1
|
Zuo W, Zhang J, Xu L, Xiong G, Xu C, Tang Q, Li X, Zhou L. Clinical, Prognosis, and Treatment Effect Features Analysis of Metachronous and Synchronous UTUC and BUC. Clin Genitourin Cancer 2024; 22:102192. [PMID: 39261258 DOI: 10.1016/j.clgc.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To provide a comprehensive understanding of the clinical features of patients with synchronous and metachronous upper tract urothelial carcinoma (UTUC) and bladder urothelial carcinoma (BUC) and inform surgical and postoperative adjuvant treatment planning. PATIENTS AND METHOD A total of 292 consecutive patients with synchronous and metachronous UTUC-BUC were retrospectively enrolled and were categorized into three groups: (1) UTUC metachronous BUC (N = 185, UTUC-mBUC), (2) BUC-metachronous UTUC (N = 43, BUC-mUTUC), (3) synchronous UTUC-BUC (N = 64, sUTUC-BUC). We compared pathological characteristics and survival data among groups with Wilcoxon's rank sum tests, Pearson's chi-squared, and the Kaplan-Meier method. RESULTS In the sUTUC-BUC group, a higher proportion of patients exhibited UTUC tumors with grade G3 (56%, P = .001) and stage T4 (6%, P < .001) than group UTUC-mBUC (G3 = 16%, T4 = 0%). The proportion of patients with variant histology subtype in group sUTUC-BUC was higher than that of metachronous UTUC-BUC, involving squamous (P = .003), adenoid (P = .012), and sarcomatoid (P < .001) differentiation. It was also observed that the maximum diameter of the UTUC tumor of group sUTUC-BUC (median = 3.5) was significantly larger than group UTUC-mBUC (median = 2.5, P = .002) and group BUC-mUTUC (median = 2.2, P < .001). Notably, sUTUC-BUC has an increased risk of cancer-specific death compared with UTUC-mBUC (P < .001) and BUC-mUTUC (P < .001). On multivariable Cox regression, synchronous UTUC-BUC was an independent predictor of both RFS (P < .001; vs. UTUC-mBUC: HR 0.555, P = .004; vs. BUC-mUTUC: HR 0.279, P < .001) and CSS (P < .001, HR 29.737). Moreover, sUTUC-BUC showed a better response to intravesical therapy and chemotherapy with higher cancer-specific survival (P < .001) and recurrence-free survival (P = .034). CONCLUSIONS The prognosis and pathological characteristics among different metachronous and synchronous UTUC and BUC were diverse. The synchronous UTUC-BUC group showed variant histology subtype, high-grade tumors, advanced tumors, multifocal UTUC, worse cancer-specific survival, but better response to intravesical therapy and chemotherapy.
Collapse
MESH Headings
- Humans
- Male
- Female
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/therapy
- Aged
- Retrospective Studies
- Middle Aged
- Prognosis
- Neoplasms, Multiple Primary/pathology
- Neoplasms, Multiple Primary/mortality
- Neoplasms, Multiple Primary/therapy
- Neoplasms, Multiple Primary/surgery
- Neoplasms, Second Primary/pathology
- Neoplasms, Second Primary/mortality
- Treatment Outcome
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/mortality
- Carcinoma, Transitional Cell/therapy
- Carcinoma, Transitional Cell/surgery
- Carcinoma, Transitional Cell/drug therapy
- Survival Analysis
- Aged, 80 and over
Collapse
Affiliation(s)
- Wei Zuo
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Jilong Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Liqing Xu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| |
Collapse
|
2
|
Vedeld HM, Pharo H, Sørbø AK, Brandt‐Winge S, Five M, Jeanmougin M, Guldberg P, Wahlqvist R, Lind GE. Distinct longitudinal patterns of urine tumor DNA in patients undergoing surveillance for bladder cancer. Mol Oncol 2024; 18:2684-2695. [PMID: 38720532 PMCID: PMC11547231 DOI: 10.1002/1878-0261.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 11/09/2024] Open
Abstract
Cystoscopy is the gold standard for surveillance of non-muscle invasive bladder cancer (NMIBC), but the procedure is invasive and has suboptimal accuracy. The aim of this study was to investigate the potential of analyzing urine samples for the presence of urine tumor DNA (utDNA) to replace cystoscopy for surveillance of bladder cancer recurrence. In this longitudinal, prospective, and observational study, 47 patients were followed for recurrence for 2 years, involving analysis of utDNA using the BladMetrix DNA methylation biomarker test at each cystoscopy. In total, utDNA was detected in 21/23 recurrences (91% sensitivity), including 5/5 T1, T2, and carcinoma in situ (CIS) tumors (100%) and 10/12 Ta tumors (83%), with < 1% false-negative test results. Importantly, utDNA analysis showed the potential to reduce the number of cystoscopies by 55%, benefitting 79% of the patients. Eleven of 23 recurrences (48%) were detected earlier with utDNA than with cystoscopy, and distinct patterns of residual utDNA post-surgery indicated minimal residual disease (MRD) or field effect in 6% and 15% of the patients, respectively. In conclusion, utDNA analysis shows high sensitivity to detect tumor recurrence, potential to reduce the number of cystoscopies, and promise to guide patient-specific surveillance regimens.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
| | - Heidi Pharo
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
| | | | - Sara Brandt‐Winge
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
| | - May‐Britt Five
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
| | - Per Guldberg
- Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Cancer and Inflammation Research, Institute for Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNorway
- Department of Biosciences, The Faculty of Mathematics and Natural SciencesUniversity of OsloNorway
| |
Collapse
|
3
|
Guo CC, Lee S, Lee JG, Chen H, Zaleski M, Choi W, McConkey DJ, Wei P, Czerniak B. Molecular profile of bladder cancer progression to clinically aggressive subtypes. Nat Rev Urol 2024; 21:391-405. [PMID: 38321289 DOI: 10.1038/s41585-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Bladder cancer is a histologically and clinically heterogenous disease. Most bladder cancers are urothelial carcinomas, which frequently develop distinct histological subtypes. Several urothelial carcinoma histological subtypes, such as micropapillary, plasmacytoid, small-cell carcinoma and sarcomatoid, show highly aggressive behaviour and pose unique challenges in diagnosis and treatment. Comprehensive genomic characterizations of the urothelial carcinoma subtypes have revealed that they probably arise from a precursor subset of conventional urothelial carcinomas that belong to different molecular subtypes - micropapillary and plasmacytoid subtypes develop along the luminal pathway, whereas small-cell and sarcomatoid subtypes evolve along the basal pathway. The subtypes exhibit distinct genomic alterations, but in most cases their biological properties seem to be primarily determined by specific gene expression profiles, including epithelial-mesenchymal transition, urothelial-to-neural lineage plasticity, and immune infiltration with distinct upregulation of immune regulatory genes. These breakthrough studies have transformed our view of bladder cancer histological subtype biology, generated new hypotheses for therapy and chemoresistance, and facilitated the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - June G Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Zaleski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Lee S, Bondaruk J, Wang Y, Chen H, Lee JG, Majewski T, Mullen RD, Cogdell D, Chen J, Wang Z, Yao H, Kus P, Jeong J, Lee I, Choi W, Navai N, Guo C, Dinney C, Baggerly K, Mendelsohn C, McConkey D, Behringer RR, Kimmel M, Wei P, Czerniak B. Loss of LPAR6 and CAB39L dysregulates the basal-to-luminal urothelial differentiation program, contributing to bladder carcinogenesis. Cell Rep 2024; 43:114146. [PMID: 38676926 PMCID: PMC11265536 DOI: 10.1016/j.celrep.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term "forerunner" genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer.
Collapse
Affiliation(s)
- Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yishan Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel D Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Cogdell
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiansong Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ziqiao Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Yao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Kus
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Joon Jeong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ilkyun Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith Baggerly
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cathy Mendelsohn
- Department of Urology, Genetics & Development and Pathology, Columbia University, New York, NY 10032, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Czerniak B, Lee S, Jung SY, Kus P, Bondaruk J, Lee J, Jaksik R, Putluri N, Dinh K, Cogdell D, Chen H, Wang Y, Chen J, Nevai N, Dinney C, Mendelsohn C, McConkey D, Behringer R, Guo C, Wei P, Kimmel M. Inferring Bladder Cancer Evolution from Mucosal field Effects by Whole-Organ Spatial Mutational, Proteomic, and Metabolomic Mapping. RESEARCH SQUARE 2024:rs.3.rs-3994376. [PMID: 38659962 PMCID: PMC11042420 DOI: 10.21203/rs.3.rs-3994376/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Multi-platform mutational, proteomic, and metabolomic spatial mapping was used on the whole-organ scale to identify the molecular evolution of bladder cancer from mucosal field effects. We identified complex proteomic and metabolomic dysregulations in microscopically normal areas of bladder mucosa adjacent to dysplasia and carcinoma in situ. The mutational landscape developed in a background of complex defects of protein homeostasis which included dysregulated nucleocytoplasmic transport, splicesome, ribosome biogenesis, and peroxisome. These changes were combined with altered urothelial differentiation which involved lipid metabolism and protein degradations controlled by PPAR. The complex alterations of proteome were accompanied by dysregulation of gluco-lipid energy-related metabolism. The analysis of mutational landscape identified three types of mutations based on their geographic distribution and variant allele frequencies. The most common were low frequency α mutations restricted to individual mucosal samples. The two other groups of mutations were associated with clonal expansion. The first of this group referred to as β mutations occurred at low frequencies across the mucosa. The second of this group called γ mutations increased in frequency with disease progression. Modeling of the mutations revealed that carcinogenesis may span nearly 30 years and can be divided into dormant and progressive phases. The α mutations developed gradually in the dormant phase. The progressive phase lasted approximately five years and was signified by the advent of β mutations, but it was driven by γ mutations which developed during the last 2-3 years of disease progression to invasive cancer. Our study indicates that the understanding of complex alterations involving mucosal microenvironment initiating bladder carcinogenesis can be inferred from the multi-platform whole-organ mapping.
Collapse
Affiliation(s)
| | - Sangkyou Lee
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - June Lee
- The University of Texas MD Anderson Cancer Center
| | | | | | - Khanh Dinh
- Irving Institute for Cancer Dynamics, Columbia University
| | | | - Huiqin Chen
- The University of Texas MD Anderson Cancer Center
| | - Yishan Wang
- The University of Texas MD Anderson Cancer Center
| | | | - Neema Nevai
- The University of Texas MD Anderson Cancer Center
| | - Colin Dinney
- The University of Texas MD Anderson Cancer Center
| | | | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University
| | | | - Charles Guo
- The University of Texas MD Anderson Cancer Center
| | - Peng Wei
- The University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
6
|
Strandgaard T, Nordentoft I, Birkenkamp-Demtröder K, Salminen L, Prip F, Rasmussen J, Andreasen TG, Lindskrog SV, Christensen E, Lamy P, Knudsen M, Steiniche T, Jensen JB, Dyrskjøt L. Field Cancerization Is Associated with Tumor Development, T-cell Exhaustion, and Clinical Outcomes in Bladder Cancer. Eur Urol 2024; 85:82-92. [PMID: 37718188 DOI: 10.1016/j.eururo.2023.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Field cancerization is characterized by areas of normal tissue affected by mutated clones. Bladder field cancerization may explain the development and recurrence of bladder cancer and may be associated with treatment outcomes. OBJECTIVE To investigate the predictive and prognostic roles of field cancerization in patients with high-risk non-muscle-invasive bladder cancer (NMIBC) treated with bacillus Calmette-Guérin (BCG). DESIGN, SETTING, AND PARTICIPANTS We conducted comprehensive genomic and proteomic analyses for 751 bladder biopsies and 234 urine samples from 136 patients with NMIBC. The samples were collected at multiple time points during the disease course. Field cancerization in normal-appearing bladder biopsies was measured using deep-targeted sequencing and error correction models. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Endpoints included the rates of recurrence and progression. Cox regression and Wilcoxon rank-sum and Fisher's exact tests were used. RESULTS AND LIMITATIONS A high level of field cancerization was associated with high tumor mutational burden (p = 0.007), high tumor neoantigen load (p = 0.029), and high tumor-associated CD8 T-cell exhaustion (p = 0.017). In addition, high field cancerization was associated with worse short-term outcomes (p = 0.029). Nonsynonymous mutations in bladder cancer-associated genes such as KDM6A, ARID1A, and TP53 were identified as early disease drivers already found in normal-appearing bladder biopsies. Urinary tumor DNA (utDNA) levels reflected the bladder tumor burden and originated from tumors and field cancerization. High levels of utDNA after BCG were associated with worse clinical outcomes (p = 0.027) and with disease progression (p = 0.003). High field cancerization resulted in high urinary levels of proteins associated with angiogenesis and proliferation. Limitations include variation in the number of biopsies and time points analyzed. CONCLUSIONS Field cancerization levels are associated with tumor development, immune responses, and clinical outcomes. utDNA measurements can be used to monitor disease status and treatment response. PATIENT SUMMARY Molecular changes in the tissue lining the bladder result in tumor recurrence. Urinary measurements may be used to monitor bladder cancer status and treatment responses.
Collapse
Affiliation(s)
- Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Liina Salminen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tine Ginnerup Andreasen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sia Viborg Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Michael Knudsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Seillier L, Peifer M. Reconstructing Phylogenetic Relationship in Bladder Cancer: A Methodological Overview. Methods Mol Biol 2023; 2684:113-132. [PMID: 37410230 DOI: 10.1007/978-1-0716-3291-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bladder cancer (BC) expresses itself as a highly heterogeneous disease both at the histological and molecular level, often occurring as synchronous or metachronous multifocal disease with high risk of recurrence and potential to metastasize. Multiple sequencing studies focusing on both non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) gave insights into the extent of both inter- and intrapatient heterogeneity, but many questions on clonal evolution in BC remain unanswered. In this review article, we provide an overview over the technical and theoretical concepts linked to reconstructing evolutionary trajectories in BC and propose a set of tools and established software for phylogenetic analysis.
Collapse
Affiliation(s)
| | - Martin Peifer
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Abstract
Bladder cancer is a heterogeneous disease, which exhibits a wide spectrum of clinical and pathologic features. Recent genomic studies have revealed that distinct molecular alterations may underlie the diverse clinical behaviors of bladder cancer, leading to a novel molecular classification. The intrinsic molecular subtypes exhibit distinct gene expression signatures and different clinicopathologic features. Genomic alterations also underlie the development of bladder cancer histologic subtypes. Genomic characterization provides new insights to understanding the biology of bladder cancer and improves the diagnosis and treatment of this complex disease. Biomarkers can aid the selection of patients for immune checkpoint therapy.
Collapse
Affiliation(s)
- Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0085, Houston, TX 77030, USA.
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0085, Houston, TX 77030, USA
| |
Collapse
|
10
|
Targeted-sequence of normal urothelium and tumor of patients with non-muscle invasive bladder cancer. Sci Rep 2022; 12:16642. [PMID: 36198773 PMCID: PMC9535027 DOI: 10.1038/s41598-022-21158-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
During tumorigenesis, certain tissues are colonized by mutant clones with oncogenic driver mutations as precancer lesions. These mutations can facilitate clonal expansion and may contribute to malignant transformation. The molecular features of low-grade non-muscle invasive bladder cancer (NMIBC) and high-grade bladder cancer are so distinct that they are thought to follow different evolutionary tumorigenesis pathways. Although NMIBC accounts for most bladder tumors, the somatic mutation patterns in “precancer” urothelium of patients with NMIBC remain unclear. Here, we analyzed specimens of normal urothelium and bladder tumors from patients with low-grade and high-grade NMIBC and investigated the genomic evolution of the cancer. Somatic mutations were analyzed using 50 oncogene-targeted sequences and droplet digital polymerase chain reaction for TERT promoter mutations. Somatic mutations in TERT promoter, FGFR3, and CDKN2A were characteristically identified in the normal urothelium of patients with NMIBC. These mutations, consistently identified in both tumor and normal specimens, likely affect clonal expansion during the malignant transformation of NMIBC. Though larger samples and comprehensive study are warranted to confirm our results, the difference in mutational landscape of the precancerous urothelium of patients with bladder cancer could offer deeper understandings of genomic evolution in bladder tumorigenesis.
Collapse
|
11
|
Paner GP, Smith SC, Hartmann A, Agarwal PK, Compérat E, Amin MB. Flat intraurothelial lesions of the urinary bladder-do hyperplasia, dysplasia, and atypia of unknown significance need to exist as diagnostic entities? and how to handle in routine clinical practice. Mod Pathol 2022; 35:1296-1305. [PMID: 35468997 DOI: 10.1038/s41379-022-01087-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
Classification of the putative flat preneoplastic and neoplastic lesions of the urothelium with features subthreshold for urothelial carcinoma in situ remains a challenging, indeed, vexing problem in diagnostic surgical pathology. This area, subtending lesions including flat urothelial hyperplasia, urothelial dysplasia, and atypia of unknown significance, has struggled under evolving classifications, changing criteria, and limited clinical actionability, all confounded by the recognized lack of diagnostic reproducibility. Herein, we review the state of the literature around these lesions, reviewing contemporary criteria and definitions, assessing the arguments in favor and against of retaining hyperplasia, dysplasia, and atypia of unknown significance as diagnostic entities. We clarify the intent of the original definitions for dysplasia as a lesion felt to be clearly neoplastic but with morphologic features that fall short of the threshold of urothelial carcinoma in situ. While several pathologists, including some experts in the field, conflate the term dysplasia with urothelial atypia of unknown significance, the latter is defined as a descriptive diagnosis term to express diagnostic uncertainty of a lesion of whether it is clearly reactive or neoplastic. Both molecular studies and clinical needs are considered, as we outline our approach on diagnosing each of these lesions in clinical practice. Recommendations are made to guide consistency and interoperability in future scholarship, and the place of these lesions in context of evolving trends in the field is considered.
Collapse
Affiliation(s)
- Gladell P Paner
- Department of Pathology, University of Chicago, Chicago, IL, USA. .,Department of Surgery, Section of Urology, University of Chicago, Chicago, IL, USA.
| | - Steven C Smith
- Departments of Pathology and Urology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Piyush K Agarwal
- Department of Surgery, Section of Urology, University of Chicago, Chicago, IL, USA
| | - Eva Compérat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris VI, Paris, France
| | - Mahul B Amin
- Departments of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Toyoda T, Ogawa K. Early detection of urinary bladder carcinogens in rats by immunohistochemistry for γ-H2AX: a review from analyses of 100 chemicals. J Toxicol Pathol 2022; 35:283-298. [PMID: 36406171 PMCID: PMC9647216 DOI: 10.1293/tox.2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
In safety evaluations of chemicals, there is an urgent need to develop short-term methods to replace long-term carcinogenicity tests. We have reported that immunohistochemistry for γ-H2AX, a well-established biomarker of DNA damage, can detect bladder carcinogens at an early stage using histopathological specimens from 28-day repeated-dose oral toxicity studies in rats. Given the markedly low level of γ-H2AX formation in the bladder urothelium of untreated rats, an increase in γ-H2AX-positive cells following chemical exposure can be relatively easy to identify. Among the 100 compounds examined to date, bladder carcinogens can be detected with high sensitivity (33/39; 84.6%) and specificity (58/61; 95.1%). As expected, γ-H2AX formation levels tended to be high following exposure to genotoxic bladder carcinogens, whereas nongenotoxic bladder carcinogens also increased the number of γ-H2AX-positive cells, probably through secondary DNA damage associated with sustained proliferative stimulation. γ-H2AX formation in the bladder urothelium reflects species differences in susceptibility to bladder carcinogenesis between rats and mice and shows a clear dose-dependency associated with the intensity of tumor development as well as high reproducibility. Some of the bladder carcinogens that showed false-negative results in the evaluation of γ-H2AX alone could be detected by combined evaluation with immunostaining for bladder stem cell markers, including aldehyde dehydrogenase 1A1. This method may be useful for the early detection of bladder carcinogens, as it can be performed by simple addition of conventional immunostaining using formalin-fixed paraffin-embedded tissues from 28-day repeated-dose toxicity studies in rodents, which are commonly used in safety evaluations of chemical substances.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
13
|
Tan WS, Steinberg G, Witjes JA, Li R, Shariat SF, Roupret M, Babjuk M, Bivalacqua TJ, Psutka SP, Williams SB, Cookson MS, Palou J, Kamat AM. Intermediate-risk Non-muscle-invasive Bladder Cancer: Updated Consensus Definition and Management Recommendations from the International Bladder Cancer Group. Eur Urol Oncol 2022; 5:505-516. [PMID: 35718695 DOI: 10.1016/j.euo.2022.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
CONTEXT Intermediate-risk (IR) non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease. OBJECTIVE To update the International Bladder Cancer Group (IBCG) guidance and provide practical recommendations on IR NMIBC management. EVIDENCE ACQUISITION A collaborative review of published randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidance on IR NMIBC published before January 2022 was undertaken using PubMed/Medline. EVIDENCE SYNTHESIS Variation exists between guidelines in defining IR NMIBC. The IBCG recommends defining IR NMIBC as any TaLG tumor that is either recurrent or multifocal or has size ≥3 cm, OR any T1LG tumor. If the 3 tier grading system is used, than any TaG2 tumor would also be considered IR diease regardless of whether new diagnosis or recurrent. Accurate grading and staging of tumor, particularly in ruling out HG/G3 disease and/or carcinoma in situ, are crucial. The IBCG recommends that management of IR NMIBC should be further based on the following risk factors: multifocal tumor (more than one), early recurrence (<1 yr), frequent recurrence (>1/yr), tumor size (≥3 cm), and failure of prior intravesical treatment. Patients with no risk factors are best managed by one dose of postoperative intravesical chemotherapy. Patients with one to two risk factors should be offered additional adjuvant induction intravesical chemotherapy (or bacillus Calmette-Guérin (BCG) if prior chemotherapy has been used). Patients with three or more risk factors should be offered induction plus 1-yr maintenance BCG. Where BCG is not available or recurrent disease following BCG is present, alternative intravesical treatments such as chemotherapy (single agent, combination, or chemohyperthermia) or a clinical trial are recommended. CONCLUSIONS Standardizing the definition of IR NMIBC is critical for appropriate management of patients and for allowing a comparison of outcomes across clinical trials. The IBCG recommends defining IR NMIBC as any TaLG tumor that is either recurrent or multifocal or ≥3 cm, OR any T1LG tumor. If the 3 tier grading system is used, than any TaG2 tumor would also be considered IR disease regardless of whether new diagnosis or recurrent. Adjunctive management should then be based on established risk factors. PATIENT SUMMARY Standardizing the definition of intermediate-risk (IR) non-muscle-invasive bladder cancer (NMIBC), which is a heterogeneous disease, is critical for appropriate management of patients. The International Bladder Cancer Group recommends classification of IR NMIBC tumors and personalized management based on the following risk factors: multifocal tumor (more than one), early recurrence (<1 yr), frequent recurrence (>1/yr), tumor size (≥3 cm), and previous intravesical treatment.
Collapse
Affiliation(s)
- Wei Shen Tan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospitals, London, UK
| | - Gary Steinberg
- Department of Urology, New York University, New York City, NY, USA
| | - J Alfred Witjes
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Morgan Roupret
- Urology, GRC n°5, Predictive ONCO-URO, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Marko Babjuk
- Department of Urology, Hospital Motol, Second Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Trinity J Bivalacqua
- Department of Urology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah P Psutka
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Stephen B Williams
- Department of Surgery, Division of Urology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Michael S Cookson
- Department of Urology, The University of Oklahoma Health Sciences Center & The Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Juan Palou
- Department of Urology, Fundació Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Dahl E, Villwock S, Habenberger P, Choidas A, Rose M, Klebl BM. White Paper: Mimetics of Class 2 Tumor Suppressor Proteins as Novel Drug Candidates for Personalized Cancer Therapy. Cancers (Basel) 2022; 14:cancers14184386. [PMID: 36139547 PMCID: PMC9496810 DOI: 10.3390/cancers14184386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary A concept is presented for a new therapeutic approach, still in its early stages, which focuses on the phenotypic mimicry (“mimesis”) of proteins encoded by highly disease-relevant class 2 tumor suppressor genes that are silenced by DNA promoter methylation. Proteins derived from tumor suppressor genes are usually considered control systems of cells against oncogenic properties. Thus they represent the brakes in the “car-of-life.” Restoring this “brake function” in tumors by administering mimetic drugs may have a significant therapeutic effect. The proposed approach could thus open up a new, hitherto unexploited area of research for the development of anticancer drugs for difficult-to-treat cancers. Abstract The aim of our proposed concept is to find new target structures for combating cancers with unmet medical needs. This, unfortunately, still applies to the majority of the clinically most relevant tumor entities such as, for example, liver cancer, pancreatic cancer, and many others. Current target structures almost all belong to the class of oncogenic proteins caused by tumor-specific genetic alterations, such as activating mutations, gene fusions, or gene amplifications, often referred to as cancer “driver alterations” or just “drivers.” However, restoring the lost function of tumor suppressor genes (TSGs) could also be a valid approach to treating cancer. TSG-derived proteins are usually considered as control systems of cells against oncogenic properties; thus, they represent the brakes in the “car-of-life.” Restoring these tumor-defective brakes by gene therapy has not been successful so far, with a few exceptions. It can be assumed that most TSGs are not being inactivated by genetic alteration (class 1 TSGs) but rather by epigenetic silencing (class 2 TSGs or short “C2TSGs”). Reactivation of C2TSGs in cancer therapy is being addressed by the use of DNA demethylating agents and histone deacetylase inhibitors which act on the whole cancer cell genome. These epigenetic therapies have neither been particularly successful, probably because they are “shotgun” approaches that, although acting on C2TSGs, may also reactivate epigenetically silenced oncogenic sequences in the genome. Thus, new strategies are needed to exploit the therapeutic potential of C2TSGs, which have also been named DNA methylation cancer driver genes or “DNAme drivers” recently. Here we present a concept for a new translational and therapeutic approach that focuses on the phenotypic imitation (“mimesis”) of proteins encoded by highly disease-relevant C2TSGs/DNAme drivers. Molecular knowledge on C2TSGs is used in two complementary approaches having the translational concept of defining mimetic drugs in common: First, a concept is presented how truncated and/or genetically engineered C2TSG proteins, consisting solely of domains with defined tumor suppressive function can be developed as biologicals. Second, a method is described for identifying small molecules that can mimic the effect of the C2TSG protein lost in the cancer cell. Both approaches should open up a new, previously untapped discovery space for anticancer drugs.
Collapse
Affiliation(s)
- Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
- Correspondence:
| | - Sophia Villwock
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Michael Rose
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Bert M. Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| |
Collapse
|
15
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Yamada T, Toyoda T, Matsushita K, Akane H, Morikawa T, Cho YM, Ogawa K. Persistent γ-H2AX formation and expression of stem cell markers in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder carcinogenesis in rats. Toxicol Sci 2022; 189:51-61. [PMID: 35771629 DOI: 10.1093/toxsci/kfac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated γ-H2AX formation, a biomarker of DNA damage, and expression of stem cell markers (SCMs), including cytokeratin 14, aldehyde dehydrogenase 1A1 (ALDH1A1), and CD44, in the development of rat bladder tumors induced by short-term administration of N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). Histopathological examination showed that diffuse simple hyperplasia of the bladder urothelium induced by BBN recovered to the normal-appearing urothelium after withdrawal, whereas focal proliferative lesions were newly developed and subsequently progressed to benign papilloma and carcinoma. Immunohistochemical analysis revealed that BBN-induced γ-H2AX formation and ALDH1A1 and CD44 expression persisted at higher levels in the normal-appearing urothelium than those in the control group for long periods after withdrawal. Since persistent chronic inflammation was observed even after withdrawal, targeted gene expression analysis of inflammation-related factors revealed 101 genes, including Stat3 and Myc, that showed persistent high expression. Pathway analysis suggested that Stat3 and/or Myc activation may be associated with SCM expression. We focused on hepatocyte growth factor (Hgf), one of the genes predicted in relation to Stat3/Myc, and confirmed that HGF-positive cells increased by BBN persisted in the normal-appearing urothelium after withdrawal and colocalized with γ-H2AX and SCMs. These results suggested that the long-term persistence of γ-H2AX formation and SCM expression, which occurred during the early stages of bladder tumorigenesis, is not a transient response to exposure and might contribute to bladder tumorigenesis. Although further studies are needed, BBN-induced rat bladder tumors may originate from focal hyperplasia arising from SCM-positive cells via activation of the STAT3/MYC pathway after DNA damage involving γ-H2AX formation.
Collapse
Affiliation(s)
- Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
17
|
Lokeshwar SD, Lopez M, Sarcan S, Aguilar K, Morera DS, Shaheen DM, Lokeshwar BL, Lokeshwar VB. Molecular Oncology of Bladder Cancer from Inception to Modern Perspective. Cancers (Basel) 2022; 14:cancers14112578. [PMID: 35681556 PMCID: PMC9179261 DOI: 10.3390/cancers14112578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Within the last forty years, seminal contributions have been made in the areas of bladder cancer (BC) biology, driver genes, molecular profiling, biomarkers, and therapeutic targets for improving personalized patient care. This overview includes seminal discoveries and advances in the molecular oncology of BC. Starting with the concept of divergent molecular pathways for the development of low- and high-grade bladder tumors, field cancerization versus clonality of bladder tumors, cancer driver genes/mutations, genetic polymorphisms, and bacillus Calmette-Guérin (BCG) as an early form of immunotherapy are some of the conceptual contributions towards improving patient care. Although beginning with a promise of predicting prognosis and individualizing treatments, "-omic" approaches and molecular subtypes have revealed the importance of BC stem cells, lineage plasticity, and intra-tumor heterogeneity as the next frontiers for realizing individualized patient care. Along with urine as the optimal non-invasive liquid biopsy, BC is at the forefront of the biomarker field. If the goal is to reduce the number of cystoscopies but not to replace them for monitoring recurrence and asymptomatic microscopic hematuria, a BC marker may reach clinical acceptance. As advances in the molecular oncology of BC continue, the next twenty-five years should significantly advance personalized care for BC patients.
Collapse
Affiliation(s)
- Soum D. Lokeshwar
- Department of Urology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Maite Lopez
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Semih Sarcan
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
| | - Karina Aguilar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Daley S. Morera
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Devin M. Shaheen
- Yale School of Nursing, Yale University, New Haven, CT 06520, USA;
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (B.L.L.); (V.B.L.)
| | - Vinata B. Lokeshwar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
- Correspondence: (B.L.L.); (V.B.L.)
| |
Collapse
|
18
|
Chauhan PS, Chen K, Babbra RK, Feng W, Pejovic N, Nallicheri A, Harris PK, Dienstbach K, Atkocius A, Maguire L, Qaium F, Szymanski JJ, Baumann BC, Ding L, Cao D, Reimers MA, Kim EH, Smith ZL, Arora VK, Chaudhuri AA. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: A cohort study. PLoS Med 2021; 18:e1003732. [PMID: 34464379 PMCID: PMC8407541 DOI: 10.1371/journal.pmed.1003732] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The standard of care treatment for muscle-invasive bladder cancer (MIBC) is radical cystectomy, which is typically preceded by neoadjuvant chemotherapy. However, the inability to assess minimal residual disease (MRD) noninvasively limits our ability to offer bladder-sparing treatment. Here, we sought to develop a liquid biopsy solution via urine tumor DNA (utDNA) analysis. METHODS AND FINDINGS We applied urine Cancer Personalized Profiling by Deep Sequencing (uCAPP-Seq), a targeted next-generation sequencing (NGS) method for detecting utDNA, to urine cell-free DNA (cfDNA) samples acquired between April 2019 and November 2020 on the day of curative-intent radical cystectomy from 42 patients with localized bladder cancer. The average age of patients was 69 years (range: 50 to 86), of whom 76% (32/42) were male, 64% (27/42) were smokers, and 76% (32/42) had a confirmed diagnosis of MIBC. Among MIBC patients, 59% (19/32) received neoadjuvant chemotherapy. utDNA variant calling was performed noninvasively without prior sequencing of tumor tissue. The overall utDNA level for each patient was represented by the non-silent mutation with the highest variant allele fraction after removing germline variants. Urine was similarly analyzed from 15 healthy adults. utDNA analysis revealed a median utDNA level of 0% in healthy adults and 2.4% in bladder cancer patients. When patients were classified as those who had residual disease detected in their surgical sample (n = 16) compared to those who achieved a pathologic complete response (pCR; n = 26), median utDNA levels were 4.3% vs. 0%, respectively (p = 0.002). Using an optimal utDNA threshold to define MRD detection, positive utDNA MRD detection was highly correlated with the absence of pCR (p < 0.001) with a sensitivity of 81% and specificity of 81%. Leave-one-out cross-validation applied to the prediction of pathologic response based on utDNA MRD detection in our cohort yielded a highly significant accuracy of 81% (p = 0.007). Moreover, utDNA MRD-positive patients exhibited significantly worse progression-free survival (PFS; HR = 7.4; 95% CI: 1.4-38.9; p = 0.02) compared to utDNA MRD-negative patients. Concordance between urine- and tumor-derived mutations, determined in 5 MIBC patients, was 85%. Tumor mutational burden (TMB) in utDNA MRD-positive patients was inferred from the number of non-silent mutations detected in urine cfDNA by applying a linear relationship derived from The Cancer Genome Atlas (TCGA) whole exome sequencing of 409 MIBC tumors. We suggest that about 58% of these patients with high inferred TMB might have been candidates for treatment with early immune checkpoint blockade. Study limitations included an analysis restricted only to single-nucleotide variants (SNVs), survival differences diminished by surgery, and a low number of DNA damage response (DRR) mutations detected after neoadjuvant chemotherapy at the MRD time point. CONCLUSIONS utDNA MRD detection prior to curative-intent radical cystectomy for bladder cancer correlated significantly with pathologic response, which may help select patients for bladder-sparing treatment. utDNA MRD detection also correlated significantly with PFS. Furthermore, utDNA can be used to noninvasively infer TMB, which could facilitate personalized immunotherapy for bladder cancer in the future.
Collapse
Affiliation(s)
- Pradeep S. Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kevin Chen
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ramandeep K. Babbra
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wenjia Feng
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nadja Pejovic
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Armaan Nallicheri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter K. Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Dienstbach
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Atkocius
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lenon Maguire
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Faridi Qaium
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey J. Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian C. Baumann
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Li Ding
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa A. Reimers
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric H. Kim
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary L. Smith
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vivek K. Arora
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aadel A. Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
19
|
McConkey DJ. Molecular Biology of Bladder Cancer: Potential Implications for Therapy. Hematol Oncol Clin North Am 2021; 35:457-468. [PMID: 33958145 DOI: 10.1016/j.hoc.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently completed studies provided high-resolution descriptions of the molecular biological characteristics of urothelial bladder cancers. Whole transcriptome messenger RNA expression profiling revealed that they can be grouped into basal and luminal molecular subtypes resembling the ones described in breast cancers. Retrospective DNA sequencing efforts revealed roles for disruption of DNA damage response pathways in response to conventional chemotherapy and immune checkpoint blockade, and completed and ongoing studies indicate that the molecular biological properties of infiltrating host cells dictate also influence therapeutic outcomes. This article reviews these findings and identify gaps in knowledge that represent opportunities for future research.
Collapse
Affiliation(s)
- David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, 600 North Wolfe Street, Park 219, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Tripathi K, Goel A, Singhai A, Garg M. Promoter hypomethylation as potential confounder of Ras gene overexpression and their clinical significance in subsets of urothelial carcinoma of bladder. Mol Biol Rep 2021; 48:2183-2199. [PMID: 33620658 DOI: 10.1007/s11033-021-06227-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Overexpression of normal Ras and its aberrant CpG island methylation in the promoter regions have been shown to direct cells for uncontrolled abnormal growth and bladder tumor formation and therefore, fetched recent attention as a marker of diagnosis and prognosis to predict the biological behavior of urothelial carcinoma of bladder (UCB). Methylation pattern at CpG islands of the promoter regions of rat sarcoma (Ras) gene homologues namely Kristen-Ras (K-Ras), Harvey (H-Ras), and Neuroblastoma (N-Ras) were examined by methylation specific polymerase chain reaction (MSP). Real time-quantitative polymerase chain reaction (RT-qPCR) was done to determine transcriptomic expressions of these Ras isoforms in the prospective series of 42 NMIBC (non-muscle invasive bladder cancer) and 45 MIBC (muscle invasive bladder cancer) biopsies. CpG loci in H-Ras and K-Ras were observed to be more hypomethylated in MIBC, whereas more hypomethylation in N-Ras was noted in NMIBC. Strong association of hypomethylation index with tumor stage, grade, type and size validate them it as marker of diagnosis in UCB patients. Differential overexpression of H-Ras, N-Ras and K-Ras genes in NMIBC and MIBC and their association with patients' demographics identify them as important diagnostic markers in pathogenesis of UCB. Given the reported ability of promoter hypomethylation to activate Ras expression, correlation studies examined positive significant association between hypomethylation index and expression. Study concludes that promoter hypomethylation of N-Ras and K-Ras could be a potential confounder of their increased expression in NMIBC. Biological significance of simultaneous presence of higher expression and promoter hypomethylation of Ras gene isoforms in MIBC is difficult to resolve in a given cohort of patients.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow, 226003, India
| | - Atin Singhai
- Department of Pathology, King George Medical University, Lucknow, 226003, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
21
|
Wullweber A, Strick R, Lange F, Sikic D, Taubert H, Wach S, Wullich B, Bertz S, Weyerer V, Stoehr R, Breyer J, Burger M, Hartmann A, Strissel PL, Eckstein M. Bladder Tumor Subtype Commitment Occurs in Carcinoma In Situ Driven by Key Signaling Pathways Including ECM Remodeling. Cancer Res 2021; 81:1552-1566. [PMID: 33472889 DOI: 10.1158/0008-5472.can-20-2336] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Basal and luminal subtypes of invasive bladder tumors have significant prognostic and predictive impacts for patients. However, it remains unclear whether tumor subtype commitment occurs in noninvasive urothelial lesions or in carcinoma in situ (CIS) and which gene pathways are important for bladder tumor progression. To understand the timing of this commitment, we used gene expression and protein analysis to create a global overview of 36 separate tissues excised from a whole bladder encompassing urothelium, noninvasive urothelial lesions, CIS, and invasive carcinomas. Additionally investigated were matched CIS, noninvasive urothelial lesions, and muscle-invasive bladder cancers (MIBC) from 22 patients. The final stage of subtype commitment to either a luminal or basal MIBC occurred at the CIS transition. For all tissues combined, hierarchical clustering of subtype gene expression revealed three subtypes: "luminal," "basal," and a "luminal p53-/extracellular matrix (ECM)-like" phenotype of ECM-related genes enriched in tumor-associated urothelium, noninvasive urothelial lesions, and CIS, but rarely invasive, carcinomas. A separate cohort of normal urothelium from noncancer patients showed significantly lower expression of ECM-related genes compared with tumor-associated urothelium, noninvasive urothelial lesions, and CIS. A PanCancer Progression Panel of 681 genes unveiled pathways specific for the luminal p53-/ECM-like cluster, for example, ECM remodeling, angiogenesis, epithelial-to-mesenchymal transition, cellular discohesion, cell motility involved in tumor progression, and cell proliferation and oncogenic ERBB2/ERBB3 signaling for invasive carcinomas. In conclusion, this study provides insights into bladder cancer subtype commitment and associated signaling pathways, which could help predict therapy response and enhance our understanding of therapy resistance. SIGNIFICANCE: This study demonstrates that CIS is the stage of commitment for determining MIBC tumor subtype, which is relevant for patient prognosis and therapy response.
Collapse
Affiliation(s)
- Adrian Wullweber
- Department of Internal Medicine, Evangelisches Krankenhaus Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabienne Lange
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
22
|
Marzouka NAD, Lindgren D, Eriksson P, Sjödahl G, Bernardo C, Liedberg F, Axelson H, Höglund M. Recurring urothelial carcinomas show genomic rearrangements incompatible with a direct relationship. Sci Rep 2020; 10:19539. [PMID: 33177554 PMCID: PMC7658206 DOI: 10.1038/s41598-020-75854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
We used the fact that patients with non-muscle invasive bladder tumors show local recurrences and multiple tumors to study re-initiation of tumor growth from the same urothelium. By extensive genomic analyses we show that tumors from the same patient are clonal. We show that gross genomic chromosomal aberrations may be detected in one tumor, only to be undetected in a recurrent tumor. By analyses of incompatible changes i.e., genomic alterations that cannot be reversed, we show that almost all tumors from a single patient may show such changes, thus the tumors cannot have originated from each other. As recurring tumors share both genomic alterations and driver gene mutations, these must have been present in the urothelium in periods with no tumor growth. We present a model that includes a growing and evolving field of urothelial cells that occasionally, and locally, produce bursts of cellular growth leading to overt tumors.
Collapse
Affiliation(s)
- Nour-Al-Dain Marzouka
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Malmö University Hospital, Malmö, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Malmö University Hospital, Malmö, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Li R, Du Y, Chen Z, Xu D, Lin T, Jin S, Wang G, Liu Z, Lu M, Chen X, Xu T, Bai F. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 2020; 370:82-89. [PMID: 33004515 DOI: 10.1126/science.aba7300] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Knowledge of somatic mutation accumulation in normal cells, which is essential for understanding cancer development and evolution, remains largely lacking. In this study, we investigated somatic clonal events in morphologically normal human urothelium (MNU; epithelium lining the bladder and ureter) and identified macroscopic clonal expansions. Aristolochic acid (AA), a natural herb-derived compound, was a major mutagenic driving factor in MNU. AA drastically accelerates mutation accumulation and enhances clonal expansion. Mutations in MNU were widely observed in chromatin remodeling genes such as KMT2D and KDM6A but rarely in TP53, PIK3CA, and FGFR3 KMT2D mutations were found to be common in urothelial cells, regardless of whether the cells experience exogenous mutagen exposure. Copy number alterations were rare and largely confined to small-scale regions, along with copy-neutral loss of heterozygosity. Single AA-associated clones in MNU expanded to a scale of several square centimeters in size.
Collapse
Affiliation(s)
- Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Deshu Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Gongwei Wang
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Ziyang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
24
|
Mitra AP, Miest T, Dinney CPN. Genomic Predictors of Good Outcome, Recurrence, or Progression in High-Grade T1 Non-Muscle-Invasive Bladder Cancer. Eur Urol 2020; 79:428-429. [PMID: 33158662 DOI: 10.1016/j.eururo.2020.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Anirban P Mitra
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tanner Miest
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P N Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L, Latimer C, Raine K, Sanders MA, Warren AY, Mahbubani KTA, Bareham B, Butler TM, Harvey LMR, Cagan A, Menzies A, Moore L, Colquhoun AJ, Turner W, Thomas B, Gnanapragasam V, Williams N, Rassl DM, Vöhringer H, Zumalave S, Nangalia J, Tubío JMC, Gerstung M, Saeb-Parsy K, Stratton MR, Campbell PJ, Mitchell TJ, Martincorena I. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 2020; 370:75-82. [PMID: 33004514 DOI: 10.1126/science.aba8347] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.
Collapse
Affiliation(s)
- Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GD, Netherlands
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Krishnaa T A Mahbubani
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Bethany Bareham
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luiza Moore
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alexandra J Colquhoun
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - William Turner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Benjamin Thomas
- The Royal Melbourne Hospital, Parkville, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vincent Gnanapragasam
- Academic Urology Group, Department of Surgery and Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge CB2 0QQ, UK
| | - Nicholas Williams
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Doris M Rassl
- Department of Pathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Harald Vöhringer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Sonia Zumalave
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - José M C Tubío
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- The Biomedical Research Centre (CINBIO), University of Vigo, Vigo 36310, Spain
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
26
|
Hayashi Y, Fujita K, Nojima S, Tomiyama E, Matsushita M, Koh Y, Nakano K, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Imamura R, Morii E, Nonomura N. TERT C228T mutation in non-malignant bladder urothelium is associated with intravesical recurrence for patients with non-muscle invasive bladder cancer. Mol Oncol 2020; 14:2375-2383. [PMID: 32533903 PMCID: PMC7530786 DOI: 10.1002/1878-0261.12746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations are frequently found in tumors or urine from patients with urothelial carcinoma (UC). TERT promoter mutations are also detected in urine from patients with no evidence of cancer but are associated with subsequent UC development. Mutations in the TERT promoter are thought to be present in nonmalignant urothelium (NMU) during early stages of tumor formation prior to pathological change, but this has not been proven directly. In this proof-of-concept study, we investigated the clinical utility of TERT promoter mutation analysis in NMU of patients with non-muscle-invasive bladder cancer (NMIBC). This single-institute study included 53 primary tumors and 428 systematic bladder biopsy specimens from 54 patients with NMIBC. All patients underwent systematic random biopsy and transurethral resection of the bladder tumor. Genomic DNA was analyzed for TERT C228T and C250T mutations using droplet digital PCR (ddPCR). The association between TERT promoter mutation of NMU and bladder recurrence was examined by the Kaplan-Meier method and Cox proportional hazards model. Of the 54 patients, 16 (29.6%) had a TERT C228T mutation and three (5.6%) had a TERT C250T mutation in NMU. Of 428 biopsy specimens, the TERT C228T mutation was detected in 9% (31/364) of normal urothelium, 27% (4/15) of urothelial dysplasia (UD), 50% (9/18) of UD suspicious for carcinoma in situ (CIS), and 58% (18/31) of CIS. During follow-up (median: 3.7 years), 22 (40.7%) patients experienced bladder recurrence and five (9.3%) experienced disease progression. Cox proportional hazard analysis showed that TERT C228T mutation in NMU was significantly associated with bladder recurrence after adjustment for cofounding factors (P = 0.0128). Thus, TERT C228T mutation was detected in NMU, which was a reliable independent prognostic factor of bladder tumor recurrence.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineOsakasayamaJapan
| | - Satoshi Nojima
- Department of PathologyOsaka University Graduate School of MedicineSuitaJapan
| | - Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ryoichi Imamura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Eiichi Morii
- Department of PathologyOsaka University Graduate School of MedicineSuitaJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
27
|
Tian Z, Meng L, Long X, Diao T, Hu M, Wang M, Liu M, Wang J. DNA methylation-based classification and identification of bladder cancer prognosis-associated subgroups. Cancer Cell Int 2020; 20:255. [PMID: 32565739 PMCID: PMC7302382 DOI: 10.1186/s12935-020-01345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Bladder cancer (BCA) is the most common urinary tumor, but its pathogenesis is unclear, and the associated treatment strategy has rarely been updated. In recent years, a deeper understanding of tumor epigenetics has been gained, providing new opportunities for cancer detection and treatment. METHODS We identified prognostic methylation sites based on DNA methylation profiles of BCA in the TCGA database and constructed a specific prognostic subgroup. RESULTS Based on the consistent clustering of 402 CpGs, we identified seven subgroups that had a significant association with survival. The difference in DNA methylation levels was related to T stage, N stage, M stage, grade, sex, age, stage and prognosis. Finally, the prediction model was constructed using a Cox regression model and verified using the test dataset; the prognosis was consistent with that of the training set. CONCLUSIONS The classification based on DNA methylation is closely related to the clinicopathological characteristics of BCA and determines the prognostic value of each epigenetic subtype. Therefore, our findings provide a basis for the development of DNA methylation subtype-specific therapeutic strategies for human bladder cancer.
Collapse
Affiliation(s)
- Zijian Tian
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730 China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730 China
| | - Xingbo Long
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
| | - Tongxiang Diao
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
| | - Maolin Hu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730 China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730 China
| |
Collapse
|
28
|
Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020; 9:cells9061419. [PMID: 32517366 PMCID: PMC7349410 DOI: 10.3390/cells9061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.
Collapse
|
29
|
Fraune C, Simon R, Hube-Magg C, Makrypidi-Fraune G, Kähler C, Kluth M, Höflmayer D, Büscheck F, Dum D, Luebke AM, Burandt E, Clauditz TS, Wilczak W, Sauter G, Steurer S. MMR deficiency in urothelial carcinoma of the bladder presents with temporal and spatial homogeneity throughout the tumor mass. Urol Oncol 2020; 38:488-495. [PMID: 32067846 DOI: 10.1016/j.urolonc.2019.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Microsatellite instability (MSI), a hypermutator phenotype described in many cancers, has emerged as a predictive biomarker for immune checkpoint inhibitor therapy. Cancer heterogeneity represents a potential obstacle for the analysis of predicitive biomarkers. MSI has been reported in bladder cancer, but data on the possible extent of intratumoral heterogeneity are lacking. METHODS To study MSI heterogeneity in bladder cancer, a tissue microarray (TMA) comprising 598 muscle-invasive urothelial carcinomas of the bladder was utilized to screen for MSI by immunhistochemistry with antibodies for MLH1, PMS2, MSH2, and MSH6. RESULTS In 9 cases suspicious for MSI, MMR status was further evaluated by large section examination and polymerase chain reaction (PCR)-based analysis of microsatellites ("Bethesda panel") resulting in the identification of 5 validated MSI cases from 448 interpretable cancers (prevalence 1.1%). MMR deficiency always involved PMS2 loss, in 3 cases with additional loss or reduction of MLH1 expression. Four cancers were MSI-high and 1 was MSI-low in the PCR analysis. Parallel sequencing revealed an inactivating MLH1 mutation in 1 tumor but no further known pathogenic MMR gene mutations were found. Immunostaining of all available 72 cancer-containing tissue blocks of the 5 confirmed bladder cancer with MSI including prior and subsequent biopsies showed complete homogeneity of the MMR protein defects and the status of the 4 MMR proteins did not markedly change in sequential resections. In all 4 cases with noninvasive precursor lesions, MSI was also detectable. CONCLUSION These data suggest that MSI occurs early in invasive bladder cancer and immunohistochemical MMR analysis on limited biopsy material is sufficient to estimate MMR status of the entire cancer mass.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christian Kähler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Li X, Gheinani AH, Adam RM. A multi-omics approach to understanding the field effect in bladder cancer. Transl Androl Urol 2020; 8:775-778. [PMID: 32038978 DOI: 10.21037/tau.2019.07.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xue Li
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
32
|
Sjödahl G, Eriksson P, Patschan O, Marzouka NAD, Jakobsson L, Bernardo C, Lövgren K, Chebil G, Zwarthoff E, Liedberg F, Höglund M. Molecular changes during progression from nonmuscle invasive to advanced urothelial carcinoma. Int J Cancer 2019; 146:2636-2647. [PMID: 31609466 PMCID: PMC7079000 DOI: 10.1002/ijc.32737] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Molecular changes occurring during invasion and clinical progression of cancer are difficult to study longitudinally in patient‐derived material. A unique feature of urothelial bladder cancer (UBC) is that patients frequently develop multiple nonmuscle invasive tumors, some of which may eventually progress to invade the muscle of the bladder wall. Here, we use a cohort of 73 patients that experienced a total of 357 UBC diagnoses to study the stability or change in detected molecular alterations during cancer progression. The tumors were subtyped by gene expression profiling and analyzed for hotspot mutations in FGFR3, PIK3CA and TERT, the most frequent early driver mutations in this tumor type. TP53 alterations, frequent in advanced UBC, were inferred from p53 staining pattern, and potential genomic alterations were inferred by gene expression patterns at regions harboring frequent copy number alterations. We show that early driver mutations were largely preserved in UBC recurrences. Changes in FGFR3, PIK3CA or TERT mutation status were not linked to changes in molecular subtype and aggressive behavior. Instead, changes into a more aggressive molecular subtype seem to be associated with p53 alterations. We analyze changes in gene expression from primary tumors, to recurrences and progression tumors, and identify two modes of progression: Patients for whom progression is preceded by or coincides with a radical subtype shift, and patients who progress without any systematic molecular changes. For the latter group of patients, progression may be either stochastic or depending on factors already present at primary tumor initiation. What's new? Molecular changes occurring during invasion and clinical progression of cancer are difficult to study longitudinally in patient‐derived material. A unique feature of urothelial bladder cancer is that patients frequently develop multiple nonmuscle invasive tumors, some of which may eventually progress to invade the muscle of the bladder wall. Here, the authors perform multi‐level longitudinal analyses on patients with progression from non‐muscle invasive to advanced disease and describe novel modes of progression related to shifts in molecular profiles. Combined with the theory of field cancerization, these results identify limitations in predicting clinical progression based on molecular data from non‐muscle invasive tumors.
Collapse
Affiliation(s)
- Gottfrid Sjödahl
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden.,Department of Urology, Skåne University Hospital, Skåne, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Oliver Patschan
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden.,Department of Urology, Skåne University Hospital, Skåne, Sweden
| | - Nour-Al-Dain Marzouka
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lovisa Jakobsson
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Carina Bernardo
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Gunilla Chebil
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ellen Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fredrik Liedberg
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden.,Department of Urology, Skåne University Hospital, Skåne, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|