, 5, 10, 25, and 50% (100A, 95A5Y, 90A10Y, 75A25Y, and 50A50Y), followed by the bacterial challenge with V. coralliilyticus (trial 2). Our findings showed that the outer cell wall surface of WT is largely composed of mannan, while Δmnn9 presents high exposure of β-glucan and chitin, exhibiting similar FITC-lectin binding profiles (fluorescence intensity) to β-glucan particles. A significantly higher survival after the bacterial challenge was observed in oysters fed on 50A50Y compared to those fed 50A50WT and 100A in trial 1. This better performance of 50A50Y was supported by significantly higher gene expressions of CgLys, CgSOD, CgMyD88, and CgβGBP compared to 100A, and CgSOD and CgNFκB in relation to those fed on 50A50WT, prior to the bacterial inoculation. Furthermore, improved survival was observed in oysters fed 50A50Y compared to those offered lower Δmnn9 levels and 100A in trial 2. The superior performance of Δmnn9-fed oysters is mostly associated with the elevated presence of unmasked β-glucans on Δmnn9 cell wall surface, facilitating their interactions with oyster hemocytes. Further studies are needed to evaluate administration dose and frequency of Δmnn9 to develop strategies for long-term feeding.
Collapse
Affiliation(s)
- Alfredo Loor
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Dongdong Wang
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
18
|
Liu Y, Wang Z, Zhou Z, Ma Q, Li J, Huang J, Lei L, Zhou X, Cheng L, Zou J, Ren B. Candida albicans CHK1 gene regulates its cross-kingdom interactions with Streptococcus mutans to promote caries. Appl Microbiol Biotechnol 2022; 106:7251-7263. [PMID: 36195704 DOI: 10.1007/s00253-022-12211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 01/14/2023]
Abstract
The cross-kingdom interactions between Candida albicans and Streptococcus mutans have played important roles in early childhood caries (ECC). However, the key pathways of C. albicans promoting the cariogenicity of S. mutans are still unclear. Here, we found that C. albicans CHK1 gene was highly upregulated in their dual-species biofilms. C. albicans chk1Δ/Δ significantly reduced the synergistical growth promotion, biofilm formation, and exopolysaccharides (EPS) production of S. mutans, the key cariogenic agent, compared to C. albicans wild type (WT) and CHK1 complementary strains. C. albicans WT upregulated the expressions of S. mutans EPS biosynthesis genes gtfB, gtfC, and gtfD, and their regulatory genes vicR and vicK, but chk1Δ/Δ had no effects. Both C. albicans WT and chk1Δ/Δ failed to promote the biofilm formation and EPS production of S. mutans ΔvicK and antisense-vicR strains, indicating that C. albicans CHK1 upregulated S. mutans vicR and vicK to increase the EPS biosynthesis gene expression, then enhanced the EPS production and biofilm formation to promote the cariogenicity. In rat caries model, the coinfection with chk1Δ/Δ and S. mutans decreased the colonization of S. mutans and developed less caries especially the severe caries compared to that from the combinations of S. mutans with C. albicans WT, indicating the essential role of C. albicans CHK1 gene in the development of dental caries. Our study for the first time demonstrated the key roles of C. albicans CHK1 gene in dental caries and suggested that it may be a practical target to reduce or treat ECC. KEY POINTS: • C. albicans CHK1 gene is important for its interaction with S. mutans. • CHK1 regulates S. mutans two-component system to promote its cariogenicity. • CHK1 gene regulates the cariogenicity of S. mutans in rat dental caries.
Collapse
Affiliation(s)
- Yaqi Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Avelar GM, Dambuza IM, Ricci L, Yuecel R, Mackenzie K, Childers DS, Bain JM, Pradhan A, Larcombe DE, Netea MG, Erwig LP, Brown GD, Duncan SH, Gow NA, Walker AW, Brown AJ. Impact of changes at the Candida albicans cell surface upon immunogenicity and colonisation in the gastrointestinal tract. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2022; 8:100084. [PMID: 36299406 PMCID: PMC9589014 DOI: 10.1016/j.tcsw.2022.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP β-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon β-glucan exposure and colonisation levels in the GI tract. The degree of β-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal β-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers β-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence β-glucan exposure on C. albicans cells in vitro and, like lactate, they influence β-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated β-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated β-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote β-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences β-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst β-glucan masking appears to promote C. albicans colonisation of the murine large intestine.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivy M. Dambuza
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Liviana Ricci
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kevin Mackenzie
- Microscopy & Histology Facility, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delma S. Childers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M. Bain
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E. Larcombe
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London W1G 0BG, UK
| | - Gordon D. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Sylvia H. Duncan
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A.R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alan W. Walker
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Corresponding author at: Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
21
|
Wagner AS, Lumsdaine SW, Mangrum MM, King AE, Hancock TJ, Sparer TE, Reynolds TB. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans. PLoS Genet 2022; 18:e1010405. [PMID: 36121853 PMCID: PMC9521907 DOI: 10.1371/journal.pgen.1010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
22
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
23
|
Wang Y, Zou Y, Chen X, Li H, Yin Z, Zhang B, Xu Y, Zhang Y, Zhang R, Huang X, Yang W, Xu C, Jiang T, Tang Q, Zhou Z, Ji Y, Liu Y, Hu L, Zhou J, Zhou Y, Zhao J, Liu N, Huang G, Chang H, Fang W, Chen C, Zhou D. Innate immune responses against the fungal pathogen Candida auris. Nat Commun 2022; 13:3553. [PMID: 35729111 PMCID: PMC9213489 DOI: 10.1038/s41467-022-31201-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Candida auris is a multidrug-resistant human fungal pathogen responsible for nosocomial outbreaks worldwide. Although considerable progress has increased our understanding of the biological and clinical aspects of C. auris, its interaction with the host immune system is only now beginning to be investigated in-depth. Here, we compare the innate immune responses induced by C. auris BJCA001 and Candida albicans SC5314 in vitro and in vivo. Our results indicate that C. auris BJCA001 appears to be less immunoinflammatory than C. albicans SC5314, and this differential response correlates with structural features of the cell wall. Candida auris is a multidrug-resistant human fungal pathogen responsible for nosocomial outbreaks worldwide. Here, the authors identify differential innate immune responses induced by C. auris and Candida albicans in vitro and in vivo, which correlate with structural features of the cell wall.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Yun Zou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiquan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, China
| | - Xinhua Huang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chaoyue Xu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.,College of Life Science, Shanghai University, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qinyu Tang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zili Zhou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Ji
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingqi Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jia Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Zhou
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ningning Liu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanghua Huang
- Department of Infectious Disease, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Changbin Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China. .,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
24
|
Chen T, Wagner AS, Reynolds TB. When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:842501. [PMID: 36908584 PMCID: PMC10003681 DOI: 10.3389/ffunb.2022.842501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
Abstract
Candida spp. are an important source of systemic and mucosal infections in immune compromised populations. However, drug resistance or toxicity has put limits on the efficacy of current antifungals. The C. albicans cell wall is considered a good therapeutic target due to its roles in viability and fungal pathogenicity. One potential method for improving antifungal strategies could be to enhance the detection of fungal cell wall antigens by host immune cells. ß(1,3)-glucan, which is an important component of fungal cell walls, is a highly immunogenic epitope. Consequently, multiple host pattern recognition receptors, such as dectin-1, complement receptor 3 (CR3), and the ephrin type A receptor A (EphA2) are capable of recognizing exposed (unmasked) ß(1,3)-glucan moieties on the cell surface to initiate an anti-fungal immune response. However, ß(1,3)-glucan is normally covered (masked) by a layer of glycosylated proteins on the outer surface of the cell wall, hiding it from immune detection. In order to better understand possible mechanisms of unmasking ß(1,3)-glucan, we must develop a deeper comprehension of the pathways driving this phenotype. In this review, we describe the medical importance of ß(1,3)-glucan exposure in anti-fungal immunity, and highlight environmental stimuli and stressors encountered within the host that are capable of inducing changes in the levels of surface exposed ß(1,3)-glucan. Furthermore, particular focus is placed on how signal transduction cascades regulate changes in ß(1,3)-glucan exposure, as understanding the role that these pathways have in mediating this phenotype will be critical for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
25
|
Wang Y, Zhou J, Zou Y, Chen X, Liu L, Qi W, Huang X, Chen C, Liu NN. Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Rep 2022; 38:110293. [PMID: 35081357 DOI: 10.1016/j.celrep.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xinhua Huang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
26
|
Kruppa MD, Lowman DW, Ensley HE, Ma Z, Graves B, Kintner J, Hall JV, Ozment TR, Williams DL. Isolation, Physicochemical Characterization, Labeling, and Biological Evaluation of Mannans and Glucans. Methods Mol Biol 2022; 2542:323-360. [PMID: 36008676 DOI: 10.1007/978-1-0716-2549-1_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell wall contains mannans and glucans that are recognized by the host immune system. In this chapter, we will describe the methods to isolate mannans and glucans from the C. albicans cell wall. In addition, we describe how to determine purity, molecular size, and structure of the mannans and glucans. We also detail how to prepare the carbohydrates for in vitro, ex vivo, or in vivo use by describing endotoxin removal (depyrogenation), derivatization, and labeling and evaluation of bioactivity.
Collapse
Affiliation(s)
- Michael D Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Douglas W Lowman
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Harry E Ensley
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Bridget Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer Kintner
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer V Hall
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Tammy R Ozment
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
27
|
Norris HL, Kumar R, Edgerton M. A Novel Role for Histatin 5 in Combination with Zinc to Promote Commensalism in C. albicans Survivor Cells. Pathogens 2021; 10:pathogens10121609. [PMID: 34959564 PMCID: PMC8703888 DOI: 10.3390/pathogens10121609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and β-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.
Collapse
|
28
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
29
|
Nguyen GT, Xu S, Adams W, Leong JM, Bunnell SC, Mansour MK, Sykes DB, Mecsas J. Neutrophils require SKAP2 for reactive oxygen species production following C-type lectin and Candida stimulation. iScience 2021; 24:102871. [PMID: 34386732 PMCID: PMC8346660 DOI: 10.1016/j.isci.2021.102871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling cascades converting the recognition of pathogens to efficient inflammatory responses by neutrophils are critical for host survival. SKAP2, an adaptor protein, is required for reactive oxygen species (ROS) generation following neutrophil stimulation by integrins, formyl peptide receptors, and for host defense against the Gram-negative bacterial pathogens, Klebsiella pneumoniae and Yersinia pseudotuberculosis. Using neutrophils from murine HoxB8-immortalized progenitors, we show that SKAP2 in neutrophils is crucial for maximal ROS response to purified C-type lectin receptor agonists and to the fungal pathogens, Candida glabrata and Candida albicans, and for robust killing of C. glabrata. Inside-out signaling to integrin and Syk phosphorylation occurred independently of SKAP2 after Candida infection. However, Pyk2, ERK1/2, and p38 phosphorylation were significantly reduced after infection with C. glabrata and K. pneumoniae in Skap2-/- neutrophils. These data demonstrate the importance of SKAP2 in ROS generation and host defense beyond antibacterial immunity to include CLRs and Candida species.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - John M. Leong
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Stephen C. Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02115, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
30
|
Hameed S, Hans S, Singh S, Dhiman R, Monasky R, Pandey RP, Thangamani S, Fatima Z. Revisiting the Vital Drivers and Mechanisms of β-Glucan Masking in Human Fungal Pathogen, Candida albicans. Pathogens 2021; 10:942. [PMID: 34451406 PMCID: PMC8399646 DOI: 10.3390/pathogens10080942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/31/2022] Open
Abstract
Among the several human fungal pathogens, Candida genus represents one of the most implicated in the clinical scenario. There exist several distinctive features that govern the establishment of Candida infections in addition to their capacity to adapt to multiple stress conditions inside humans which also include evasion of host immune responses. The complex fungal cell wall of the prevalent pathogen, Candida albicans, is one of the main targets of antifungal drugs and recognized by host immune cells. The wall consists of tiered arrangement of an outer thin but dense covering of mannan and inner buried layers of β-glucan and chitin. However, the pathogenic fungi adopt strategies to evade immune recognition by masking these molecules. This capacity to camouflage the immunogenic polysaccharide β-glucan from the host is a key virulence factor of C. albicans. The present review is an attempt to collate various underlying factors and mechanisms involved in Candida β-glucan masking from the available pool of knowledge and provide a comprehensive understanding. This will further improve therapeutic approaches to candidiasis by identifying new antifungal targets that blocks fungal immune evasion.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Ross Monasky
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| |
Collapse
|
31
|
Intervening in Symbiotic Cross-Kingdom Biofilm Interactions: a Binding Mechanism-Based Nonmicrobicidal Approach. mBio 2021; 12:mBio.00651-21. [PMID: 34006656 PMCID: PMC8262967 DOI: 10.1128/mbio.00651-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Early childhood caries is a severe oral disease that results in aggressive tooth decay. Particularly, a synergistic association between a fungus, Candida albicans, and a cariogenic bacterium, Streptococcus mutans, promotes the development of hard-to-remove and highly acidic biofilms, exacerbating the virulent damage. These interactions are largely mediated via glucosyltransferases (GtfB) binding to mannans on the cell wall of C. albicans. Here, we present an enzymatic approach to target GtfB-mannan interactions in this cross-kingdom consortium using mannan-degrading exo- and endo-enzymes. These exo- and endo-enzymes are highly effective in reducing biofilm biomass without killing microorganisms, as well as alleviating the production of an acidic pH environment conducive to tooth decay. To corroborate these results, we present biophysical evidence using single-molecule atomic force microscopy, biofilm shearing, and enamel surface topography analyses. Data show a drastic decrease in binding forces of GtfB to C. albicans (∼15-fold reduction) following enzyme treatment. Furthermore, enzymatic activity disrupted biofilm mechanical stability and significantly reduced human tooth enamel demineralization without cytotoxic effects on gingival keratinocytes. Our results represent significant progress toward a novel nonbiocidal therapeutic intervention against pathogenic bacterial-fungal biofilms by targeting the interkingdom receptor-ligand binding interactions.
Collapse
|
32
|
Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends Microbiol 2021; 29:416-427. [PMID: 33059975 DOI: 10.1016/j.tim.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.
Collapse
Affiliation(s)
- Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro J de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alejandra V Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Olga A Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
33
|
Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K, Pradhan A, Lewis LE, Louw J, Avelar GM, Larcombe DE, Netea MG, Gow NAR, Brown GD, Erwig LP, Brown AJP. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A 2021; 118:e2020484118. [PMID: 33876755 PMCID: PMC8053999 DOI: 10.1073/pnas.2020484118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, β2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Collapse
Affiliation(s)
- Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - M Fernanda Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Catriona A Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Kevin Mackenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Leanne E Lewis
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Johanna Louw
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lars P Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Johnson-Johnson Innovation, Europe, Middle East and Africa Innovation Centre, London W1G 0BG, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom;
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
34
|
Zhou Y, Cheng L, Liao B, Shi Y, Niu Y, Zhu C, Ye X, Zhou X, Ren B. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol 2021; 105:2485-2496. [PMID: 33635358 DOI: 10.1007/s00253-021-11187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
The roles of Candida albicans CHK1, a key gene from two-component system, in oral mucosal infection are not clear. This study evaluated the key roles of CHK1 gene in vitro and in vivo. The expression of CHK1 and its regulated virulence factors were tested during the oral epithelial cell infection. The production of lactate dehydrogenase, ROS, and IL-1α combined with the confocal and scanning electron microscope observation was employed to identify the capability of CHK1 in damaging the epithelial cells. Both immunocompetent and immunodeficient mice oropharyngeal infection models were involved to confirm the roles of CHK1 gene in vivo. The expression of CHK1 gene was significantly increased during the oral epithelial cell infection. The chk1Δ/Δ mutant failed to damage the epithelial cells or induce IL-α and ROS production. Interestingly, chk1Δ/Δ can also form the similar hyphae with WT and complementary strains. Accordingly, chk1Δ/Δ did not affect the adhesion and invasion rates of C. albicans to oral epithelial cells. However, chk1Δ/Δ significantly decreased the expression levels of the virulence factors, including ALS2, SAP6, and YWP1. The chk1Δ/Δ also failed to cause oral candidiasis in both immunocompetent and immunodeficient mice indicating that CHK1 gene from the two-component system is essential for the pathogenicity of C. albicans. KEY POINTS: • CHK1gene is essential for C. albicans in oral candidiasis • C. albicans without CHK1 gene can form "non-pathogenic" hyphae. • CHK1 gene regulates the virulence of C. albicans.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
35
|
Choraghe RP, Neumann AK. Dectin-1-Mediated DC-SIGN Recruitment to Candida albicans Contact Sites. Life (Basel) 2021; 11:life11020108. [PMID: 33572494 PMCID: PMC7923000 DOI: 10.3390/life11020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
At host-pathogen contact sites with Candida albicans, Dectin-1 activates pro-inflammatory signaling, while DC-SIGN promotes adhesion to the fungal surface. We observed that Dectin-1 and DC-SIGN collaborate to enhance capture/retention of C. albicans under fluid shear culture conditions. Therefore, we devised a cellular model system wherein we could investigate the interaction between these two receptors during the earliest stages of host-pathogen interaction. In cells expressing both receptors, DC-SIGN was quickly recruited to contact sites (103.15% increase) but Dectin-1 did not similarly accumulate. Once inside the contact site, FRAP studies revealed a strong reduction in lateral mobility of DC-SIGN (but not Dectin-1), consistent with DC-SIGN engaging in multivalent adhesive binding interactions with cell wall mannoprotein ligands. Interestingly, in the absence of Dectin-1 co-expression, DC-SIGN recruitment to the contact was much poorer-only 35.04%. These data suggested that Dectin-1 promotes the active recruitment of DC-SIGN to the contact site. We proposed that Dectin-1 signaling activates the RHOA pathway, leading to actomyosin contractility that promotes DC-SIGN recruitment, perhaps via the formation of a centripetal actomyosin flow (AMF) directed into the contact site. Indeed, RHOA pathway inhibitors significantly reduced Dectin-1-associated DC-SIGN recruitment to the contact site. We used agent-based modeling to predict DC-SIGN transport kinetics with ("Directed + Brownian") and without ("Brownian") the hypothesized actomyosin flow-mediated transport. The Directed + Brownian transport model predicted a DC-SIGN contact site recruitment (106.64%), similar to that we observed experimentally under receptor co-expression. Brownian diffusive transport alone predicted contact site DC-SIGN recruitment of only 55.60%. However, this value was similar to experimentally observed DC-SIGN recruitment in cells without Dectin-1 or expressing Dectin-1 but treated with RHOA inhibitor, suggesting that it accurately predicted DC-SIGN recruitment when a contact site AMF would not be generated. TIRF microscopy of nascent cell contacts on glucan-coated glass revealed Dectin-1-dependent DC-SIGN and F-actin (LifeAct) recruitment kinetics to early stage contact site membranes. DC-SIGN entry followed F-actin with a temporal lag of 8.35 ± 4.57 s, but this correlation was disrupted by treatment with RHOA inhibitor. Thus, computational and experimental evidence provides support for the existence of a Dectin-1/RHOA-dependent AMF that produces a force to drive DC-SIGN recruitment to pathogen contact sites, resulting in improved pathogen capture and retention by immunocytes. These data suggest that the rapid collaborative response of Dectin-1 and DC-SIGN in early contact sties might be important for the efficient acquisition of yeast under flow conditions, such as those that prevail in circulation or mucocutaneous sites of infection.
Collapse
|
36
|
Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D, Kruppa MD, Lowman DW, Rice PJ, Graves B, Ma Z, Jiao YN, Chowdhary A, Renieris G, van de Veerdonk FL, Kullberg BJ, Giamarellos-Bourboulis EJ, Hoischen A, Gow NAR, Brown AJP, Meis JF, Williams DL, Netea MG. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol 2020; 5:1516-1531. [PMID: 32839538 DOI: 10.1038/s41564-020-0780-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
Abstract
Candida auris is among the most important emerging fungal pathogens, yet mechanistic insights into its immune recognition and control are lacking. Here, we integrate transcriptional and functional immune-cell profiling to uncover innate defence mechanisms against C. auris. C. auris induces a specific transcriptome in human mononuclear cells, a stronger cytokine response compared with Candida albicans, but a lower macrophage lysis capacity. C. auris-induced innate immune activation is mediated through the recognition of C-type lectin receptors, mainly elicited by structurally unique C. auris mannoproteins. In in vivo experimental models of disseminated candidiasis, C. auris was less virulent than C. albicans. Collectively, these results demonstrate that C. auris is a strong inducer of innate host defence, and identify possible targets for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Simone Kersten
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith M Bain
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Martin Jaeger
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diletta Rosati
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael D Kruppa
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas W Lowman
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Bridget Graves
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yue Ning Jiao
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - George Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | | | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
37
|
Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. ACTA ACUST UNITED AC 2020; 6:100042. [PMID: 33364531 PMCID: PMC7750734 DOI: 10.1016/j.tcsw.2020.100042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Cytokine response to N-mannan mutants was dependent on the immune cell type used. N-mannan mutants stimulated less cytokines from monocytes but more from macrophages. N-mannan can therefore act as both an immune agonist or an immune shield.
We designed experiments to assess whether fungal cell wall mannans function as an immune shield or an immune agonist. Fungal cell wall β-(1,3)-glucan normally plays a major and dominant role in immune activation. The outer mannan layer has been variously described as an immune shield, because it has the potential to mask the underlying β-(1,3)-glucan, or an immune activator, as it also has the potential to engage with a wide range of mannose detecting PRRs. To resolve this conundrum we examined species-specific differences in host immune recognition in the och1Δ N-mannosylation-deficient mutant background in four species of yeast-like fungi. Irrespective of the fungal species, the cytokine response (TNFα and IL-6) induced by the och1Δ mutants in human monocytes was reduced compared to that of the wild type. In contrast, TNFα production induced by och1Δ was increased, relative to wild type, due to increased β-glucan exposure, when mouse or human macrophages were used. These observations suggest that N-mannan is not a major PAMP for macrophages and that in these cells mannan does shield the fungus from recognition of the inner cell wall β-glucan. However, N-mannan is a significant inducer of cytokine for monocytes. Therefore the metaphor of the fungal “mannan shield” can only be applied to some, but not all, myeloid cells used in immune profiling experiments of fungal species.
Collapse
|
38
|
Abstract
The immune system plays a critical role in protecting us against potentially fatal fungal infections. However, some fungal pathogens have evolved evasion strategies that reduce the efficacy of our immune defenses. Previously, we reported that the fungal pathogen Candida albicans exploits specific host-derived signals (such as lactate and hypoxia) to trigger an immune evasion strategy that involves reducing the exposure of β-glucan at its cell surface. Here, we show that this phenomenon is mediated by the induction of a major secreted exoglucanase (Xog1) by the fungus in response to these host signals. Inactivating XOG1-mediated “shaving” of cell surface-exposed β-glucan enhances immune responses against the fungus. Furthermore, inhibiting exoglucanase activity pharmacologically attenuates C. albicans virulence. In addition to revealing the mechanism underlying a key immune evasion strategy in a major fungal pathogen of humans, our work highlights the potential therapeutic value of drugs that block fungal immune evasion. The cell wall provides a major physical interface between fungal pathogens and their mammalian host. This extracellular armor is critical for fungal cell homeostasis and survival. Fungus-specific cell wall moieties, such as β-1,3-glucan, are recognized as pathogen-associated molecular patterns (PAMPs) that activate immune-mediated clearance mechanisms. We have reported that the opportunistic human fungal pathogen Candida albicans masks β-1,3-glucan following exposure to lactate, hypoxia, or iron depletion. However, the precise mechanism(s) by which C. albicans masks β-1,3-glucan has remained obscure. Here, we identify a secreted exoglucanase, Xog1, that is induced in response to lactate or hypoxia. Xog1 functions downstream of the lactate-induced β-glucan “masking” pathway to promote β-1,3-glucan “shaving.” Inactivation of XOG1 blocks most but not all β-1,3-glucan masking in response to lactate, suggesting that other activities contribute to this phenomenon. Nevertheless, XOG1 deletion attenuates the lactate-induced reductions in phagocytosis and cytokine stimulation normally observed for wild-type cells. We also demonstrate that the pharmacological inhibition of exoglucanases undermines β-glucan shaving, enhances the immune visibility of the fungus, and attenuates its virulence. Our study establishes a new mechanism underlying environmentally induced PAMP remodeling that can be manipulated pharmacologically to influence immune recognition and infection outcomes.
Collapse
|
39
|
Tripathi A, Liverani E, Tsygankov AY, Puri S. Iron alters the cell wall composition and intracellular lactate to affect Candida albicans susceptibility to antifungals and host immune response. J Biol Chem 2020; 295:10032-10044. [PMID: 32503842 DOI: 10.1074/jbc.ra120.013413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Fungal pathogen Candida albicans has a complex cell wall consisting of an outer layer of mannans and an inner layer of β-glucans and chitin. The fungal cell wall is the primary target for antifungals and is recognized by host immune cells. Environmental conditions such as carbon sources, pH, temperature, and oxygen tension can modulate the fungal cell wall architecture. Cellular signaling pathways, including the mitogen-activated protein kinase (MAPK) pathways, are responsible for sensing environmental cues and mediating cell wall alterations. Although iron has recently been shown to affect β-1,3-glucan exposure on the cell wall, we report here that iron changes the composition of all major C. albicans cell wall components. Specifically, high iron decreased the levels of mannans (including phosphomannans) and chitin; and increased β-1,3-glucan levels. These changes increased the resistance of C. albicans to cell wall-perturbing antifungals. Moreover, high iron cells exhibited adequate mitochondrial functioning; leading to a reduction in accumulation of lactate that signals through the transcription factor Crz1 to induce β-1,3-glucan masking in C. albicans We show here that iron-induced changes in β-1,3-glucan exposure are lactate-dependent; and high iron causes β-1,3-glucan exposure by preventing lactate-induced, Crz1-mediated inhibition of activation of the fungal MAPK Cek1. Furthermore, despite exhibiting enhanced antifungal resistance, high iron C. albicans cells had reduced survival upon phagocytosis by macrophages. Our results underscore the role of iron as an environmental signal in multiple signaling pathways that alter cell wall architecture in C. albicans, thereby affecting its survival upon exposure to antifungals and host immune response.
Collapse
Affiliation(s)
- Aparna Tripathi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Zhou L, Gao J, Wang H, Shi Y, Xu H, Yan Q, Jing Y, Jiang J, Cai M, Wang H. Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. NANOSCALE 2020; 12:9950-9957. [PMID: 32356532 DOI: 10.1039/c9nr10931e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The organization of a cell membrane is vital for various functions, such as receptor signaling and membrane traffic. However, the understanding of membrane organization remains insufficient, especially the localizations of specific proteins in the cell membrane. Here, we used correlative super-resolution fluorescence/atomic force microscopy to correlate the distributions of specific proteins Na+/K+-ATPase (NKA, an integral membrane protein) and ankyrin G (AnkG, a scaffolding protein) with the topography of the cytoplasmic side of human bronchial epithelium membranes. Our data showed that NKA and AnkG proteins preferred to localize in the protein islands of membranes. Interestingly, we also found that functional domains composed of specific proteins with a few hundreds of nanometers were formed by assembling protein islands with a few tens of nanometers.
Collapse
Affiliation(s)
- Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin GY, Chang CF, Lan CY. The interaction Between Carbohydrates and the Antimicrobial Peptide P-113Tri is Involved in the Killing of Candida albicans. Microorganisms 2020; 8:microorganisms8020299. [PMID: 32098211 PMCID: PMC7074873 DOI: 10.3390/microorganisms8020299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug resistance to Candida albicans is problematic in the clinical setting. Therefore, developing new antifungal drugs is in high demand. Our previous work indicated that the antimicrobial peptide P-113Tri exhibited higher antifungal activity against planktonic cells, biofilm cells, and clinical isolates of Candida species compared to its parental peptide P-113. In this study, we further investigated the difference between these two peptides in their mechanisms against C. albicans. Microscopic examination showed that P-113 rapidly gained access to C. albicans cells. However, most of the P-113Tri remained on the cell surface. Moreover, using a range of cell wall-defective mutants and competition assays, the results indicated that phosphomannan and N-linked mannan in the cell wall are important for peptide binding to C. albicans cells. Furthermore, the addition of exogenous phosphosugars reduced the efficacy of the peptide, suggesting that negatively charged phosphosugars also contributed to the peptide binding to the cell wall polysaccharides. Finally, using a glycan array, P-113Tri, but not P-113, can bind to other glycans commonly present on other microbial and mammalian cells. Together, these results suggest that P-113 and P-113Tri have fundamental differences in their interaction with C. albicans and candidacidal activities.
Collapse
Affiliation(s)
- Guan-Yu Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2473; Fax: +886-3-571-5934
| |
Collapse
|
42
|
Cottier F, Hall RA. Face/Off: The Interchangeable Side of Candida Albicans. Front Cell Infect Microbiol 2020; 9:471. [PMID: 32047726 PMCID: PMC6997470 DOI: 10.3389/fcimb.2019.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Due to limited mobility, fungi, like most unicellular organisms, have evolved mechanisms to adapt to sudden chemical and/or physical variation in their environment. Candida albicans is recognized as a model organism to study eukaryotic responses to environmental changes, as this human commensal yeast but also opportunistic pathogen responds to numerous environmental cues through switching morphologies from yeast to hyphae growth. This mechanism is largely controlled by two major pathways: cAMP-PKA and MAPK, but each environmental signal is sensed by specific sensors. However, morphological switching is not the only response C. albicans exerts in response to environmental cues. Recently, fungal cell wall remodeling in response to host-derived environmental cues has been identified as a way for C. albicans to manipulate the innate immune system. The fungal cell wall is composed of a chitin skeleton linked to a network of β-glucan, which anchors proteins and mannans to the fungal cell surface. As localized on the cell surface, these molecules drive interactions with the environment and other cells, particularly with host immune cells. C. albicans is recognized by immune cells such as neutrophils and macrophages via pathogen recognition receptors (PRRs) that bind different components of the cell wall. While β-glucan and mannan are proinflammatory molecules, chitin can induce anti-inflammatory responses. Interestingly, C. albicans is able to regulate the exposure of these pathogen-associated molecular patterns (PAMPs) according to environmental cues resulting in a modulation of the host immune response. This review describes the mechanisms involved in C. albicans response to environmental changes and their effect on immune recognition.
Collapse
Affiliation(s)
- Fabien Cottier
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
43
|
Wang K, Luo Y, Zhang W, Xie S, Yan P, Liu Y, Li Y, Ma X, Xiao K, Fu H, Cai J, Xie L. Diagnostic value of Candida mannan antigen and anti-mannan IgG and IgM antibodies for Candida infection. Mycoses 2019; 63:181-188. [PMID: 31755600 DOI: 10.1111/myc.13035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To assess the diagnostic value of serum Candida mannan antigen (MN) and anti-mannan IgG and IgM antibodies for candidiasis. METHODS This study was a prospective cohort study. Clinical data and venous blood samples from 23 medical centres in Beijing, China were collected between 1 January 2017 and 31 December 2018. All collected specimens were tested within one week for serum Candida MN and IgG and IgM antibodies using an ELISA kit. RESULTS A total of 452 patients were enrolled, including 188 patients in the Candida exposure groups (56 patients with Candida bloodstream infection, 69 patients with Candida-positive tracheal aspirate cultures and 63 patients with Candida-positive urine cultures) and 264 patients in the control groups (212 healthy controls and 52 patients with bacteraemia). The receiver operating characteristic (ROC) curve of the 56 patients with Candida bloodstream infection and 212 healthy controls showed that serum MN and IgG had good diagnostic value. The area under the ROC curve (AUC) values were 0.812 (95% CI, 0.750-0.873) and 0.866 (95% CI, 0.808-0.924), respectively, wherein the MN specificity and sensitivity were 86.79% and 60.71%, and the IgG were 84.43% and 80.36%, respectively. The AUC of the combination of serum MN and IgG was 0.871(95% CI, 0.813-0.929), and the specificity and sensitivity were 93.87% and 57.14%. CONCLUSIONS The serum levels of Candida MN and its IgG antibody have diagnostic value for Candida bloodstream infection, and combination of MN and IgG can improve diagnostic specificity and may provide a new approach for diagnosis of candidaemia.
Collapse
Affiliation(s)
- Kaifei Wang
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanping Luo
- Center for Clinical Laboratory Medicine, PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Sheling Xie
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Peng Yan
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanqin Li
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiuqing Ma
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kun Xiao
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Han Fu
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jinyu Cai
- Nankai University School of Medicine, Tianjin, China
| | - Lixin Xie
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun 2019; 10:5315. [PMID: 31757950 PMCID: PMC6876565 DOI: 10.1038/s41467-019-13298-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023] Open
Abstract
To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), β-glucan. Certain nutrients, stresses and antifungal drugs trigger β-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce β-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced β-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation. The authors show that the fungal pathogen Candida albicans exploits diverse host-associated signals, including specific nutrients and stresses, to promote immune evasion by masking cell wall β-glucan, a major pathogen-associated molecular pattern.
Collapse
|
45
|
Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol 2019; 50:79-86. [PMID: 31726316 DOI: 10.1016/j.mib.2019.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The human gastrointestinal tract is home to a thriving community of microbes including the fungal 'mycobiota'. Although sequencing methodology has enumerated diverse fungal genera within this niche, discerning persistent symbiotic residents from contaminants and purely environmental transients remains a challenge. Recent advances in culturomics and sequencing employing metagenomics, metatranscriptomics and longitudinal studies have begun to reveal a human symbiont 'core mycobiome' that may contribute to human health and disease. Trans-kingdom interactions between the bacterial microbiota and evolution within the niche have defined C. albicans as a true symbiont, setting a bar for defining other fungi. Additionally, elegant investigations of mammalian antifungal immunity have examined mononuclear phagocytes, neutrophils, antigen-specific recognition by T cells and other mechanisms important for local and systemic effects on the host, providing further evidence supporting gut persistence. In this review we discuss current research aimed at investigating the symbiotic mycobiota and propose four criteria aiding in the differentiation of fungal symbionts from environmental transients.
Collapse
Affiliation(s)
- William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iris H Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
46
|
Oliveira WF, Cabrera MP, Santos NRM, Napoleão TH, Paiva PMG, Neves RP, Silva MV, Santos BS, Coelho LCBB, Cabral Filho PE, Fontes A, Correia MTS. Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes. Microbiol Res 2019; 230:126330. [PMID: 31541842 DOI: 10.1016/j.micres.2019.126330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Glycoconjugates found on cell walls of Candida species are fundamental for their pathogenicity. Laborious techniques have been employed to investigate the sugar composition of these microorganisms. Herein, we prepared a nanotool, based on the fluorescence of quantum dots (QDs) combined with the specificity of Cramoll lectin, to evaluate glucose/mannose profiles on three Candida species. The QDs-Cramoll conjugates presented specificity and bright fluorescence emission. The lectin preserved its biological activity after the conjugation process mediated by adsorption interactions. The labeling of Candida species was analyzed by fluorescence microscopy and quantified by flow cytometry. Morphological analyses of yeasts labeled with QDs-Cramoll conjugates indicated that C. glabrata (2.7 μm) was smaller when compared to C. albicans (4.0 μm) and C. parapsilosis sensu stricto (3.8 μm). Also, C. parapsilosis population was heterogeneous, presenting rod-shaped blastoconidia. More than 90% of cells of the three species were labeled by conjugates. Inhibition and saturation assays indicated that C. parapsilosis had a higher content of exposed glucose/mannose than the other two species. Therefore, QDs-Cramoll conjugates demonstrated to be effective fluorescent nanoprobes for evaluation of glucose/mannose constitution on the cell walls of fungal species frequently involved in candidiasis.
Collapse
Affiliation(s)
- Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mariana P Cabrera
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
47
|
Paulovičová L, Paulovičová E, Farkaš P, Čížová A, Bystrický P, Jančinová V, Turánek J, Pericolini E, Gabrielli E, Vecchiarelli A, Hrubiško M. Bioimmunological activities of Candida glabrata cellular mannan. FEMS Yeast Res 2019; 19:5303726. [PMID: 30689830 DOI: 10.1093/femsyr/foz009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Candida glabrata is a second most common human opportunistic pathogen which causes superficial but also life-threatening systemic candidosis. According to the localisation of mannans and mannoproteins in the outermost layer of the cell wall, mannan detection could be one of the first steps in the cell recognition of Candida cells by the host innate immune system. Mannans from the cell wall provide important immunomodulatory activities, comprising stimulation of cytokine production, induction of dendritic cells (DCs) maturation and T-cell immunity. The model of DCs represents a promising tool to study immunomodulatory interventions throughout the vaccine development. Activated DCs induce, activate and polarise T-cell responses by expression of distinct maturation markers and cytokines regulating the adaptive immune responses. In addition, they are uniquely adept at decoding the fungus-associated information and translate it in qualitatively different T helper responses. We find out, that C. glabrata mannan is able to induce proliferation of splenocytes and to increase the production of TNF-α and IL-4. Next, increased the expression of co-stimulatory molecules CD80 and CD86 and the proportion of CD4+CD25+ and CD4+CD28+ T cells during in vitro stimulation of splenocytes. Reported results provide C. glabrata mannan capability to modulate cytokine production, DCs activation and antigen presentation activity, influencing T-cell phenotype in response to stimulation.
Collapse
Affiliation(s)
- Lucia Paulovičová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Ema Paulovičová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Pavol Farkaš
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Alžbeta Čížová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Peter Bystrický
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Malá Hora, 10701/4A, 036 01 Martin, Slovakia
| | - Viera Jančinová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Eva Pericolini
- Microbiology Section, Department of Medicine,University of Perugia, Sant' Andrea delle Fratte, 061 32 Perugia, Italy
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, 411 25 Modena, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Medicine,University of Perugia, Sant' Andrea delle Fratte, 061 32 Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Medicine,University of Perugia, Sant' Andrea delle Fratte, 061 32 Perugia, Italy
| | - Martin Hrubiško
- Department of Clinical Immunology and Allergy, Oncology Institute of St. Elisabeth, Heydukova 10, 812 50 Bratislava, Slovakia
| |
Collapse
|
48
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
49
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
50
|
Kruppa MD, Jacobs J, King-Hook K, Galloway K, Berry A, Kintner J, Whittimore JD, Fritz R, Schoborg RV, Hall JV. Binding of Elementary Bodies by the Opportunistic Fungal Pathogen Candida albicans or Soluble β-Glucan, Laminarin, Inhibits Chlamydia trachomatis Infectivity. Front Microbiol 2019; 9:3270. [PMID: 30692972 PMCID: PMC6339894 DOI: 10.3389/fmicb.2018.03270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0–120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or β-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of β-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors.
Collapse
Affiliation(s)
- Michael D Kruppa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jeremy Jacobs
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kelsey King-Hook
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Keleigh Galloway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Amy Berry
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jennifer Kintner
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Judy D Whittimore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Rolf Fritz
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Robert V Schoborg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jennifer V Hall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|