1
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
McHenry MW, Shi P, Camara CM, Cohen DT, Rettenmaier TJ, Adhikary U, Gygi MA, Yang K, Gygi SP, Wales TE, Engen JR, Wells JA, Walensky LD. Covalent inhibition of pro-apoptotic BAX. Nat Chem Biol 2024; 20:1022-1032. [PMID: 38233584 PMCID: PMC11252247 DOI: 10.1038/s41589-023-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.
Collapse
Affiliation(s)
- Matthew W McHenry
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peiwen Shi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina M Camara
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Micah A Gygi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Faria RL, Prado FM, Junqueira HC, Fabiano KC, Diniz LR, Baptista MS, Di Mascio P, Miyamoto S. Plasmalogen oxidation induces the generation of excited molecules and electrophilic lipid species. PNAS NEXUS 2024; 3:pgae216. [PMID: 38894877 PMCID: PMC11184980 DOI: 10.1093/pnasnexus/pgae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.
Collapse
Affiliation(s)
- Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Helena C Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Karen C Fabiano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
4
|
Zhang Z, Hou L, Liu D, Luan S, Huang M, Zhao L. Directly targeting BAX for drug discovery: Therapeutic opportunities and challenges. Acta Pharm Sin B 2024; 14:2378-2401. [PMID: 38828138 PMCID: PMC11143528 DOI: 10.1016/j.apsb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghui Hou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenglin Luan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518000, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
6
|
2-Hexadecenal Regulates ROS Production and Induces Apoptosis in Polymorphonuclear Leucocytes. Cell Biochem Biophys 2023; 81:77-86. [PMID: 36418741 DOI: 10.1007/s12013-022-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022]
Abstract
2-Hexadecenal (2-HD)-a biologically active long-chain fatty aldehyde formed in organism enzymatically or nonenzymatically in the reaction of free-radical destruction of sphingolipids under the action of hypochlorous acid, producing by myeloperoxidase. This research aimed to study 2-HD effects on polymorphonuclear leukocytes' (PMNLs) functions. It has been shown that at submicromolar concentrations, 2-HD causes an elevation in ROS production by PMNLs. It has been found that such effect is associated with signal transduction pathways modification and expressed in elevation of NADPH oxidase, MPO, and JNK-MAPK contributions to this process. At higher concentrations, 2-HD induces apoptosis, which correlates with a significant increase in free Ca2+ in the cytoplasm, a decrease in ROS production, and a decline in mitochondrial potential. Both of these processes are accompanied by cytoskeleton reorganization.
Collapse
|
7
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
8
|
Raya YSA, Hershkovitz-Pollak Y, Ionescu R, Haick H. Non-Invasive Staging of In Vitro Mice Embryos by Means of Volatolomics. ACS Sens 2022; 7:2006-2011. [PMID: 35709541 DOI: 10.1021/acssensors.2c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current methods for embryo selection are limited. This study assessed a novel method for the prediction of embryo developmental potential based on the analysis of volatile organic compounds (VOCs) emitted by embryo samples. The study included mice embryos monitored during the pre-implantation period. Four developmental stages of the embryos were tested, covering the period from 1 to 4 days after fecundation. In each stage, the VOCs released by the embryos were collected and examined by employing two different volatolomic techniques, gas-chromatography coupled to mass-spectrometry (GC-MS) and a nanoarray of chemical gas sensors. The GC-MS study revealed that the VOC patterns emanating from embryo samples had statistically different values at different stages of embryo development. The sensor nanoarray was capable of classifying the developmental stages of the embryos. The proposed volatolomics analysis approach for embryos presents a promising potential for predicting their developmental stage. In combination with conventional morphokinetic parameters, it could be effective as a predictive model for detecting metabolic shifts that affect embryo quality before preimplantation.
Collapse
Affiliation(s)
- Yasmin Shibli Abu Raya
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yael Hershkovitz-Pollak
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Gelles JD, Mohammed JN, Chen Y, Sebastian TM, Chipuk JE. A kinetic fluorescence polarization ligand assay for monitoring BAX early activation. CELL REPORTS METHODS 2022; 2:100174. [PMID: 35419554 PMCID: PMC9004659 DOI: 10.1016/j.crmeth.2022.100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022]
Abstract
Developmental, homeostatic, and pharmacological pro-apoptotic signals converge by activating the BCL-2 family member BAX. Studies investigating molecular regulation of BAX are commonly limited to methodologies measuring endpoint phenotypes and do not assess activation of monomeric BAX. Here, we present FLAMBE, a fluorescence polarization ligand assay for monitoring BAX early activation, that measures activation-induced release of a peptide probe in real time. Using complementary parallel and tandem biochemical techniques, we validate, corroborate, and apply FLAMBE to a contemporary repertoire of BAX modulators, characterizing their contributions within the early steps of BAX activation. Additionally, we use FLAMBE to reveal that historically "dead" BAX mutants remain responsive to activation as quasi-functional monomers. We also identify data metrics for comparative analyses and demonstrate that FLAMBE data align with downstream functional observations. Collectively, FLAMBE advances our understanding of BAX activation and fills a methodological void for studying BAX with broad applications in cell biology and therapeutic development. MOTIVATION In vitro BAX activation studies are invaluable platforms for studying cellular and pharmacological modulators of apoptosis. The gold standard for studying BAX function relies on membrane permeabilization assays, which assess the pore-forming activity of oligomeric BAX. However, there are currently no rapid or kinetic assays to interrogate real-time activation of monomeric BAX in solution, thereby limiting any molecular insights that occur upstream of mitochondrial permeabilization. Furthermore, available methods to observe the activation of monomeric BAX suffer from low throughput and static observations. To address this methodological gap, we developed FLAMBE, a kinetic fluorescence polarization-based assay to measure monomeric BAX activation in solution via concomitant displacement of a labeled peptide. This approach maintains the benefits of rapid kinetic data generation in a low-cost microplate format without requiring specialized equipment or large quantities of protein. FLAMBE compliments available experimental strategies and expands the accessibility of investigators to monitor early steps within the BAX activation continuum.
Collapse
Affiliation(s)
- Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Tara M. Sebastian
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
10
|
Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 2022; 43:206-220. [PMID: 34848097 PMCID: PMC8840970 DOI: 10.1016/j.tips.2021.11.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
Bcl-2-associated X protein (BAX) is a critical executioner of mitochondrial regulated cell death through its lethal activity of permeabilizing the mitochondrial outer membrane (MOM). While the physiological function of BAX ensures tissue homeostasis, dysregulation of BAX leads to aberrant cell death. Despite BAX being a promising therapeutic target for human diseases, historically the development of drugs has focused on antiapoptotic BCL-2 proteins, due to challenges in elucidating the mechanism of BAX activation and identifying druggable surfaces of BAX. Here, we discuss recent studies that have provided structure-function insights and identified regulatory surfaces that control BAX activation. Moreover, we emphasize the development of small molecule orthosteric, allosteric, and oligomerization modulators that provide novel opportunities for biological investigation and progress towards drugging BAX.
Collapse
|
11
|
Çoku J, Booth DM, Skoda J, Pedrotty MC, Vogel J, Liu K, Vu A, Carpenter EL, Ye JC, Chen MA, Dunbar P, Scadden E, Yun TD, Nakamaru-Ogiso E, Area-Gomez E, Li Y, Goldsmith KC, Reynolds CP, Hajnoczky G, Hogarty MD. Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance. EMBO J 2022; 41:e108272. [PMID: 35211994 PMCID: PMC9016347 DOI: 10.15252/embj.2021108272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug‐resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient‐matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER–mitochondria‐associated membranes (MAMs; ER–mitochondria contacts, ERMCs) in therapy‐resistant cells, and genetically or biochemically reducing MAMs in therapy‐sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER–mitochondria‐associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.
Collapse
Affiliation(s)
- Jorida Çoku
- Cancer Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Booth
- MitoCare Center, Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Madison C Pedrotty
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Vogel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kangning Liu
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annette Vu
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erica L Carpenter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie C Ye
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle A Chen
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Dunbar
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Scadden
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yimei Li
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - C Patrick Reynolds
- TTUHSC Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael D Hogarty
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lin H. Protein cysteine palmitoylation in immunity and inflammation. FEBS J 2021; 288:7043-7059. [PMID: 33506611 PMCID: PMC8872633 DOI: 10.1111/febs.15728] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 07/24/2023]
Abstract
Protein cysteine palmitoylation, or S-palmitoylation, has been known for about 40 years, and thousands of proteins in humans are known to be modified. Because of the large number of proteins modified, the importance and physiological functions of S-palmitoylation are enormous. However, most of the known physiological functions of S-palmitoylation can be broadly classified into two categories, neurological or immunological. This review provides a summary on the function of S-palmitoylation from the immunological perspective. Several important immune signaling pathways are discussed, including STING, NOD1/2, JAK-STAT in cytokine signaling, T-cell receptor signaling, chemotactic GPCR signaling, apoptosis, phagocytosis, and endothelial and epithelial integrity. This review is not meant to be comprehensive, but rather focuses on specific examples to highlight the versatility of palmitoylation in regulating immune signaling, as well as the potential and challenges of targeting palmitoylation to treat immune diseases.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Bloch NB, Wales TE, Prew MS, Levy HR, Engen JR, Walensky LD. The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein core. Nat Commun 2021; 12:4932. [PMID: 34389733 PMCID: PMC8363748 DOI: 10.1038/s41467-021-25200-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
BAX is a pro-apoptotic member of the BCL-2 family, which regulates the balance between cellular life and death. During homeostasis, BAX predominantly resides in the cytosol as a latent monomer but, in response to stress, transforms into an oligomeric protein that permeabilizes the mitochondria, leading to apoptosis. Because renegade BAX activation poses a grave risk to the cell, the architecture of BAX must ensure monomeric stability yet enable conformational change upon stress signaling. The specific structural features that afford both stability and dynamic flexibility remain ill-defined and represent a critical control point of BAX regulation. We identify a nexus of interactions involving four residues of the BAX core α5 helix that are individually essential to maintaining the structure and latency of monomeric BAX and are collectively required for dimeric assembly. The dual yet distinct roles of these residues reveals the intricacy of BAX conformational regulation and opportunities for therapeutic modulation.
Collapse
Affiliation(s)
- Noah B Bloch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Michelle S Prew
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah R Levy
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
14
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
15
|
A redox switch regulates the structure and function of anti-apoptotic BFL-1. Nat Struct Mol Biol 2020; 27:781-789. [PMID: 32661419 PMCID: PMC7544158 DOI: 10.1038/s41594-020-0458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/03/2020] [Indexed: 01/27/2023]
Abstract
Apoptosis is regulated by BCL-2 family proteins. Anti-apoptotic members suppress cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Cancer cells hijack this mechanism by overexpressing anti-apoptotic BCL-2 family proteins to enforce cellular immortality. We previously identified and harnessed a unique cysteine (C55) in the groove of anti-apoptotic BFL-1 to selectively neutralize its oncogenic activity using a covalent stapled-peptide inhibitor. Here, we find that disulfide bonding between a native cysteine pair at the groove (C55) and C-terminal α9 helix (C175) of BFL-1 operates as a redox switch to control the accessibility of the anti-apoptotic pocket. Reducing the C55-C175 disulfide triggers α9 release, which promotes mitochondrial translocation, groove exposure for BH3 interaction and inhibition of mitochondrial permeabilization by pro-apoptotic BAX. C55-C175 disulfide formation in an oxidative cellular environment abrogates the ability of BFL-1 to bind BH3 domains. Thus, we identify a mechanism of conformational control of BFL-1 by an intramolecular redox switch.
Collapse
|