1
|
Hao W, Yu TT, Li W, Wang GG, Hu HX, Zhou PP. Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:559-568. [PMID: 39467719 PMCID: PMC11519717 DOI: 10.4196/kjpp.2024.28.6.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 10/30/2024]
Abstract
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Hao
- Department of Functional Experimental Training Center, Wu Hu 241002, China
| | - Ting-ting Yu
- Department of Functional Experimental Training Center, Wu Hu 241002, China
| | - Wei Li
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| | - Guo-guang Wang
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| | - Hui-xian Hu
- Department of Medical Imageology, Wannan Medical College, Wu Hu 241002, China
| | - Ping-ping Zhou
- Department of Physiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| |
Collapse
|
2
|
Bernardino R, Carvalho AS, Hall MJ, Alves L, Leão R, Sayyid R, Pereira H, Beck HC, Pinheiro LC, Henrique R, Fleshner N, Matthiesen R. Profiling of urinary extracellular vesicle protein signatures from patients with cribriform and intraductal prostate carcinoma in a cross-sectional study. Sci Rep 2024; 14:25065. [PMID: 39443544 PMCID: PMC11500006 DOI: 10.1038/s41598-024-75272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Prognostic tests and treatment approaches for optimized clinical care of prostatic neoplasms are an unmet need. Prostate cancer (PCa) and derived extracellular vesicles (EVs) proteome changes occur during initiation and progression of the disease. PCa tissue proteome has been previously characterized, but screening of tissue samples constitutes an invasive procedure. Consequently, we focused this study on liquid biopsies, such as urine samples. More specifically, urinary small extracellular vesicle and particles proteome profiles of 100 subjects were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). We identified 171 proteins that were differentially expressed between intraductal prostate cancer/cribriform (IDC/Crib) and non-IDC/non-Crib after correction for multiple testing. However, the strong correlation between IDC/Crib and Gleason Grade complicates the disentanglement of the underlying factors driving this association. Nevertheless, even after accounting for multiple testing and adjusting for ISUP (International Society of Urological Pathology) grading, two proteins continued to exhibit significant differential expression between IDC/Crib and non-IDC/non-Crib. Functional enrichment analysis based on cancer hallmark proteins disclosed a clear pattern of androgen response down-regulation in urinary EVs from IDC/Crib compared to non-IDC/non-Crib. Interestingly, proteome differences between IDC and cribriform were more subtle, suggesting high proteome heterogeneity. Overall, the urinary EV proteome reflected partly the prostate pathology.
Collapse
Affiliation(s)
- Rui Bernardino
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada.
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Michael J Hall
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Alves
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | - Rashid Sayyid
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hermínia Pereira
- Department of Pathology, Centro Hospitalar E Universitário Lisboa Central, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, 5000, Odense, Denmark
| | - Luís Campos Pinheiro
- Department of Urology, Centro Hospitalar e Universitário Lisboa Central, Lisbon, Portugal
| | - Rui Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group - Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Neil Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Zhang X, Yang YX, Lu JJ, Hou DY, Abudukeyoumu A, Zhang HW, Li MQ, Xie F. Active Heme Metabolism Suppresses Macrophage Phagocytosis via the TLR4/Type I IFN Signaling/CD36 in Uterine Endometrial Cancer. Am J Reprod Immunol 2024; 92:e13916. [PMID: 39166450 DOI: 10.1111/aji.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Uterine endometrial cancer (UEC) is a common gynecological estrogen-dependent carcinoma, usually accompanied by intermenstrual bleeding. Active heme metabolism frequently plays an increasingly important role in many diseases, especially in cancers. Tumor-associated macrophages (TAMs) are the major population in the immune microenvironment of UEC. However, the roles of heme metabolisms in the crosstalk between UEC cells (UECCs) and macrophages are unclear. MATERIALS AND METHODS In our study, by using TCGA database analysis, integration analysis of the protein-protein interaction (PPI) network and sample RNA transcriptome sequencing were done. The expression level of both heme-associated molecules and iron metabolism-related molecules were measured by quantitative real-time polymerase chain reaction. Heme level detection was done through dehydrohorseradish peroxidase assay. In addition to immunohistochemistry, phagocytosis assay of macrophages, immunofluorescence staining, intracellular ferrous iron staining, as well as enzyme-linked immune sorbent assay were performed. RESULTS In the study, we verified that heme accumulation in UECCs is apparently higher than in endometrial epithelium cells. Low expression of succinate dehydrogenase B under the regulation of estrogen contributes to over-production of succinate and heme accumulation in UECC. More importantly, excessive heme in UECCs impaired macrophage phagocytosis by regulation of CD36. Mechanistically, this process is dependent on toll-like receptor (TLR4)/type I interferons alpha (IFN Iα) regulatory axis in macrophage. CONCLUSION Collectively, these findings elucidate that active heme metabolism of UECCs directly decreases phagocytosis by controlling the secretion of TLR4-mediated IFN Iα and the expression of CD36, and further contributing to the immune escape of UEC.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi-Xing Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ding-Yu Hou
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Hong-Wei Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Adapa SR, Hunter GA, Amin NE, Marinescu C, Borsky A, Sagatys EM, Sebti SM, Reuther GW, Ferreira GC, Jiang RH. Porphyrin overdrive rewires cancer cell metabolism. Life Sci Alliance 2024; 7:e202302547. [PMID: 38649187 PMCID: PMC11035860 DOI: 10.26508/lsa.202302547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.
Collapse
Affiliation(s)
- Swamy R Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gregory A Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narmin E Amin
- https://ror.org/01xf75524 Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher Marinescu
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andrew Borsky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elizabeth M Sagatys
- https://ror.org/01xf75524 Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Said M Sebti
- Department of Pharmacology & Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary W Reuther
- https://ror.org/01xf75524 Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Rays Hy Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Soares J, Eiras M, Ferreira D, Santos DAR, Relvas-Santos M, Santos B, Gonçalves M, Ferreira E, Vieira R, Afonso LP, Santos LL, Dinis-Ribeiro M, Lima L, Ferreira JA. Stool Glycoproteomics Signatures of Pre-Cancerous Lesions and Colorectal Cancer. Int J Mol Sci 2024; 25:3722. [PMID: 38612533 PMCID: PMC11012158 DOI: 10.3390/ijms25073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Collapse
Affiliation(s)
- Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Eiras
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela A. R. Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Luís Pedro Afonso
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- FF-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
7
|
Richl T, Kuper J, Kisker C. G-quadruplex-mediated genomic instability drives SNVs in cancer. Nucleic Acids Res 2024; 52:2198-2211. [PMID: 38407356 PMCID: PMC10954472 DOI: 10.1093/nar/gkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
G-quadruplex (G4s) DNA structures have been implicated in inducing genomic instability and contributing to cancer development. However, the relationship between G4s and cancer-related single nucleotide variants (cSNVs) in clinical settings remains unclear. In this large-scale study, we integrated experimentally validated G4s with genomic cSNVs from 13480 cancer patients to investigate the spatial association of G4s with the cellular cSNV landscape. Our findings demonstrate an increase in local genomic instability with increasing local G4 content in cancer patients, suggesting a potential role for G4s in driving cSNVs. Notably, we observed distinct spatial patterns of cSNVs and common single nucleotide variants (dbSNVs) in relation to G4s, implying different mechanisms for their generation and accumulation. We further demonstrate large, cancer-specific differences in the relationship of G4s and cSNVs, which could have important implications for a new class of G4-stabilizing cancer therapeutics. Moreover, we show that high G4-content can serve as a prognostic marker for local cSNV density and patient survival rates. Our findings underscore the importance of considering G4s in cancer research and highlight the need for further investigation into the underlying molecular mechanisms of G4-mediated genomic instability, especially in the context of cancer.
Collapse
Affiliation(s)
- Tilmann Richl
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| |
Collapse
|
8
|
Callahan RC, Bhagavatula G, Curry J, Staley AW, Schaefer REM, Minhajuddin F, Zhou L, Neuhart R, Atif SM, Orlicky DJ, Cartwright IM, Gerich M, Theiss AL, Hall CHT, Colgan SP, Onyiah JC. Epithelial heme oxygenase-1 enhances colonic tumorigenesis by inhibiting ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583112. [PMID: 38496569 PMCID: PMC10942430 DOI: 10.1101/2024.03.06.583112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( Hmox1 ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis. Ferroptosis culminates in excessive lipid peroxidation that is constrained by the antioxidative glutathione pathway. We observed increased mucosal markers of ferroptosis and glutathione metabolism in the setting of murine and human colitis, as well as murine colonic neoplasia. We obtained similar results in murine and human colonic epithelial organoids exposed to heme and the ferroptosis activator erastin, especially induction of Hmox1 . RNA sequencing of colonic organoids from mice with deletion of intestinal epithelial Hmox1 (Hmox1 ΔIEC ) revealed increased ferroptosis and activated glutathione metabolism after heme exposure. In a colitis-associated cancer model we observed significantly fewer and smaller tumors in Hmox1 ΔIEC mice compared to littermate controls. Transcriptional profiling of Hmox1 ΔIEC tumors and tumor organoids revealed increased ferroptosis and oxidative stress markers in tumor epithelial cells. In total, our findings reveal ferroptosis as an important colitis-associated cancer signature pathway, and Hmox1 as a key regulator in the tumor microenvironment.
Collapse
|
9
|
Gemmill DL, Nelson CR, Badmalia MD, Pereira HS, Kerr L, Wolfinger MT, Patel TR. The 3' terminal region of Zika virus RNA contains a conserved G-quadruplex and is unfolded by human DDX17. Biochem Cell Biol 2024; 102:96-105. [PMID: 37774422 DOI: 10.1139/bcb-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
Zika virus (ZIKV) infection remains a worldwide concern, and currently no effective treatments or vaccines are available. Novel therapeutics are an avenue of interest that could probe viral RNA-human protein communication to stop viral replication. One specific RNA structure, G-quadruplexes (G4s), possess various roles in viruses and all domains of life, including transcription and translation regulation and genome stability, and serves as nucleation points for RNA liquid-liquid phase separation. Previous G4 studies on ZIKV using a quadruplex forming G-rich sequences Mapper located a potential G-quadruplex sequence in the 3' terminal region (TR) and was validated structurally using a 25-mer oligo. It is currently unknown if this structure is conserved and maintained in a large ZIKV RNA transcript and its specific roles in viral replication. Using bioinformatic analysis and biochemical assays, we demonstrate that the ZIKV 3' TR G4 is conserved across all ZIKV isolates and maintains its structure in a 3' TR full-length transcript. We further established the G4 formation using pyridostatin and the BG4 G4-recognizing antibody binding assays. Our study also demonstrates that the human DEAD-box helicases, DDX3X132-607 and DDX17135-555, bind to the 3' TR and that DDX17135-555 unfolds the G4 present in the 3' TR. These findings provide a path forward in potential therapeutic targeting of DDX3X or DDX17's binding to the 3' TR G4 region for novel treatments against ZIKV.
Collapse
Affiliation(s)
- Dannielle L Gemmill
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Corey R Nelson
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Maulik D Badmalia
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Higor S Pereira
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liam Kerr
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Michael T Wolfinger
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währinger Strasse 29, 1090, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
- RNA Forecast e.U., 1140 Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
10
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Seika P, Janikova M, Asokan S, Janovicova L, Csizmadia E, O’Connell M, Robson SC, Glickman J, Wegiel B. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol 2023; 14:1184105. [PMID: 37342339 PMCID: PMC10277564 DOI: 10.3389/fimmu.2023.1184105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Gastrointestinal inflammation and bleeding are commonly induced by cancer radiotherapy and chemotherapy but mechanisms are unclear. We demonstrated an increased number of infiltrating heme oxygenase-1 positive (HO-1+) macrophages (Mø, CD68+) and the levels of hemopexin (Hx) in human colonic biopsies from patients treated with radiation or chemoradiation versus non-irradiated controls or in the ischemic intestine compared to matched normal tissues. The presence of rectal bleeding in these patients was also correlated with higher HO-1+ cell infiltration. To functionally assess the role of free heme released in the gut, we employed myeloid-specific HO-1 knockout (LysM-Cre : Hmox1flfl), hemopexin knockout (Hx-/-) and control mice. Using LysM-Cre : Hmox1flfl conditional knockout (KO) mice, we showed that a deficiency of HO-1 in myeloid cells led to high levels of DNA damage and proliferation in colonic epithelial cells in response to phenylhydrazine (PHZ)-induced hemolysis. We found higher levels of free heme in plasma, epithelial DNA damage, inflammation, and low epithelial cell proliferation in Hx-/- mice after PHZ treatment compared to wild-type mice. Colonic damage was partially attenuated by recombinant Hx administration. Deficiency in Hx or Hmox1 did not alter the response to doxorubicin. Interestingly, the lack of Hx augmented abdominal radiation-mediated hemolysis and DNA damage in the colon. Mechanistically, we found an altered growth of human colonic epithelial cells (HCoEpiC) treated with heme, corresponding to an increase in Hmox1 mRNA levels and heme:G-quadruplex complexes-regulated genes such as c-MYC, CCNF, and HDAC6. Heme-treated HCoEpiC cells exhibited growth advantage in the absence or presence of doxorubicin, in contrast to poor survival of heme-stimulated RAW247.6 Mø. In summary, our data indicate that accumulation of heme in the colon following hemolysis and/or exposure to genotoxic stress amplifies DNA damage, abnormal proliferation of epithelial cells, and inflammation as a potential etiology for gastrointestinal syndrome (GIS).
Collapse
Affiliation(s)
- Philippa Seika
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sahana Asokan
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mckenzie O’Connell
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
13
|
Heng Z, Zhao C, Gao Y. Comparison of urine proteomes from tumor-bearing mice with those from tumor-resected mice. PeerJ 2023; 11:e14737. [PMID: 36718454 PMCID: PMC9884041 DOI: 10.7717/peerj.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Objective This study aimed to address on the most important concern of surgeons-whether to completely resect tumor. Urine can indicate early changes associated with physiological or pathophysiological processes. Based on these ideas, we conducted experiments to explore changes in the urine proteome between tumor-bearing mice and tumor-resected mice. Method The tumor-bearing mouse model was established with MC38 mouse colon cancer cells, and the mice were divided into the control group, tumor-resected group, and tumor-bearing group. Urine was collected 7 and 30 days after tumor resection. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to identify the urine proteome, which was analyzed for differentially expressed proteins and functional annotation. Results (1) Seven days after tumor resection, 20 differentially expressed proteins distinguished the tumor-resected group and the tumor-bearing group. The identified biological processes included circadian rhythm, Notch signaling pathway, leukocyte cell-cell adhesion, and heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules. (2) Thirty days after tumor resection, 33 differentially expressed proteins distinguished the tumor-resected group and the tumor-bearing group. The identified biological processes included cell adhesion; complement activation, the alternative pathway; the immune system process; and angiogenesis. (3) The difference in the urine proteome between the tumor-resected group and the healthy control group was smaller 30 days after tumor resection. Conclusion Changes in the urinary proteome can reflect the complete resection of MC38 tumors.
Collapse
Affiliation(s)
- Ziqi Heng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Chenyang Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
14
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
15
|
Xu J, Zhu K, Wang Y, Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 2023; 149:483-501. [PMID: 36310300 DOI: 10.1007/s00432-022-04447-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop. MATERIALS AND METHODS Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression. CONCLUSION This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.
Collapse
Affiliation(s)
- Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | | | - Yali Wang
- Jiangsu Huai'an Maternity and Children Hospital, Huai'an, 223001, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China. .,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Liu J, Lane S, Lall R, Russo M, Farrell L, Debreli Coskun M, Curtin C, Araujo-Gutierrez R, Scherrer-Crosbie M, Trachtenberg BH, Kim J, Tolosano E, Ghigo A, Gerszten RE, Asnani A. Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice. SCIENCE ADVANCES 2022; 8:eadc9245. [PMID: 36563141 PMCID: PMC9788780 DOI: 10.1126/sciadv.adc9245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Lane
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rahul Lall
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melis Debreli Coskun
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Casie Curtin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Raquel Araujo-Gutierrez
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry H. Trachtenberg
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Canesin G, Feldbrügge L, Wei G, Janovicova L, Janikova M, Csizmadia E, Ariffin J, Hedblom A, Herbert ZT, Robson SC, Celec P, Swanson KD, Nasser I, Popov YV, Wegiel B. Heme oxygenase-1 mitigates liver injury and fibrosis via modulation of LNX1/Notch1 pathway in myeloid cells. iScience 2022; 25:104983. [PMID: 36093061 PMCID: PMC9450142 DOI: 10.1016/j.isci.2022.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023] Open
Abstract
Activation of resident macrophages (Mϕ) and hepatic stellate cells is a key event in chronic liver injury. Mice with heme oxygenase-1 (HO-1; Hmox1)-deficient Mϕ (LysM-Cre:Hmox1 flfl ) exhibit increased inflammation, periportal ductular reaction, and liver fibrosis following bile duct ligation (BDL)-induced liver injury and increased pericellular fibrosis in NASH model. RiboTag-based RNA-sequencing profiling of hepatic HO-1-deficient Mϕ revealed dysregulation of multiple genes involved in lipid and amino acid metabolism, regulation of oxidative stress, and extracellular matrix turnover. Among these genes, ligand of numb-protein X1 (LNX1) expression is strongly suppressed in HO-1-deficient Mϕ. Importantly, HO-1 and LNX1 were expressed by hepatic Mϕ in human biliary and nonbiliary end-stage cirrhosis. We found that Notch1 expression, a downstream target of LNX1, was increased in LysM-Cre:Hmox1 flfl mice. In HO-1-deficient Mϕ treated with heme, transient overexpression of LNX1 drives M2-like Mϕ polarization. In summary, we identified LNX1/Notch1 pathway as a downstream target of HO-1 in liver fibrosis.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linda Feldbrügge
- Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, 13353 Berlin, Germany,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guangyan Wei
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juliana Ariffin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andreas Hedblom
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zachary T. Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Celec
- Institute of Molecular Biomedicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Kenneth D. Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yury V. Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Corresponding author
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Corresponding author
| |
Collapse
|
18
|
Zhang L, Lu Y, Ma X, Xing Y, Sun J, Jia Y. The potential interplay between G-quadruplex and p53: their roles in regulation of ferroptosis in cancer. Front Mol Biosci 2022; 9:965924. [PMID: 35959461 PMCID: PMC9358135 DOI: 10.3389/fmolb.2022.965924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a novel form of regulated cell death trigged by various biological processes, and p53 is involved in different ferroptosis regulations and functions as a crucial regulator. Both DNA and RNA can fold into G-quadruplex in GC-rich regions and increasing shreds of evidence demonstrate that G-quadruplexes have been associated with some important cellular events. Investigation of G-quadruplexes is thus vital to revealing their biological functions. Specific G-quadruplexes are investigated to discover new effective anticancer drugs. Multiple modulations have been discovered between the secondary structure G-quadruplex and p53, probably further influencing the ferroptosis in cancer. G-quadruplex binds to ferric iron-related structures directly and may affect the p53 pathways as well as ferroptosis in cancer. In addition, G-quadruplex also interacts with p53 indirectly, including iron-sulfur cluster metabolism, telomere homeostasis, lipid peroxidation, and glycolysis. In this review, we summarized the latent interplay between G-quadruplex and p53 which focused mainly on ferroptosis in cancer to provide the potential understanding and encourage future studies.
Collapse
Affiliation(s)
- Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jinbo Sun
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| |
Collapse
|
19
|
Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, Zhang C, Torres LK, Bajrami S, Zhang T, Zhang G, Xiang JZ, Hissong EM, Chen YT, Li Y, Du YCN. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett 2022; 546:215831. [PMID: 35868533 DOI: 10.1016/j.canlet.2022.215831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Low-dose carbon monoxide (CO) is under investigation in clinical trials to treat non-cancerous diseases and has excellent safety profiles. Due to the early detection and cancer awareness, increasing cancer patients are diagnosed at early stages and potentially curative surgical resection can be done. However, many patients ultimately experience recurrence. Here, we evaluate the therapeutic effect of CO on cancer metastatic progression. We show that 250 ppm CO inhibits migration of multiple types of cancer cell lines including breast, pancreatic, colon, prostate, liver, and lung cancer and reduces the ability to adhere to fibronectin. We demonstrate that in mouse models, 250 ppm inhaled CO inhibits lung metastasis of breast cancer and liver metastasis of pancreatic cancer. Moreover, low-dose CO suppresses recurrence and increases survival after surgical removal of primary pancreatic cancer in mice. Mechanistically, low-dose CO blocks transcription of heme importers, leading to diminished intracellular heme levels and a heme-regulated enzyme, cytochrome P4501B1 (CYP1B1). Either supplementing heme or overexpressing CYP1B1 reverses the anti-migration effect of low-dose CO. Taken together, low-dose CO therapy inhibits cell migration, reduces adhesion to fibronectin, prevents disseminated cancer cells from expanding into gross metastases, and improves survival in pre-clinical mouse models of metastasis.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anthony Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cheryl Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lisa K Torres
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Sandi Bajrami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Erika M Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Hecht JL, Janikova M, Choudhury R, Liu F, Canesin G, Janovicova L, Csizmadia E, Jorgensen EM, Esselen KM, Celec P, Swanson KD, Wegiel B. Labile Heme and Heme Oxygenase-1 Maintain Tumor-Permissive Niche for Endometriosis-Associated Ovarian Cancer. Cancers (Basel) 2022; 14:2242. [PMID: 35565370 PMCID: PMC9105072 DOI: 10.3390/cancers14092242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Endometriosis, a painful gynecological condition accompanied by inflammation in women of reproductive age, is associated with an increased risk of ovarian cancer. We evaluated the role of peritoneal heme accumulated during menstrual cycling, as well as peritoneal and lesional macrophage phenotype, in promoting an oncogenic microenvironment. We quantified the heme-degrading enzyme, heme oxygenase-1 (HO-1, encoded by Hmox1) in normal peritoneum, endometriotic lesions and endometriosis-associated ovarian cancer (EAOC) of clear cell type (OCCC). HO-1 was expressed primarily in macrophages and increased in endometrioma and OCCC tissues relative to endometriosis and controls. Further, we compared cytokine expression profiles in peritoneal macrophages (PM) and peripheral blood mononuclear cells (PBMC) in women with endometriosis versus controls as a measure of a tumor-promoting environment in the peritoneum. We found elevated levels of HO-1 along with IL-10 and the pro-inflammatory cytokines (IL-1β, IL-16, IFNγ) in PM but not in PBMC from endometriosis patients. Using LysM-Cre:Hmox1flfl conditional knockout mice, we show that a deficiency of HO-1 in macrophages led to the suppression of growth of ID8 ovarian tumors implanted into the peritoneum. The restriction of ID8 ovarian tumor growth was associated with an increased number of Mac3+ macrophage and B cells in LysM-Cre:Hmox1flfl mice compared to controls. Functional experiments in ovarian cancer cell lines show that HO-1 is induced by heme. Low levels of exogenous heme promoted ovarian cancer colony growth in soft agar. Higher doses of heme led to slower cancer cell colony growth in soft agar and the induction of HO-1. These data suggest that perturbation of heme metabolism within the endometriotic niche and in cancer cells themselves may be an important factor that influences tumor initiation and growth.
Collapse
Affiliation(s)
- Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA;
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Reeham Choudhury
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| | - Fong Liu
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
- Greater Baltimore Medical Center, 6569 Charles Street, Towson, MD 21204, USA
| | - Giacomo Canesin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Vor Biopharma, 100 Cambridgepark Dr, Suite 400, Cambridge, MA 02140, USA
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| | - Elisa M. Jorgensen
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
| | - Katharine M. Esselen
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Kenneth D. Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| |
Collapse
|
21
|
Lechuga GC, Napoleão-Pêgo P, Morel CM, Provance DW, De-Simone SG. New Insights into Hemopexin-Binding to Hemin and Hemoglobin. Int J Mol Sci 2022; 23:3789. [PMID: 35409149 PMCID: PMC8998376 DOI: 10.3390/ijms23073789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the β-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil
| |
Collapse
|
22
|
Kawai K, Hirayama T, Imai H, Murakami T, Inden M, Hozumi I, Nagasawa H. Molecular Imaging of Labile Heme in Living Cells Using a Small Molecule Fluorescent Probe. J Am Chem Soc 2022; 144:3793-3803. [PMID: 35133144 DOI: 10.1021/jacs.1c08485] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Labile heme (LH) is a complex of Fe(II) and protoporphyrin IX, an essential signaling molecule in various biological systems. Most of the subcellular dynamics of LH remain unclear because of the lack of efficient chemical tools for detecting LH in cells. Here, we report an activity-based fluorescence probe that can monitor the fluctuations of LH in biological events. H-FluNox is a selective fluorescent probe that senses LH using biomimetic N-oxide deoxygenation to trigger fluorescence. The selectivity of H-FluNox to LH is >100-fold against Fe(II), enabling the discrimination of LH from the labile Fe(II) pool in living cells. The probe can detect the acute release of LH upon NO stimulation and the accumulation of LH by inhibiting the heme exporter. In addition, imaging studies using the probe revealed a partial heme-export activity of the ATP-binding cassette subfamily G member 2 (ABCG2), potential LH pooling ability of G-quadruplex, and involvement of LH in ferroptosis. The successful use of H-FluNox in identifying fluctuations of LH in living cells offers opportunities for studying the physiology and pathophysiology of LH in living systems.
Collapse
Affiliation(s)
- Kanta Kawai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Haruka Imai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Abstract
Hemopexin is the plasma protein with the highest affinity for heme. Seminal studies have highlighted its role in different kinds of heme-associated disorders, but its implication in cancer has been neglected for a long time. Considering the emerging importance of heme in tumors, the present review proposes an update of the works investigating hemopexin involvement in cancer, with the attempt to stimulate further future studies on this topic.
Collapse
|
24
|
Niu L, Gao C, Li Y. Identification of potential core genes in colorectal carcinoma and key genes in colorectal cancer liver metastasis using bioinformatics analysis. Sci Rep 2021; 11:23938. [PMID: 34907282 PMCID: PMC8671463 DOI: 10.1038/s41598-021-03395-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most prevalent malignant tumors worldwide. Meanwhile, the majority of CRC related deaths results from liver metastasis. Gene expression profile of CRC patients with liver Metastasis was identified using 4 datasets. The data was analyzed using GEO2R tool. GO and KEGG pathway analysis were performed. PPI network of the DEGs between 1 and 2 gene sets was also constructed. The set 1 is named between primary CRC tissues and metastatic CRC tissues. The set 2 is named between primary CRC tissues and normal tissues. Finally, the prognostic value of hub genes was also analyzed. 35 DEGs (set 1) and 142 DEGs (set 2) were identified between CRC liver metastatic cancer patients. The PPI network was constructed using the top 10 set 1 hub genes which included AHSG, SERPINC1, FGA, F2, CP, ITIH2, APOA2, HPX, PLG, HRG and set 2 hub genes which included TIMP1, CXCL1, COL1A2, MMP1, AURKA, UBE2C, CXCL12, TOP2A, ALDH1A1 and PRKACB. Therefore, ITIH2 might represent the potential core gene for colon cancer liver metastasis. COL1A2 behaves as a key gene in colorectal carcinoma.
Collapse
Affiliation(s)
- Lipeng Niu
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ce Gao
- Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China
| | - Yang Li
- Shihua Residential District Community Health Service Center, 12th Xiangzhou Road, Jinshan District, Shanghai, 201500, Shanghai, China.
| |
Collapse
|
25
|
HO-1 and Heme: G-Quadruplex Interaction Choreograph DNA Damage Responses and Cancer Growth. Cells 2021; 10:cells10071801. [PMID: 34359970 PMCID: PMC8307061 DOI: 10.3390/cells10071801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Many anti-cancer therapeutics lead to the release of danger associated pattern molecules (DAMPs) as the result of killing large numbers of both normal and transformed cells as well as lysis of red blood cells (RBC) (hemolysis). Labile heme originating from hemolysis acts as a DAMP while its breakdown products exert varying immunomodulatory effects. Labile heme is scavenged by hemopexin (Hx) and processed by heme oxygenase-1 (HO-1, Hmox1), resulting in its removal and the generation of biliverdin/bilirubin, carbon monoxide (CO) and iron. We recently demonstrated that labile heme accumulates in cancer cell nuclei in the tumor parenchyma of Hx knockout mice and contributes to the malignant phenotype of prostate cancer (PCa) cells and increased metastases. Additionally, this work identified Hx as a tumor suppressor gene. Direct interaction of heme with DNA G-quadruplexes (G4) leads to altered gene expression in cancer cells that regulate transcription, recombination and replication. Here, we provide new data supporting the nuclear role of HO-1 and heme in modulating DNA damage response, G4 stability and cancer growth. Finally, we discuss an alternative role of labile heme as a nuclear danger signal (NDS) that regulates gene expression and nuclear HO-1 regulated DNA damage responses stimulated by its interaction with G4.
Collapse
|
26
|
Canesin G, Janovicova L, Wegiel B. Measurement of labile and protein-bound heme in fixed prostate cancer cells and in cellular fractions. STAR Protoc 2021; 2:100491. [PMID: 33997811 PMCID: PMC8091920 DOI: 10.1016/j.xpro.2021.100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Labile heme is present in the cells at very low concentrations, either unbound or loosely bound to molecules, and accessible for signaling as alarmin. Our recent work suggests that extracellular heme can be taken up and detected in the nuclei of cancer cells. Here, we describe the detailed protocol for detection of labile and total heme in prostate cancer cells and its measurement in subcellular compartments in vitro. The protocol can be adapted to be used for other cell types. For complete details on the use and execution of this protocol, please refer to Canesin et al. (2020). Preparation of heme and treatment of cells with heme Detection of labile and total heme in prostate cancer cells Measurement of heme in subcellular compartments in prostate cancer cells Detection of heme in fixed cells
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Oncology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Oncology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| |
Collapse
|
27
|
Shumayrikh NM, Warren JJ, Bennet AJ, Sen D. A heme•DNAzyme activated by hydrogen peroxide catalytically oxidizes thioethers by direct oxygen atom transfer rather than by a Compound I-like intermediate. Nucleic Acids Res 2021; 49:1803-1815. [PMID: 33476369 PMCID: PMC7913675 DOI: 10.1093/nar/gkab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hemin [Fe(III)-protoporphyrin IX] is known to bind tightly to single-stranded DNA and RNA molecules that fold into G-quadruplexes (GQ). Such complexes are strongly activated for oxidative catalysis. These heme•DNAzymes and ribozymes have found broad utility in bioanalytical and medicinal chemistry and have also been shown to occur within living cells. However, how a GQ is able to activate hemin is poorly understood. Herein, we report fast kinetic measurements (using stopped-flow UV-vis spectrophotometry) to identify the H2O2-generated activated heme species within a heme•DNAzyme that is active for the oxidation of a thioether substrate, dibenzothiophene (DBT). Singular value decomposition and global fitting analysis was used to analyze the kinetic data, with the results being consistent with the heme•DNAzyme's DBT oxidation being catalyzed by the initial Fe(III)heme-H2O2 complex. Such a complex has been predicted computationally to be a powerful oxidant for thioether substrates. In the heme•DNAzyme, the DNA GQ enhances both the kinetics of formation of the active intermediate as well as the oxidation step of DBT by the active intermediate. We show, using both stopped flow spectrophotometry and EPR measurements, that a classic Compound I is not observable during the catalytic cycle for thioether sulfoxidation.
Collapse
Affiliation(s)
- Nisreen M Shumayrikh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
28
|
Komůrková D, Svobodová Kovaříková A, Bártová E. G-Quadruplex Structures Colocalize with Transcription Factories and Nuclear Speckles Surrounded by Acetylated and Dimethylated Histones H3. Int J Mol Sci 2021; 22:1995. [PMID: 33671470 PMCID: PMC7922289 DOI: 10.3390/ijms22041995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded helical structures that regulate several nuclear processes, including gene expression and telomere maintenance. We observed that G4s are located in GC-rich (euchromatin) regions and outside the fibrillarin-positive compartment of nucleoli. Genomic regions around G4s were preferentially H3K9 acetylated and H3K9 dimethylated, but H3K9me3 rarely decorated G4 structures. We additionally observed the variability in the number of G4s in selected human and mouse cell lines. We found the highest number of G4s in human embryonic stem cells. We observed the highest degree of colocalization between G4s and transcription factories, positive on the phosphorylated form of RNA polymerase II (RNAP II). Similarly, a high colocalization rate was between G4s and nuclear speckles, enriched in pre-mRNA splicing factor SC-35. PML bodies, the replication protein SMD1, and Cajal bodies colocalized with G4s to a lesser extent. Thus, G4 structures seem to appear mainly in nuclear compartments transcribed via RNAP II, and pre-mRNA is spliced via the SC-35 protein. However, α-amanitin, an inhibitor of RNAP II, did not affect colocalization between G4s and transcription factories as well as G4s and SC-35-positive domains. In addition, irradiation by γ-rays did not change a mutual link between G4s and DNA repair proteins (G4s/γH2AX, G4s/53BP1, and G4s/MDC1), accumulated into DNA damage foci. Described characteristics of G4s seem to be the manifestation of pronounced G4s stability that is likely maintained not only via a high-order organization of these structures but also by a specific histone signature, including H3K9me2, responsible for chromatin compaction.
Collapse
Affiliation(s)
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Department of Molecular Cytology and Cytometry, Královopolská 135, 612 65 Brno, Czech Republic; (D.K.); (A.S.K.)
| |
Collapse
|
29
|
Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes? Antioxidants (Basel) 2021; 10:antiox10010094. [PMID: 33445471 PMCID: PMC7827836 DOI: 10.3390/antiox10010094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
G-quadruplexes (G4) are stacked nucleic acid structures that are stabilized by heme. In cells, they affect DNA replication and gene transcription. They are unwound by several helicases but the composition of the repair complex and its heme sensitivity are unclear. We found that the accumulation of G-quadruplexes is affected by heme oxygenase-1 (Hmox1) expression, but in a cell-type-specific manner: hematopoietic stem cells (HSCs) from Hmox1−/− mice have upregulated expressions of G4-unwinding helicases (e.g., Brip1, Pif1) and show weaker staining for G-quadruplexes, whereas Hmox1-deficient murine induced pluripotent stem cells (iPSCs), despite the upregulation of helicases, have more G-quadruplexes, especially after exposure to exogenous heme. Using iPSCs expressing only nuclear or only cytoplasmic forms of Hmox1, we found that nuclear localization promotes G4 removal. We demonstrated that the proximity ligation assay (PLA) can detect cellular co-localization of G-quadruplexes with helicases, as well as with HMOX1, suggesting the potential role of HMOX1 in G4 modifications. However, this colocalization does not mean a direct interaction was detectable using the immunoprecipitation assay. Therefore, we concluded that HMOX1 influences G4 accumulation, but rather as one of the proteins regulating the heme availability, not as a rate-limiting factor. It is noteworthy that cellular G4–protein colocalizations can be quantitatively analyzed using PLA, even in rare cells.
Collapse
|
30
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|