1
|
Zamarreño J, Rodríguez S, Muñoz S, Bueno A, Sacristán M. Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert lysine-164 PCNA ubiquitylation at replication forks. Nucleic Acids Res 2025; 53:gkaf076. [PMID: 39970280 PMCID: PMC11833686 DOI: 10.1093/nar/gkaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is essential for the faithful duplication of eukaryotic genomes. PCNA also orchestrates events necessary to address threats to genomic integrity, such as the DNA damage tolerance (DDT) response, a mechanism by which eukaryotic cells bypass replication-blocking lesions to maintain replisome stability. DDT is regulated by the ubiquitylation of PCNA and the consequent recruitment of specialized polymerases that ensure replication continuity. We have recently described that the deubiquitylases Ubp10 and Ubp12 modulate DDT events by reverting the ubiquitylation of PCNA in Saccharomyces cerevisiae. This study identifies Ubp1 as a novel PCNA deubiquitylase that cooperates with Ubp10 and Ubp12 in the regulation of DDT during DNA replication. Ubp1, previously known as a cytoplasmic protein, also localizes to the nucleus, where it associates with DNA replication forks. Additionally, Ubp1 interacts with and deubiquitylates PCNA. Here, we provide evidence that Ubp1 collaborates with Ubp10 and Ubp12 to facilitate DNA replication by efficiently reverting PCNAK164 ubiquitylation at replication forks under conditions free from exogenous perturbations. Consequently, the deletion of UBP1, UBP10, and UBP12 leads to persistent ubiquitylation of PCNAK164 and a marked delay in S phase progression.
Collapse
Affiliation(s)
- Javier Zamarreño
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sofía Muñoz
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Avelino Bueno
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P Sacristán
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Wang T, Wang Z. Targeting the "Undruggable": Small-Molecule Inhibitors of Proliferating Cell Nuclear Antigen (PCNA) in the Spotlight in Cancer Therapy. J Med Chem 2025. [PMID: 39904718 DOI: 10.1021/acs.jmedchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PCNA plays multiple roles in cancer development, including cell proliferation regulation, DNA repair, replication, and serving as a widely used biomarker and therapeutic target. Despite its significant role in oncology, PCNA has historically been considered "undruggable" due to the absence of known endogenous small molecule modulators and identifiable ligand binding sites. Unlike other protein-protein interfaces, PCNA lacks explicit binding grooves, featuring a relatively small and shallow surface pocket, which hinders the discovery of traditional small molecule targets. Recent breakthroughs have introduced promising PCNA-targeting candidates, with ATX-101 and AOH1996 entering phase I clinical trials for cancer therapy, garnering academic and industry interest. These achievements provide new evidence for PCNA as a drug target. This article provides insight and perspective on the application of small-molecule PCNA inhibitors in cancer treatment, covering PCNA function, its relationship with cancer, structural modification of small molecule inhibitors, and discovery strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| |
Collapse
|
3
|
Kim Y, Ha NY, Kang MS, Ryu E, Yi G, Yoo J, Kang N, Kim BG, Myung K, Kang S. ATAD5-BAZ1B interaction modulates PCNA ubiquitination during DNA repair. Nat Commun 2024; 15:10496. [PMID: 39627214 PMCID: PMC11615311 DOI: 10.1038/s41467-024-55005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Mono-ubiquitinated PCNA (mono-Ub-PCNA) is generated when replication forks encounter obstacles, enabling the bypass of DNA lesions. After resolving stalled forks, Ub-PCNA must be de-ubiquitinated to resume high-fidelity DNA synthesis. ATAD5, in cooperation with the UAF1-USP1 complex, is responsible for this de-ubiquitination. However, the precise regulation of timely Ub-PCNA de-ubiquitination remains unclear. Our research reveals that BAZ1B, a regulatory subunit of the BAZ1B-SMARCA5 chromatin-remodeling complex (also known as the WICH complex), plays a crucial role in fine-tuning the de-ubiquitination process of Ub-PCNA. The BAZ1B binding region of ATAD5 encompasses the UAF1-binding domain of ATAD5. Disruption of the ATAD5-BAZ1B interaction results in premature de-ubiquitination of Ub-PCNA following treatment with hydrogen peroxide. Cells with impaired BAZ1B binding to ATAD5 display increased sensitivity to oxidative stress compared to wild-type cells. These findings suggest that BAZ1B prevents premature Ub-PCNA de-ubiquitination, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Yeongjae Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Geunil Yi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
González-Garrido C, Prado F. Parental histone distribution and location of the replication obstacle at nascent strands control homologous recombination. Cell Rep 2023; 42:112174. [PMID: 36862554 DOI: 10.1016/j.celrep.2023.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The advance and stability of replication forks rely on a tight co-regulation of DNA synthesis and nucleosome assembly. We show that mutants affected in parental histone recycling are impaired in the recombinational repair of the single-stranded DNA gaps generated in response to DNA adducts that hamper replication, which are then filled in by translesion synthesis. These recombination defects are in part due to an excess of parental nucleosomes at the invaded strand that destabilizes the sister chromatid junction formed after strand invasion through a Srs2-dependent mechanism. In addition, we show that a dCas9∗/R-loop is more recombinogenic when the dCas9∗/DNA-RNA hybrid interferes with the lagging than with the leading strand, and this recombination is particularly sensitive to problems in the deposition of parental histones at the strand that contains the hindrance. Therefore, parental histone distribution and location of the replication obstacle at the lagging or leading strand regulate homologous recombination.
Collapse
Affiliation(s)
- Cristina González-Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
5
|
Chang SC, Gopal P, Lim S, Wei X, Chandramohan A, Mangadu R, Smith J, Ng S, Gindy M, Phan U, Henry B, Partridge AW. Targeted degradation of PCNA outperforms stoichiometric inhibition to result in programed cell death. Cell Chem Biol 2022; 29:1601-1615.e7. [PMID: 36318925 DOI: 10.1016/j.chembiol.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/16/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Biodegraders are targeted protein degradation constructs composed of mini-proteins/peptides linked to E3 ligase receptors. We gained deeper insights into their utility by studying Con1-SPOP, a biodegrader against proliferating cell nuclear antigen (PCNA), an oncology target. Con1-SPOP proved pharmacologically superior to its stoichiometric (non-degrading) inhibitor equivalent (Con1-SPOPmut) as it had more potent anti-proliferative effects and uniquely induced DNA damage, cell apoptosis, and necrosis. Proteomics showed that PCNA degradation gave impaired mitotic division and mitochondria dysfunction, effects not seen with the stoichiometric inhibitor. We further showed that doxycycline-induced Con1-SPOP achieved complete tumor growth inhibition in vivo. Intracellular delivery of mRNA encoding Con1-SPOP via lipid nanoparticles (LNPs) depleted endogenous PCNA within hours of application with nanomolar potency. Our results demonstrate the utility of biodegraders as biological tools and highlight target degradation as a more efficacious approach versus stoichiometric inhibition. Once in vivo delivery is optimized, biodegraders may be leveraged as an exciting therapeutic modality.
Collapse
Affiliation(s)
| | - Pooja Gopal
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Shuhui Lim
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Xiaona Wei
- Scientific Informatics, MSD, Singapore 119077, Singapore
| | | | - Ruban Mangadu
- Discovery Oncology, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jeffrey Smith
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Simon Ng
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Marian Gindy
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Uyen Phan
- Discovery Oncology, Merck & Co., Inc., South San Francisco, CA, USA
| | - Brian Henry
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | | |
Collapse
|
6
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
7
|
Wegmann S, Meister C, Renz C, Yakoub G, Wollscheid HP, Takahashi DT, Mikicic I, Beli P, Ulrich HD. Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 2022; 82:1589-1602.e5. [PMID: 35263628 PMCID: PMC9098123 DOI: 10.1016/j.molcel.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Collapse
Affiliation(s)
- Sabrina Wegmann
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - George Yakoub
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Diane T Takahashi
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 10413 Illkirch, Strasbourg, France
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Masłowska KH, Villafañez F, Laureti L, Iwai S, Pagès V. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2074-2080. [PMID: 35104879 PMCID: PMC8887424 DOI: 10.1093/nar/gkac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The DNA damage response (DDR) preserves the genetic integrity of the cell by sensing and repairing damages after a genotoxic stress. Translesion Synthesis (TLS), an error-prone DNA damage tolerance pathway, is controlled by PCNA ubiquitination. In this work, we raise the question whether TLS is controlled locally or globally. Using a recently developed method that allows to follow the bypass of a single lesion inserted into the yeast genome, we show that (i) TLS is controlled locally at each individual lesion by PCNA ubiquitination, (ii) a single lesion is enough to induce PCNA ubiquitination and (iii) PCNA ubiquitination is imperative for TLS to occur. More importantly, we show that the activation of the DDR that follows a genotoxic stress does not increase TLS at individual lesions. We conclude that unlike the SOS response in bacteria, the eukaryotic DDR does not promote TLS and mutagenesis.
Collapse
Affiliation(s)
- Katarzyna H Masłowska
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille 13009, France
| | - Florencia Villafañez
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille 13009, France
| | - Luisa Laureti
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille 13009, France
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Vincent Pagès
- To whom correspondence should be addressed. Tel: +33 4 86 977 384;
| |
Collapse
|
9
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|