1
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
2
|
Yang Z, Wang H, Keebler R, Lovelace A, Chen HC, Kvitko B, Swingle B. Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2024; 206:e0008624. [PMID: 39445803 PMCID: PMC11580431 DOI: 10.1128/jb.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Plant pathogenic bacteria encounter a drastic increase in apoplastic pH during the early stages of plant immunity. The effects of alkalization on pathogen-host interactions have not been comprehensively characterized. Here, we used a global transcriptomic approach to assess the impact of environmental alkalization on Pseudomonas syringae pv. tomato DC3000 in vitro. In addition to the Type 3 Secretion System, we found expression of genes encoding other virulence factors such as iron uptake and coronatine biosynthesis to be strongly affected by environmental alkalization. We also found that the activity of AlgU, an important regulator of virulence gene expression, was induced at pH 5.5 and suppressed at pH 7.8, which are pH levels that this pathogen would likely experience before and during pattern-triggered immunity, respectively. This pH-dependent control requires the presence of periplasmic proteases, AlgW and MucP, that function as part of the environmental sensing system that activates AlgU in specific conditions. This is the first example of pH-dependency of AlgU activity, suggesting a regulatory pathway model where pH affects the proteolysis-dependent activation of AlgU. These results contribute to deeper understanding of the role apoplastic pH has on host-pathogen interactions.IMPORTANCEPlant pathogenic bacteria, like Pseudomonas syringae, encounter many environmental changes including oxidative stress and alkalization during plant immunity, but the ecological effects of the individual responses are not well understood. In this study, we found that transcription of many previously characterized virulence factors in P. syringae pv. tomato DC3000 is downregulated by the level of environmental alkalization these bacteria encounter during the early stages of plant immune activation. We also report for the first time the sigma factor AlgU is post-translationally activated by low environmental pH through its natural activation pathway, which partially accounts for the expression Type 3 Secretion System virulence genes at acidic pH. The results of this study demonstrate the importance of extracellular pH on global regulation of virulence-related gene transcription in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Haibi Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Robert Keebler
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Amelia Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- United States Department of Agriculture-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, Ithaca, New York, USA
| |
Collapse
|
3
|
Hua C, Huang J, Sun Y, Wang T, Li Y, Cui Z, Deng X. Hfq mediates transcriptome-wide RNA structurome reprogramming under virulence-inducing conditions in a phytopathogen. Cell Rep 2024; 43:114544. [PMID: 39052478 DOI: 10.1016/j.celrep.2024.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Although RNA structures play important roles in regulating gene expression, the mechanism and function of mRNA folding in plant bacterial pathogens remain elusive. Therefore, we perform dimethyl sulfate sequencing (DMS-seq) on the Pseudomonas syringae under nutrition-rich and -deficient conditions, revealing that the mRNA structure changes substantially in the minimal medium (MM) that tunes global translation efficiency (TE), thereby inducing virulence. This process is led by the increased expression of hfq, which is directly activated by transcription regulators RpoS and CysB. The co-occurrence of Hfq and RpoS in diverse bacteria and the deep conservation of Hfq Y25 is critical for RNA-mediated regulation and implicates the wider biological importance of mRNA structure and feedback loops in the control of global gene expression.
Collapse
Affiliation(s)
- Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yue Sun
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Youyue Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zining Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong, China; Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Sang M, Liu Q, Li D, Dang J, Lu C, Liu C, Wu Q. Heat Stress and Microbial Stress Induced Defensive Phenol Accumulation in Medicinal Plant Sparganium stoloniferum. Int J Mol Sci 2024; 25:6379. [PMID: 38928085 PMCID: PMC11203919 DOI: 10.3390/ijms25126379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.
Collapse
Affiliation(s)
- Mengru Sang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| | - Qinan Liu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China;
| | - Dishuai Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| | - Chenyan Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| | - Chanchan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (J.D.); (C.L.)
| |
Collapse
|
5
|
Wang Q, Zhang Y, Chen R, Zhang L, Fu M, Zhang L. Comparative genomic analyses provide insight into the pathogenicity of three Pseudomonas syringae pv. actinidiae strains from Anhui Province, China. BMC Genomics 2024; 25:461. [PMID: 38734623 PMCID: PMC11088785 DOI: 10.1186/s12864-024-10384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Qian Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiju Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Fu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
6
|
Vadillo‐Dieguez A, Zeng Z, Mansfield JW, Grinberg NF, Lynn SC, Gregg A, Connell J, Harrison RJ, Jackson RW, Hulin MT. Genetic dissection of the tissue-specific roles of type III effectors and phytotoxins in the pathogenicity of Pseudomonas syringae pv. syringae to cherry. MOLECULAR PLANT PATHOLOGY 2024; 25:e13451. [PMID: 38590135 PMCID: PMC11002349 DOI: 10.1111/mpp.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.
Collapse
Affiliation(s)
- Andrea Vadillo‐Dieguez
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | | | | | | | | | | | | | - Richard J. Harrison
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
- Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
- Present address:
Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- NIABCambridgeUK
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
- Present address:
Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
| |
Collapse
|
7
|
Type III Secretion System Repressor RhpR Induces GrlP, a Glycine-Rich Outer Membrane Lipoprotein with Functions in Regulating the Periplasmic Space and Pleiotropic Responses. Appl Environ Microbiol 2023; 89:e0158722. [PMID: 36602318 PMCID: PMC9888284 DOI: 10.1128/aem.01587-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The two-component system RhpRS was initially identified as a regulator of genes encoding the type III secretion system (T3SS) in Pseudomonas syringae. Phosphorylated RhpR (P-RhpR) negatively regulates the T3SS genes by repressing the hrpR promoter, but directly activates the expression of a small gene named here as grlp. Here, we show that grlp is expressed higher in rich medium than in minimal medium in P. s. pv. tomato DC3000 and encodes a glycine rich lipoprotein (GrlP) located in the outer membrane (OM). The grlp gene has a pleiotropic effect on bacterial behaviors such as reductions in pathogenicity, swimming motility, biofilm formation, tolerance to various stresses and antibiotics, and long-term survival when overexpressed, but induces these responses when it is deleted in P. s. pv. tomato DC3000. Overexpression of grlp increases the size of periplasm while deletion of grlp decreases the periplasmic space. Further, GrlP interacts with OprI, the ortholog of E. coli OM lipoprotein Lpp, a key player in determining the size of periplasm and mechanic stiffness of the OM by tethering the OM to peptidoglycan (PG) in periplasm. As periplasmic space and OM mechanics play central roles in regulating bacterial physiology, we speculate that GrlP probably imposes its functions on bacterial physiology by regulating the periplasmic space and OM mechanics. These findings suggest that the T3SS gene regulation is closely coordinated with bacterial cell envelope properties by RhpRS in P. syringe. IMPORTANCE The OM of Gram-negative bacteria is the most front line in contact with extracellular milieu. OM is not only a protective layer, but also a structure that determines the envelope stiffness. Recent evidence indicated that components determining the periplasmic space and cross-links of lipopolysaccharide on the OM play key roles in regulating the mechanical properties of the OM. However, whether the OM composition and mechanical properties are coordinated with the expression of the T3SS genes is unknown. Here, we found that the two-component system (TCS) regulator P-RhpR, a direct repressor of the T3SS regulator hrpRS operon, directly activates the expression of the OM lipoprotein gene grlp bearing a function in regulating the periplasmic space. This finding suggests a coordination between the OM properties and the T3SS gene regulation and reveals a new target for control of the T3SS gene expression and bacterial pathogenicity.
Collapse
|
8
|
Huang J, Yao C, Sun Y, Ji Q, Deng X. Virulence-related regulatory network of Pseudomonas syringae. Comput Struct Biotechnol J 2022; 20:6259-6270. [PMID: 36420163 PMCID: PMC9678800 DOI: 10.1016/j.csbj.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Transcription factors (TFs) play important roles in regulating multiple biological processes by binding to promoter regions and regulating the global gene transcription levels. Pseudomonas syringae is a Gram-negative phytopathogenic bacterium harbouring 301 putative TFs in its genome, approximately 50 of which are responsible for virulence-related gene and pathway regulation. Over the past decades, RNA sequencing, chromatin immunoprecipitation sequencing, high-throughput systematic evolution of ligands by exponential enrichment, and other technologies have been applied to identify the functions of master regulators and their interactions in virulence-related pathways. This review summarises the recent advances in the regulatory networks of TFs involved in the type III secretion system (T3SS) and non-T3SS virulence-associated pathways, including motility, biofilm formation, quorum sensing, nucleotide-based secondary messengers, phytotoxins, siderophore production, and oxidative stress. Moreover, this review discusses the future perspectives in terms of TF-mediated pathogenesis mechanisms and provides novel insights that will help combat P. syringae infections based on the regulatory networks of TFs.
Collapse
Affiliation(s)
- Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Chunyan Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Yue Sun
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
| | - Quanjiang Ji
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077 China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
The OmpR-like Transcription Factor as a Negative Regulator of hrpR/S in Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms232012306. [PMID: 36293158 PMCID: PMC9602974 DOI: 10.3390/ijms232012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Bacterial canker of kiwifruit is a devastating disease caused by Pseudomonas syringae pv. actinidiae (Psa). The type III secretion system (T3SS), which translocates effectors into plant cells to subvert plant immunity and promote extracellular bacterial growth, is required for Psa virulence. Despite that the “HrpR/S-HrpL” cascade that sophisticatedly regulates the expression of T3SS and effectors has been well documented, the transcriptional regulators of hrpR/S remain to be determined. In this study, the OmpR-like transcription factor, previously identified by DNA pull-down assay, was found to be involved in the regulation of hrpR/S genes, and its regulatory mechanisms and other functions in Psa were explored through techniques including gene knockout and overexpression, ChIP-seq, and RNA-seq. The OmpR-like transcription factor had binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR/S increased after the deletion of OmpR-like and decreased upon its overexpression in an OmpR-like deletion background. Additionally, OmpR-like overexpression reduced the strain’s capacity to form biofilms and lipopolysaccharides, led to its slow growth in King’s B medium, and reduced its swimming ability, although there was no significant effect on its pathogenicity against kiwifruit hosts. Our results indicated that OmpR-like directly and negatively regulates the transcription of hrpR/S and may be involved in the regulation of multiple biological processes in Psa. Our results provide a basis for further understanding the transcriptional regulation mechanism of hrpR/S in Psa.
Collapse
|
10
|
Abstract
Transcription factors (TFs) regulate transcription by binding to the specific sequences at the promoter region. However, the mechanisms and functions of TFs binding within the coding sequences (CDS) remain largely elusive in prokaryotes. To this end, we collected 409 data sets for bacterial TFs, including 104 chromatin immunoprecipitation sequencing (ChIP-seq) assays and 305 data sets from the systematic evolution of ligands by exponential enrichment (SELEX) in seven model bacteria. Interestingly, these TFs displayed the same binding capabilities for both coding and intergenic regions. Subsequent biochemical and genetic experiments demonstrated that several TFs bound to the coding regions and regulated the transcription of the binding or adjacent genes. Strand-specific RNA sequencing revealed that these CDS-binding TFs regulated the activity of the cryptic promoters, resulting in the altered transcription of the corresponding antisense RNA. TF RhpR hindered the transcriptional elongation of a subgenic transcript within a CDS. A ChIP-seq and Ribo-seq coanalysis revealed that RhpR influenced the translational efficiency of binding genes. Taken together, the present study reveals three regulatory mechanisms of CDS-bound TFs within individual genes, operons, and antisense RNAs, which demonstrate the variability of the regulatory mechanisms of TFs and expand upon the complexity of bacterial transcriptomes.
Collapse
|
11
|
Xie Y, Li J, Ding Y, Shao X, Sun Y, Xie F, Liu S, Tang S, Deng X. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Rep 2022; 41:111502. [DOI: 10.1016/j.celrep.2022.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022] Open
|
12
|
Sun Y, Shao X, Zhang Y, Han L, Huang J, Xie Y, Liu J, Deng X. Maintenance of tRNA and elongation factors supports T3SS proteins translational elongations in pathogenic bacteria during nutrient starvation. Cell Biosci 2022; 12:147. [PMID: 36064743 PMCID: PMC9446538 DOI: 10.1186/s13578-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations.
Results
The translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs).
Conclusions
Rapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.
Collapse
|
13
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|
14
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
15
|
Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 2021; 204:e0038021. [PMID: 34662236 DOI: 10.1128/jb.00380-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000). To learn more about the impact of IAA on regulation of PtoDC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta. Collectively the data indicate that IAA modulates many aspects of PtoDC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain PtoDC000 and one of its hosts, Arabidopsis thaliana. However, the mechanisms by which IAA impacts the biology of PtoDC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in PtoDC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.
Collapse
|
16
|
Yao C, Shao X, Li J, Deng X. Optimized protocols for ChIP-seq and deletion mutant construction in Pseudomonas syringae. STAR Protoc 2021; 2:100776. [PMID: 34485942 PMCID: PMC8406033 DOI: 10.1016/j.xpro.2021.100776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromatin immunoprecipitation sequencing (ChIP-seq) is an efficient technique to identify the binding sites of transcription factors (TFs) in both eukaryotes and prokaryotes. However, its application in bacteria is very heterogeneous. In this protocol, we optimized the methods of ChIP-seq that can be widely applied to plant pathogens. We used homologous recombination to construct pK18mobsacB-Psph plasmid instead of restriction site ligation and replaced transconjugation with electroporation transformation in Pseudomonas syringae deletion mutant construction, which is more efficient and faster than previous methods. For complete details on the use and execution of this protocol, please refer to Shao et al. (2021). This approach can be used to construct TF-overexpressed Pseudomonas syringae strain Protocols for ChIP-seq library construction of Pseudomonas syringae A simplified procedure to construct a deletion mutant of Pseudomonas syringae
Collapse
Affiliation(s)
- Chunyan Yao
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xiaolong Shao
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jingwei Li
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
17
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|