1
|
Zhang Y, Zhang CY, Yuan J, Jiang H, Sun P, Hui L, Xu L, Yu L, Guo Z, Wang L, Yang Y, Li M, Li SW, Yang J, Li W, Teng Z, Xiao X. Human mood disorder risk gene Synaptotagmin-14 contributes to mania-like behaviors in mice. Mol Psychiatry 2025:10.1038/s41380-025-02933-1. [PMID: 39966626 DOI: 10.1038/s41380-025-02933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) and major depressive disorder (MDD) are the most prevalent mood disorders and cause considerable burden worldwide. Compelling evidence suggests a pronounced overlap between these two disorders in clinical symptoms, treatment strategies, and genetic etiology. Here we leverage a BD GWAS (1822 cases and 4650 controls) and a MDD GWAS (5303 cases and 5337 controls), followed by independent replications, to investigate their shared genetic basis among Han Chinese. We have herein identified a lead SNP rs126277 at the 1q32.2 locus, which also exhibited nominal associations with mood disorders and several relevant sub-clinical phenotypes (e.g., mania) in European populations. Bulk tissue and single-cell eQTL analyses suggest that the risk G-allele of rs126277 predicted lower SYT14 mRNA expression in human brains. We generated mice lacking Syt14 (Syt14-/-) and mice with insufficient expression of Syt14 in the hippocampus (Syt14-KD), and found that depletion of Syt14 resulted in mania-like behaviors including hyperactivity and anti-depressive behaviors, resembling aspects of mood disorders. We also confirmed that deficiency of this gene in the hippocampus was sufficient to induce hyperactivity in mice. RNA-sequencing analyses of the hippocampus of Syt14-/- mice revealed significant upregulation of Per1 as well as downregulation of Slc7a11 and Ptprb. Ultrastructural analyses showed significant alteration of the number of vesicles within 50 nm to the active zone and the width of synaptic cleft in the ventral hippocampus of Syt14-/- mice compared with the control mice. Overall, we have identified a novel mood disorder risk gene SYT14, and confirmed its impact on mania-like behaviors. While the current study identifies an essential mood disorder risk gene, further investigations elucidating the detailed mechanisms by which SYT14 contributes to the pathogenesis of the illnesses are needed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Yuan
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Xu
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Yu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zeyi Guo
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lu Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianzhong Yang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaowei Teng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Berns MMM, Yildiz M, Winkelmann S, Walter AM. Independently engaging protein tethers of different length enhance synaptic vesicle trafficking to the plasma membrane. J Physiol 2025. [PMID: 39808523 DOI: 10.1113/jp286651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model. The heights of the three tether types, as estimated from the structures of the SNARE complex, Munc13 and Syt, defined the SV-PM distance ranges for tether formation. Geometric considerations linked SV-PM distances to the probability and rate of tether formation. We assumed that SV tethering constrains SV motility and that multiple tethers are associated by independent interactions. The model predicted that forming multiple tethers favours shorter SV-PM distances. Although tethers acted independently in the model, their geometrical properties often caused their sequential assembly, from longer ones (Munc13/Syt), which accelerated SV movement towards the PM, to shorter ones (SNAREs), which stabilized PM-proximal SVs. Modifying tether lengths or numbers affected SV trafficking. The independent implementation of tethering proteins enabled their selective removal to mimic gene knockout (KO) situations. This showed that simulated SV-PM distance distributions qualitatively aligned with published electron microscopy studies upon removal of SNARE and Syt tethers, whereas Munc13 KO data were best approximated when assuming additional disruption of SNARE tethers. Thus, although salient features of SV docking can be accounted for by independent tethering alone, our results suggest that functional tether interactions not yet featured in our model are crucial for biological function. KEY POINTS: A mathematical model describing the role of synaptic protein tethers to localize transmitter-containing vesicles is developed based on geometrical considerations and structural information of synaptotagmin, Munc13 and SNARE proteins. Vesicle movement, along with tether association and dissociation, are modelled as stochastic processes, with tethers functioning independently of each other. Multiple tethers cooperate to recruit vesicles to the plasma membrane and keep them there: Munc13 and Syt as the longer tethers accelerate the movement towards the membrane, whereas short SNARE tethers stabilize them there. Model predictions for situations in which individual tethers are removed agree with the results from experimental studies upon gene knockout. Changing tether length or copy numbers affects vesicle trafficking and steady-state distributions.
Collapse
Affiliation(s)
- Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Alexander M Walter
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
4
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Zhu M, Xu H, Jin Y, Kong X, Xu B, Liu Y, Yu H. Synaptotagmin-1 undergoes phase separation to regulate its calcium-sensitive oligomerization. J Cell Biol 2024; 223:e202311191. [PMID: 38980206 PMCID: PMC11232894 DOI: 10.1083/jcb.202311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulei Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoxu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
8
|
van Boven MA, Mestroni M, Zwijnenburg PJG, Verhage M, Cornelisse LN. A de novo missense mutation in synaptotagmin-1 associated with neurodevelopmental disorder desynchronizes neurotransmitter release. Mol Psychiatry 2024; 29:1798-1809. [PMID: 38321119 PMCID: PMC11371641 DOI: 10.1038/s41380-024-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maaike A van Boven
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marta Mestroni
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Leitz J, Wang C, Esquivies L, Pfuetzner RA, Peters JJ, Couoh-Cardel S, Wang AL, Brunger AT. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep 2024; 43:114026. [PMID: 38809756 PMCID: PMC11286359 DOI: 10.1016/j.celrep.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergio Couoh-Cardel
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Wang HY, Takagi H, Stoney PN, Echeverria A, Kuhn B, Hsu KS, Takahashi T. Anoxia-induced hippocampal LTP is regeneratively produced by glutamate and nitric oxide from the neuro-glial-endothelial axis. iScience 2024; 27:109515. [PMID: 38591010 PMCID: PMC11000013 DOI: 10.1016/j.isci.2024.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.
Collapse
Affiliation(s)
- Han-Ying Wang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- Academia Sinica, Institute of Biomedical Sciences, Taipei 115, Taiwan
| | - Hiroshi Takagi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Patrick N. Stoney
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Anai Echeverria
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
11
|
Wu Z, Kusick GF, Berns MMM, Raychaudhuri S, Itoh K, Walter AM, Chapman ER, Watanabe S. Synaptotagmin 7 docks synaptic vesicles to support facilitation and Doc2α-triggered asynchronous release. eLife 2024; 12:RP90632. [PMID: 38536730 PMCID: PMC10972563 DOI: 10.7554/elife.90632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manon MM Berns
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Alexander M Walter
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
- Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, FMP im CharitéCrossOverBerlinGermany
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
12
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
13
|
Wu M, Li W, Lin S, Fan J, Cui L, Xiang Y, Li K, Tang L, Duan Y, Chen Z, Yang F, Shui W, Lu G, Lai Y. A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS-CoV-2 Spike-Mediated Viral Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301478. [PMID: 37590389 PMCID: PMC10558659 DOI: 10.1002/advs.202301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/25/2023] [Indexed: 08/19/2023]
Abstract
The receptor-binding domain (RBD) of spike recognizing the receptor angiotensin-converting enzyme 2 (ACE2) initiates membrane fusion between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cell membrane. Although the structure of the RBD_ACE2 complex has been well studied, its functional mechanism in membrane fusion is still not fully understood. Here, using an in vitro cell-vesicle content-mixing assay, it is found that the cleavage at the S2' site by thrombin (Thr) protease strongly accelerates membrane fusion, compared to that of cleavage at the S1/S2 site by PreScission (3C) protease. Moreover, mutations at the RBD_ACE2 interface resulted in a positive correlation between binding affinity and fusion probability. In both the cell-vesicle and cell-cell fusion assays, by crosslinking two membranes via the neutravidin (NTV)_biotin interaction or complementary DNA strands, it is found that spike drives membrane fusion in the absence of ACE2, and a suitable distance between two membranes is critical for spike-mediated membrane fusion. Finally, unsuitable membrane crosslinkers significantly inhibited the fusion probability in the presence of ACE2. Taken together, the results suggest that the RBD_ACE2 complex may act as a crosslinker to bridge the viral and cell membranes at a suitable distance, which is critical, but also substitutable for spike-mediated SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Mengdan Wu
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Li
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Sheng Lin
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jiaqi Fan
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Lele Cui
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yijuan Xiang
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Kaiyu Li
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Linwei Tang
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yanping Duan
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Zimin Chen
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Fanli Yang
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Weiwei Shui
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Guangwen Lu
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ying Lai
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
14
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
15
|
Papantoniou C, Laugks U, Betzin J, Capitanio C, Ferrero JJ, Sánchez-Prieto J, Schoch S, Brose N, Baumeister W, Cooper BH, Imig C, Lučić V. Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming. SCIENCE ADVANCES 2023; 9:eadf6222. [PMID: 37343100 PMCID: PMC10284560 DOI: 10.1126/sciadv.adf6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.
Collapse
Affiliation(s)
- Christos Papantoniou
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia Betzin
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Cristina Capitanio
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - José Javier Ferrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Susanne Schoch
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin H. Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vladan Lučić
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
16
|
Zhou Q. Calcium Sensors of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:119-138. [PMID: 37615865 DOI: 10.1007/978-3-031-34229-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Tan C, de Nola G, Qiao C, Imig C, Born RT, Brose N, Kaeser PS. Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones. eLife 2022; 11:79077. [PMID: 36398873 PMCID: PMC9822248 DOI: 10.7554/elife.79077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release toward postsynaptic receptor domains. Simultaneous RIM + ELKS ablation disrupts these scaffolds, abolishes vesicle docking, and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM + ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM + ELKS impaired action potential-evoked vesicle fusion more strongly than RIM + ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone anchoring, suffices to generate some fusion-competent vesicles.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Claire Qiao
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
18
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
19
|
Zhu J, McDargh ZA, Li F, Krishnakumar SS, Rothman JE, O’Shaughnessy B. Synaptotagmin rings as high-sensitivity regulators of synaptic vesicle docking and fusion. Proc Natl Acad Sci U S A 2022; 119:e2208337119. [PMID: 36103579 PMCID: PMC9499556 DOI: 10.1073/pnas.2208337119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A. McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | | | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
20
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Hou K, Shi B, Liu Y, Lu C, Li D, Du Z, Li B, Zhu L. Toxicity evaluation of pyraclostrobin exposure in farmland soils and co-exposure with nZnO to Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128794. [PMID: 35366441 DOI: 10.1016/j.jhazmat.2022.128794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Although the toxicity of pyraclostrobin (PYRA) to earthworms in artificial soil is well known, the toxicity of PYRA in farmland soils is yet to be explored in detail. Additionally, with more zinc oxide nanoparticles (nZnO) entering the soil environment, the risk of PYRA co-exposure with nZnO is increasing alarmingly. However, toxicity caused by this co-exposure of PYRA and nZnO is still unknown. Therefore, we assessed the biomarkers responses to reveal the toxicity of PYRA (0.1, 1, 2.5 mg/kg) on earthworms in farmland soils (black soil, fluvo-aquic soil, and red clay) and evaluated the biomarkers responses of Eisenia fetida exposed to PYRA (0.5 mg/kg)/PYRA+nZnO (10 mg/kg). Moreover, transcriptomic analysis was performed on E. fetida exposed to PYRA/PYRA+nZnO for 28 days to reveal the mechanism of genotoxicity. The Integrated Biomarker Responses (IBR) showed PYRA induced more severe oxidative stress and damage to E. fetida in farmland soils than that in artificial soil. The oxidative stress and damage induced by PYRA+nZnO were greater than that induced by PYRA. Transcriptomic analysis showed that PYRA and PYRA+nZnO significantly altered gene expression of both biological processes and molecular functions. These results provided toxicological data for PYRA exposure in three typical farmland soils and co-exposure with nZnO.
Collapse
Affiliation(s)
- Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Yu Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
22
|
Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. eLife 2022; 11:78182. [PMID: 35638903 PMCID: PMC9183232 DOI: 10.7554/elife.78182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A’s JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A’s JMD; and (3) palmitoylation deficiency mutations in STX1A’s TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A’s JMD regulates the palmitoylation of STX1A’s TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A’s JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Collapse
Affiliation(s)
- Gülçin Vardar
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Zobel
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Dietz J, Oelkers M, Hubrich R, Pérez-Lara A, Jahn R, Steinem C, Janshoff A. Forces, Kinetics, and Fusion Efficiency Altered by the Full-Length Synaptotagmin-1 -PI(4,5)P 2 Interaction in Constrained Geometries. NANO LETTERS 2022; 22:1449-1455. [PMID: 34855407 DOI: 10.1021/acs.nanolett.1c02491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A mechanism for full-length synaptotagmin-1 (syt-1) to interact with anionic bilayers and to promote fusion in the presence of SNAREs is proposed. Colloidal probe force spectroscopy in conjunction with tethered particle motion monitoring showed that in the absence of Ca2+ the binding of syt-1 to membranes depends on the presence and content of PI(4,5)P2. Addition of Ca2+ switches the interaction forces from weak to strong, eventually exceeding the cohesion of the C2A domain of syt-1 leading to partial unfolding of the protein. Fusion of single unilamellar vesicles equipped with syt-1 and synaptobrevin 2 with planar pore-spanning target membranes containing PS and PI(4,5)P2 shows an almost complete suppression of stalled intermediate fusion states and an accelerated fusion kinetics in the presence of Ca2+, which is further enhanced upon addition of ATP.
Collapse
Affiliation(s)
- Joern Dietz
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| | - Marieelen Oelkers
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| | - Raphael Hubrich
- Institute for Organic and Biomolecular Chemistry, Georg-August Universität, Tammannstr. 2, 37077 Göttingen, Germany
| | - Angel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, Georg-August Universität, Tammannstr. 2, 37077 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
25
|
Manchanda A, Bonventre JA, Bugel SM, Chatterjee P, Tanguay R, Johnson CP. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell 2021; 32:1293-1305. [PMID: 33979209 PMCID: PMC8351550 DOI: 10.1091/mbc.e20-10-0657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Release of neurotransmitter from sensory hair cells is regulated by otoferlin. Despite the importance of otoferlin in the auditory and vestibular pathways, the functional contributions of the domains of the protein have not been fully characterized. Using a zebrafish model, we investigated a mutant otoferlin with a stop codon at the start of the transmembrane domain. We found that both the phenotype severity and the expression level of mutant otoferlin changed with the age of the zebrafish. At the early developmental time point of 72 h post fertilization, low expression of the otoferlin mutant coincided with synaptic ribbon deficiencies, reduced endocytosis, and abnormal transcription of several hair cell genes. As development proceeded, expression of the mutant otoferlin increased, and both synaptic ribbons and hair cell transcript levels resembled wild type. However, hair cell endocytosis deficits and abnormalities in the expression of GABA receptors persisted even after up-regulation of mutant otoferlin. Analysis of membrane-reconstituted otoferlin measurements suggests a function for the transmembrane domain in liposome docking. We conclude that deletion of the transmembrane domain reduces membrane docking, attenuates endocytosis, and results in developmental delay of the hair cell.
Collapse
Affiliation(s)
- Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Paroma Chatterjee
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Robyn Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Colin P Johnson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| |
Collapse
|