1
|
Muvengi TS, Mortlock M, Kain MP, Markotter W. Gastrointestinal Shedding of Rubulaviruses from Egyptian Rousette Bats: Temporal Dynamics and Spillover Implications. Microorganisms 2024; 12:2505. [PMID: 39770708 PMCID: PMC11728649 DOI: 10.3390/microorganisms12122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Bats are recognized as reservoirs for diverse paramyxoviruses, some of which are closely related to known human pathogens or directly implicated in zoonotic transmission. The emergence of the zoonotic Sosuga virus (SOSV) from Egyptian rousette bats (ERBs), which caused an acute febrile illness in a reported human case in Africa, has increased the focus on the zoonotic potential of the Rubulavirinae subfamily. Previous studies identified human parainfluenza virus 2 (HPIV2)- and mumps (MuV)-related viruses in ERBs from South Africa, with HPIV2-related viruses restricted to gastrointestinal samples, an underexplored target for rubulavirus biosurveillance, suggesting that sample-type bias may have led to their oversight. To address this, we performed a longitudinal analysis of population-level fecal samples from an ERB maternity roost for rubulavirus RNA, employing a broadly reactive hemi-nested RT-PCR assay targeting the polymerase gene. We detected HPIV2- and MuV-related viruses in addition to numerous pararubulaviruses, highlighting significant viral diversity. Temporal analysis of three major clades revealed peaks in rubulavirus shedding that correlated with seasonal environmental changes and host reproductive cycles, although shedding patterns varied between clades. These findings identify specific periods of increased risk for the spillover of bat-associated rubulaviruses to humans, providing critical information for developing targeted mitigation strategies to minimize zoonotic transmission risk within the local community.
Collapse
Affiliation(s)
- Tauya S. Muvengi
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa (M.M.)
| |
Collapse
|
2
|
Maluck S, Bobrovsky R, Poór M, Lange RW, Steinmetzer T, Jerzsele Á, Adorján A, Bajusz D, Rácz A, Pászti-Gere E. In Vitro Evaluation of Antipseudomonal Activity and Safety Profile of Peptidomimetic Furin Inhibitors. Biomedicines 2024; 12:2075. [PMID: 39335588 PMCID: PMC11444200 DOI: 10.3390/biomedicines12092075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibitors of the serine protease furin have been widely studied as antimicrobial agents due to their ability to block the cleavage and activation of certain viral surface proteins and bacterial toxins. In this study, the antipseudomonal effects and safety profiles of the furin inhibitors MI-1851 and MI-2415 were assessed. Fluorescence quenching studies suggested no relevant binding of the compounds to human serum albumin and α1-acid glycoprotein. Both inhibitors demonstrated significant antipseudomonal activity in Madin-Darby canine kidney cells, especially compound MI-1851 at very low concentrations (0.5 µM). Using non-tumorigenic porcine IPEC-J2 cells, neither of the two furin inhibitors induced cytotoxicity (CCK-8 assay) or altered significantly the intracellular (Amplex Red assay) or extracellular (DCFH-DA assay) redox status even at a concentration of 100 µM. The same assays with MI-2415 conducted on primary human hepatocytes also resulted in no changes in cell viability and oxidative stress at up to 100 µM. Microsomal and hepatocyte-based CYP3A4 activity assays showed that both inhibitors exhibited a concentration-dependent inhibition of the isoenzyme at high concentrations. In conclusion, this study indicates a good safety profile of the furin inhibitors MI-1851 and MI-2415, suggesting their applicability as antimicrobials for further in vivo investigations, despite some inhibitory effects on CYP3A4.
Collapse
Affiliation(s)
- Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Rivka Bobrovsky
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Roman W Lange
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Anita Rácz
- Plasma Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
3
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
4
|
Haas G, Lee B. Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae. Methods Mol Biol 2024; 2733:15-35. [PMID: 38064024 DOI: 10.1007/978-1-0716-3533-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.
Collapse
Affiliation(s)
- Griffin Haas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Paskey AC, Lim XF, Ng JHJ, Rice GK, Chia WN, Philipson CW, Foo R, Cer RZ, Long KA, Lueder MR, Glang L, Frey KG, Hamilton T, Mendenhall IH, Smith GJ, Anderson DE, Wang LF, Bishop-Lilly KA. Genomic Characterization of a Relative of Mumps Virus in Lesser Dawn Bats of Southeast Asia. Viruses 2023; 15:v15030659. [PMID: 36992368 PMCID: PMC10053730 DOI: 10.3390/v15030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report describes an investigation of MuV-specific data originally collected as part of a longitudinal virome study of apparently healthy, captive lesser dawn bats in Southeast Asia (BioProject ID PRJNA561193) which was the first report of a MuV-like virus, named dawn bat paramyxovirus (DbPV), in bats outside of Africa. More in-depth analysis of these original RNA sequences in the current report reveals that the new DbPV genome shares only 86% amino acid identity with the RNA-dependent RNA polymerase of its closest relative, the African bat-borne mumps virus (AbMuV). While there is no obvious immediate cause for concern, it is important to continue investigating and monitoring bat-borne MuVs to determine the risk of human infection.
Collapse
Affiliation(s)
- Adrian C. Paskey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Justin H. J. Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Casandra W. Philipson
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kyle A. Long
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Matthew R. Lueder
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Lindsay Glang
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Kenneth G. Frey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Theron Hamilton
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gavin J. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Danielle E. Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Correspondence:
| |
Collapse
|
6
|
Haas GD, Lee B. Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation. Curr Opin Virol 2023; 58:101292. [PMID: 36508860 PMCID: PMC9974588 DOI: 10.1016/j.coviro.2022.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.
Collapse
Affiliation(s)
- Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| |
Collapse
|
7
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Papies J, Emanuel J, Heinemann N, Kulić Ž, Schroeder S, Tenner B, Lehner MD, Seifert G, Müller MA. Antiviral and Immunomodulatory Effects of Pelargonium sidoides DC. Root Extract EPs® 7630 in SARS-CoV-2-Infected Human Lung Cells. Front Pharmacol 2021; 12:757666. [PMID: 34759825 PMCID: PMC8573200 DOI: 10.3389/fphar.2021.757666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Treatment options for COVID-19 are currently limited. Drugs reducing both viral loads and SARS-CoV-2-induced inflammatory responses would be ideal candidates for COVID-19 therapeutics. Previous in vitro and clinical studies suggest that the proprietary Pelargonium sidoides DC. root extract EPs 7630 has antiviral and immunomodulatory properties, limiting symptom severity and disease duration of infections with several upper respiratory viruses. Here we assessed if EPs 7630 affects SARS-CoV-2 propagation and the innate immune response in the human lung cell line Calu-3. In direct comparison to other highly pathogenic CoV (SARS-CoV, MERS-CoV), SARS-CoV-2 growth was most efficiently inhibited at a non-toxic concentration with an IC50 of 1.61 μg/ml. Particularly, the cellular entry step of SARS-CoV-2 was significantly reduced by EPs 7630 pretreatment (10-100 μg/ml) as shown by spike protein-carrying pseudovirus particles and infectious SARS-CoV-2. Using sequential ultrafiltration, EPs 7630 was separated into fractions containing either prodelphinidins of different oligomerization degrees or small molecule constituents like benzopyranones and purine derivatives. Prodelphinidins with a low oligomerization degree and small molecule constituents were most efficient in inhibiting SARS-CoV-2 entry already at 10 μg/ml and had comparable effects on immune gene regulation as EPs 7630. Downregulation of multiple pro-inflammatory genes (CCL5, IL6, IL1B) was accompanied by upregulation of anti-inflammatory TNFAIP3 at 48 h post-infection. At high concentrations (100 μg/ml) moderately oligomerized prodelphinidins reduced SARS-CoV-2 propagation most efficiently and exhibited pronounced immune gene modulation. Assessment of cytokine secretion in EPs 7630-treated and SARS-CoV-2-coinfected Calu-3 cells showed that pro-inflammatory cytokines IL-1β and IL-6 were elevated whereas multiple other COVID-19-associated cytokines (IL-8, IL-13, TNF-α), chemokines (CXCL9, CXCL10), and growth factors (PDGF, VEGF-A, CD40L) were significantly reduced by EPs 7630. SARS-CoV-2 entry inhibition and the differential immunomodulatory functions of EPs 7630 against SARS-CoV-2 encourage further in vivo studies.
Collapse
Affiliation(s)
- Jan Papies
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Žarko Kulić
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Simon Schroeder
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Beate Tenner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin D. Lehner
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Georg Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Paediatrics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcel A. Müller
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Lam van TV, Heindl MR, Schlutt C, Böttcher-Friebertshäuser E, Bartenschlager R, Klebe G, Brandstetter H, Dahms SO, Steinmetzer T. The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Med Chem Lett 2021; 12:426-432. [PMID: 33732412 PMCID: PMC7957917 DOI: 10.1021/acsmedchemlett.0c00651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Furin activates numerous
viral glycoproteins, and its inhibition
prevents virus replication and spread. Through the replacement of
arginine by the less basic canavanine, new inhibitors targeting furin
in the trans-Golgi network were developed. These inhibitors exert
potent antiviral activity in cell culture with much lower toxicity
than arginine-derived analogues, most likely due to their reduced
protonation in the blood circulation. Thus, despite its important
physiological functions, furin might be a suitable antiviral drug
target.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Christine Schlutt
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | | | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Sven O. Dahms
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
10
|
The Amino Acid at Position 8 of the Proteolytic Cleavage Site of the Mumps Virus Fusion Protein Affects Viral Proteolysis and Fusogenicity. J Virol 2020; 94:JVI.01732-20. [PMID: 32907974 DOI: 10.1128/jvi.01732-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
The mumps virus (MuV) fusion protein (F) plays a crucial role for the entry process and spread of infection by mediating fusion between viral and cellular membranes as well as between infected and neighboring cells, respectively. The fusogenicity of MuV differs depending on the strain and might correlate with the virulence; however, it is unclear which mechanisms contribute to the differentiated fusogenicity. The cleavage motif of MuV F is highly conserved among all strains, except the amino acid residue at position 8 (P8) that shows a certain variability with a total of four amino acid variants (leucine [L], proline [P], serine [S], and threonine [T]). We demonstrate that P8 affects the proteolytic processing and the fusogenicity of MuV F. The presence of L or S at P8 resulted in a slower proteolysis of MuV F by furin and a reduced ability to mediate cell-cell fusion. However, virus-cell fusion was more efficient for F proteins harboring L or S at P8, suggesting that P8 contributes to the mechanism of viral spread: P and T enable a rapid spread of infection by cell-to-cell fusion, whereas viruses harboring L or S at P8 spread preferentially by the release of infectious viral particles. Our study provides novel insights into the fusogenicity of MuV and its influence on the mechanisms of virus spread within infected tissues. Assuming a correlation between MuV fusogenicity and virulence, sequence information on the amino acid residue at P8 might be helpful to estimate the virulence of circulating and emerging strains.IMPORTANCE Mumps virus (MuV) is the causative agent of the highly infectious disease mumps. Mumps is mainly associated with mild symptoms, but severe complications such as encephalitis, meningitis, or orchitis can also occur. There is evidence that the virulence of different MuV strains and variants might correlate with the ability of the fusion protein (F) to mediate cell-to-cell fusion. However, the relation between virulence and fusogenicity or the mechanisms responsible for the varied fusogenicity of different MuV strains are incompletely understood. Here, we focused on the amino acid residue at position 8 (P8) of the proteolytic cleavage site of MuV F, because this amino acid residue shows a striking variability depending on the genotype of MuV. The P8 residue has a significant effect on the proteolytic processing and fusogenicity of MuV F and might thereby determine the route of viral spread within infected tissues.
Collapse
|
11
|
Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3:3/9/e202000786. [PMID: 32703818 PMCID: PMC7383062 DOI: 10.26508/lsa.202000786] [Citation(s) in RCA: 569] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.
Collapse
Affiliation(s)
- Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Hannah Limburg
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Hong Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | | | - Wolfgang Garten
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | | |
Collapse
|
12
|
Van Lam van T, Ivanova T, Hardes K, Heindl MR, Morty RE, Böttcher-Friebertshäuser E, Lindberg I, Than ME, Dahms SO, Steinmetzer T. Design, Synthesis, and Characterization of Macrocyclic Inhibitors of the Proprotein Convertase Furin. ChemMedChem 2019; 14:673-685. [PMID: 30680958 DOI: 10.1002/cmdc.201800807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Indexed: 12/20/2022]
Abstract
The activation of viral glycoproteins by the host protease furin is an essential step in the replication of numerous pathogenic viruses. Thus, effective inhibitors of furin could serve as broad-spectrum antiviral drugs. A crystal structure of an inhibitory hexapeptide derivative in complex with furin served as template for the rational design of various types of new cyclic inhibitors. Most of the prepared derivatives are relatively potent furin inhibitors with inhibition constants in the low nanomolar or even sub-nanomolar range. For seven derivatives the crystal structures in complex with furin could be determined. In three complexes, electron density was found for the entire inhibitor. In the other cases the structures could be determined only for the P6/P5-P1 segments, which directly interact with furin. The cyclic derivatives together with two non-cyclic reference compounds were tested as inhibitors of the proteolytic activation and replication of respiratory syncytial virus in cells. Significant antiviral activity was found for both linear reference inhibitors, whereas a negligible efficacy was determined for the cyclic derivatives.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, MD, 21201, USA
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sven O Dahms
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
13
|
Johnson RI, Tachedjian M, Clayton BA, Layton R, Bergfeld J, Wang LF, Marsh GA. Characterization of Teviot virus, an Australian bat-borne paramyxovirus. J Gen Virol 2019; 100:403-413. [PMID: 30688635 DOI: 10.1099/jgv.0.001214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bats are the reservoir hosts for multiple viruses with zoonotic potential, including coronaviruses, paramyxoviruses and filoviruses. Urine collected from Australian pteropid bats was assessed for the presence of paramyxoviruses. One of the viruses isolated was Teviot virus (TevPV), a novel rubulavirus previously isolated from pteropid bat urine throughout the east coast of Australia. Here, we further characterize TevPV through analysis of whole-genome sequencing, growth kinetics, antigenic relatedness and the experimental infection of ferrets and mice. TevPV is phylogenetically and antigenically most closely related to Tioman virus (TioPV). Unlike many other rubulaviruses, cell receptor attachment by TevPV does not appear to be sialic acid-dependent, with the receptor for host cell entry being unknown. The infection of ferrets and mice suggested that TevPV has a low pathogenic potential in mammals. Infected ferrets seroconverted by 10 days post-infection without clinical signs of disease. Furthermore, infected ferrets did not shed virus in any respiratory secretions, suggesting a low risk of onward transmission of TevPV. No productive infection was observed in the mouse infection study.
Collapse
Affiliation(s)
- Rebecca I Johnson
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Mary Tachedjian
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Bronwyn A Clayton
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Rachel Layton
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jemma Bergfeld
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Lin-Fa Wang
- 2Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Glenn A Marsh
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| |
Collapse
|
14
|
Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 2019; 34:79-89. [PMID: 30665189 PMCID: PMC7102861 DOI: 10.1016/j.coviro.2018.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Bats are a very important source of emerging viruses. Bat coronavirus, filovirus, paramyxovirus and reovirus are known zoonotic viruses. Many of the emergent bat viruses are highly lethal in livestock and humans. Past incidents and viral genetic features predict bat coronaviruses as the highest risk.
In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.
Collapse
|
15
|
Abstract
Because of the concerns about aseptic meningitis due to Japanese domestic mumps vaccine strains, the routine mumps immunization program has not yet been introduced in Japan, and it resulted in the situation where the major mumps epidemics occur every 4-5 years. However, the fact that at least 348 mumps hearing loss cases were reported during the recent epidemic period in 2015-2016, argues that the introduction of the routine mumps immunization program is an urgent issue for us. In contrast, 122 countries employ mumps-containing vaccines for nationwide immunization programs by 2018, of which 117 apply 2-dose vaccination regimens, and many of them use Jeryl-Lynn containing measles-mumps-rubella (MMR) vaccines. While in these countries, where mumps seemed to have been controlled, mumps resurgented in the 2000s. Although, the concerns surrounding mumps vaccination are extremely different in Japan and abroad, both of them link to the inherent characteristics of mumps vaccine, in which it is hard to balance the safety and the efficacy. In order to promptly introduce the routine mumps immunization program in Japan, Japanese domestic mumps vaccine strains need to be re-evaluated based on the latest evidence. Furthermore, from a long-range viewpoint, a novel mumps vaccine should be developed, which combines the safety and the efficacy.
Collapse
|