1
|
Dulon D, de Monvel JB, Plion B, Mallet A, Petit C, Condamine S, Bouleau Y, Safieddine S. A free intravesicular C-terminal of otoferlin is essential for synaptic vesicle docking and fusion at auditory inner hair cell ribbon synapses. Prog Neurobiol 2024; 240:102658. [PMID: 39103114 DOI: 10.1016/j.pneurobio.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Our understanding of how otoferlin, the major calcium sensor in inner hair cells (IHCs) synaptic transmission, contributes to the overall dynamics of synaptic vesicle (SV) trafficking remains limited. To address this question, we generated a knock-in mouse model expressing an otoferlin-GFP protein, where GFP was fused to its C-terminal transmembrane domain. Similar to the wild type protein, the GFP-tagged otoferlin showed normal expression and was associated with IHC SV. Surprisingly, while the heterozygote Otof+/GFP mice exhibited a normal hearing function, homozygote OtofGFP/GFP mice were profoundly deaf attributed to severe reduction in SV exocytosis. Fluorescence recovery after photobleaching revealed a markedly increased mobile fraction of the otof-GFP-associated SV in Otof GFP/GFP IHCs. Correspondingly, 3D-electron tomographic of the ribbon synapses indicated a reduced density of SV attached to the ribbon active zone. Collectively, these results indicate that otoferlin requires a free intravesicular C-terminal end for normal SV docking and fusion.
Collapse
Affiliation(s)
- Didier Dulon
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France.
| | | | - Baptiste Plion
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Adeline Mallet
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Steven Condamine
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France
| | - Yohan Bouleau
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France
| | - Saaid Safieddine
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
2
|
Tichacek O, Mistrík P, Jungwirth P. From the outer ear to the nerve: A complete computer model of the peripheral auditory system. Hear Res 2023; 440:108900. [PMID: 37944408 DOI: 10.1016/j.heares.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Computer models of the individual components of the peripheral auditory system - the outer, middle, and inner ears and the auditory nerve - have been developed in the past, with varying level of detail, breadth, and faithfulness of the underlying parameters. Building on previous work, we advance the modeling of the ear by presenting a complete, physiologically justified, bottom-up computer model based on up-to-date experimental data that integrates all of these parts together seamlessly. The detailed bottom-up design of the present model allows for the investigation of partial hearing mechanisms and their defects, including genetic, molecular, and microscopic factors. Also, thanks to the completeness of the model, one can study microscopic effects in the context of their implications on hearing as a whole, enabling the correlation with neural recordings and non-invasive psychoacoustic methods. Such a model is instrumental for advancing quantitative understanding of the mechanism of hearing, for investigating various forms of hearing impairment, as well as for devising next generation hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Leclère JC, Dulon D. Otoferlin as a multirole Ca 2+ signaling protein: from inner ear synapses to cancer pathways. Front Cell Neurosci 2023; 17:1197611. [PMID: 37538852 PMCID: PMC10394277 DOI: 10.3389/fncel.2023.1197611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Humans have six members of the ferlin protein family: dysferlin, myoferlin, otoferlin, fer1L4, fer1L5, and fer1L6. These proteins share common features such as multiple Ca2+-binding C2 domains, FerA domains, and membrane anchoring through their single C-terminal transmembrane domain, and are believed to play a key role in calcium-triggered membrane fusion and vesicle trafficking. Otoferlin plays a crucial role in hearing and vestibular function. In this review, we will discuss how we see otoferlin working as a Ca2+-dependent mechanical sensor regulating synaptic vesicle fusion at the hair cell ribbon synapses. Although otoferlin is also present in the central nervous system, particularly in the cortex and amygdala, its role in brain tissues remains unknown. Mutations in the OTOF gene cause one of the most frequent genetic forms of congenital deafness, DFNB9. These mutations produce severe to profound hearing loss due to a defect in synaptic excitatory glutamatergic transmission between the inner hair cells and the nerve fibers of the auditory nerve. Gene therapy protocols that allow normal rescue expression of otoferlin in hair cells have just started and are currently in pre-clinical phase. In parallel, studies have linked ferlins to cancer through their effect on cell signaling and development, allowing tumors to form and cancer cells to adapt to a hostile environment. Modulation by mechanical forces and Ca2+ signaling are key determinants of the metastatic process. Although ferlins importance in cancer has not been extensively studied, data show that otoferlin expression is significantly associated with survival in specific cancer types, including clear cell and papillary cell renal carcinoma, and urothelial bladder cancer. These findings indicate a role for otoferlin in the carcinogenesis of these tumors, which requires further investigation to confirm and understand its exact role, particularly as it varies by tumor site. Targeting this protein may lead to new cancer therapies.
Collapse
Affiliation(s)
- Jean-Christophe Leclère
- Department of Head and Neck Surgery, Brest University Hospital, Brest, France
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
| | - Didier Dulon
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
- Institut de l’Audition, Institut Pasteur & INSERM UA06, Paris, France
| |
Collapse
|
4
|
Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Mol Cell Neurosci 2022; 121:103749. [PMID: 35667549 DOI: 10.1016/j.mcn.2022.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
A harmonized interplay between the central nervous system and the five peripheral end organs is how the vestibular system helps organisms feel a sense of balance and motion in three-dimensional space. The receptor cells of this system, much like their cochlear equivalents, are the specialized hair cells. However, research over the years has shown that the vestibular endorgans and hair cells evolved very differently from their cochlear counterparts. The structurally unique calyceal synapse, which appeared much later in the evolutionary time scale, and continues to intrigue researchers, is now known to support several forms of synaptic neurotransmission. The conventional quantal transmission is believed to employ the ribbon structures, which carry several tethered vesicles filled with neurotransmitters. However, the field of vestibular hair cell synaptic molecular anatomy is still at a nascent stage and needs further work. In this review, we will touch upon the basic structure and function of the peripheral vestibular system, with the focus on the various modes of neurotransmission at the type I vestibular hair cells. We will also shed light on the current knowledge about the molecular anatomy of the vestibular hair cell synapses and vestibular synaptopathy.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
5
|
Feghhi T, Hernandez RX, Stawarski M, Thomas CI, Kamasawa N, Lau AWC, Macleod GT. Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft. Biophys J 2021; 120:5575-5591. [PMID: 34774503 DOI: 10.1016/j.bpj.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.
Collapse
Affiliation(s)
- Touhid Feghhi
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Roberto X Hernandez
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, Florida; International Max Planck Research School for Brain and Behavior, Jupiter, Florida; Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - A W C Lau
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Gregory T Macleod
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida; Wilkes Honors College, Florida Atlantic University, Jupiter, Florida; Brain Institute, Florida Atlantic University, Jupiter, Florida; Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
6
|
Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner. Proc Natl Acad Sci U S A 2021; 118:2106694118. [PMID: 34732574 DOI: 10.1073/pnas.2106694118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Collapse
|
7
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
8
|
Young ED, Wu 武靜靜 JS, Niwa M, Glowatzki E. Resolution of subcomponents of synaptic release from postsynaptic currents in rat hair-cell/auditory-nerve fiber synapses. J Neurophysiol 2021; 125:2444-2460. [PMID: 33949889 DOI: 10.1152/jn.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The synapse between inner hair cells and auditory nerve fiber dendrites shows large excitatory postsynaptic currents (EPSCs), which are either monophasic or multiphasic. Multiquantal or uniquantal (flickering) release of neurotransmitter has been proposed to underlie the unusual multiphasic waveforms. Here the nature of multiphasic waveforms is analyzed using EPSCs recorded in vitro in rat afferent dendrites. Spontaneous EPSCs were deconvolved into a sum of presumed release events having monophasic EPSC waveforms. Results include, first, the charge of EPSCs is about the same for multiphasic versus monophasic EPSCs. Second, EPSC amplitudes decline with the number of release events per EPSC. Third, there is no evidence of a mini-EPSC. Most results can be accounted for by versions of either uniquantal or multiquantal release. However, serial neurotransmitter release in multiphasic EPSCs shows properties that are not fully explained by either model, especially that the amplitudes of individual release events are established at the beginning of a multiphasic EPSC, constraining possible models of vesicle release.NEW & NOTEWORTHY How do monophasic and multiphasic waveshapes arise in auditory-nerve dendrites; mainly are they uniquantal, arising from release of a single vesicle, or multiquantal, requiring several vesicles? The charge injected by excitatory postsynaptic currents (EPSCs) is the same for monophasic or multiphasic EPSCs, supporting uniquantal release. Serial adaptation of responses to sequential EPSCs favors a multiquantal model. Finally, neurotransmitter partitioning into similar sized release boluses occurs at the first bolus in the EPSC, not easily explained with either model.
Collapse
Affiliation(s)
- Eric D Young
- Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jingjing Sherry Wu 武靜靜
- Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mamiko Niwa
- Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Elisabeth Glowatzki
- Center for Hearing and Balance, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
10
|
Blaustein M, Wirth S, Saldaña G, Piantanida AP, Bogetti ME, Martin ME, Colman-Lerner A, Uchitel OD. A new tool to sense pH changes at the neuromuscular junction synaptic cleft. Sci Rep 2020; 10:20480. [PMID: 33235222 PMCID: PMC7687886 DOI: 10.1038/s41598-020-77154-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Synaptic transmission triggers transient acidification of the synaptic cleft. Recently, it has been shown that pH affects the opening of postsynaptic channels and therefore the production of tools that allow to study these behaviors should result of paramount value. We fused α-bungarotoxin, a neurotoxin derived from the snake Bungarus multicinctus that binds irreversibly to the acetylcholine receptor extracellular domain, to the pH sensitive GFP Super Ecliptic pHluorin, and efficiently expressed it in Pichia pastoris. This sensor allows synaptic changes in pH to be measured without the need of incorporating transgenes into animal cells. Here, we show that incubation of the mouse levator auris muscle with a solution containing this recombinant protein is enough to fluorescently label the endplate post synaptic membrane. Furthermore, we could physiologically alter and measure post synaptic pH by evaluating changes in the fluorescent signal of pHluorin molecules bound to acetylcholine receptors. In fact, using this tool we were able to detect a drop in 0.01 to 0.05 pH units in the vicinity of the acetylcholine receptors following vesicle exocytosis triggered by nerve electrical stimulation. Further experiments will allow to learn the precise changes in pH during and after synaptic activation.
Collapse
Affiliation(s)
- Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), FCEN, UBA, C1428EHA, Buenos Aires, Argentina.
| | - Sonia Wirth
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), FCEN, CONICET-UBA, Buenos Aires, Argentina
| | - Gustavo Saldaña
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET-UBA, Buenos Aires, Argentina
| | - María Eugenia Martin
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Alkalinization of the Synaptic Cleft during Excitatory Neurotransmission. J Neurosci 2020; 40:6267-6269. [PMID: 32801127 DOI: 10.1523/jneurosci.0914-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022] Open
|
12
|
Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission. J Neurosci 2020; 40:1611-1624. [PMID: 31964719 DOI: 10.1523/jneurosci.1774-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.
Collapse
|
13
|
Rousset F, Nacher-Soler G, Coelho M, Ilmjarv S, Kokje VBC, Marteyn A, Cambet Y, Perny M, Roccio M, Jaquet V, Senn P, Krause KH. Redox activation of excitatory pathways in auditory neurons as mechanism of age-related hearing loss. Redox Biol 2020; 30:101434. [PMID: 32000019 PMCID: PMC7016250 DOI: 10.1016/j.redox.2020.101434] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing (ARHL) loss affects a large part of the human population with a major impact on our aging societies. Yet, underlying mechanisms are not understood, and no validated therapy or prevention exists. NADPH oxidases (NOX), are important sources of reactive oxygen species (ROS) in the cochlea and might therefore be involved in the pathogenesis of ARHL. Here we investigate ARHL in a mouse model. Wild type mice showed early loss of hearing and cochlear integrity, while animals deficient in the NOX subunit p22phox remained unaffected up to six months. Genes of the excitatory pathway were down-regulated in p22phox-deficient auditory neurons. Our results demonstrate that NOX activity leads to upregulation of genes of the excitatory pathway, to excitotoxic cochlear damage, and ultimately to ARHL. In the absence of functional NOXs, aging mice conserve hearing and cochlear morphology. Our study offers new insights into pathomechanisms and future therapeutic targets of ARHL. Mice devoid of NADPH oxidase (NOX) activity are protected from age-related hearing loss. Cochlear NOX expression shows a similar pattern in mouse and human. NOX3, the predominant NOX isoform in the cochlea, is mostly expressed in auditory neurons. NOX-deficient auditory neurons show decreased transcription of glutamatergic pathway and are protected from excitotoxicity. NOX-mediated gene regulation within auditory neurons contributes to age-related hearing loss.
Collapse
Affiliation(s)
- Francis Rousset
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| | - German Nacher-Soler
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Marta Coelho
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Sten Ilmjarv
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vivianne Beatrix Christina Kokje
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Yves Cambet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Switzerland
| | - Michael Perny
- Department of Biomedical Research (DBMR), University of Bern, Switzerland; Department of Otorhinolaryngology, Inselspital Bern, Switzerland
| | - Marta Roccio
- Department of Biomedical Research (DBMR), University of Bern, Switzerland; Department of Otorhinolaryngology, Inselspital Bern, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Switzerland
| | - Pascal Senn
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Switzerland
| | - Karl Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
14
|
Contini D, Holstein GR, Art JJ. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 2019; 598:853-889. [PMID: 31623011 DOI: 10.1113/jp278680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| | - Gay R Holstein
- Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY, 10029, USA
| | - Jonathan J Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| |
Collapse
|
15
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
17
|
González-Inchauspe C, Gobetto MN, Uchitel OD. Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience 2019; 439:195-210. [PMID: 31022462 DOI: 10.1016/j.neuroscience.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. It has been reported that homomeric ASIC-1a channels are expressed in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC-1a channels in mice up to 3 weeks old. This generates synaptic currents (ASIC1a-SCs) that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that neuromodulators like histamine and natural products like lactate and spermine potentiate ASIC1a-SCs in an additive form such that excitatory ASIC synaptic currents as well as the associated calcium influx become significantly large and physiologically relevant. We show that ASIC1a-SCs enhanced by endogenous neuromodulators are capable of supporting synaptic transmission in the absence of glutamatergic EPSCs. Furthermore, at high frequency stimulation (HFS), ASIC1a-SCs contribute to diminish short term depression (STD) and their contribution is even more relevant at early stages of development. Since ASIC channels are present in almost all types of neurons and synaptic vesicles content is acid, the participation of protons in synaptic transmission and its potentiation by endogenous substances could be a general phenomenon across the central nervous system. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Carlota González-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Natalia Gobetto
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|