1
|
Feng H, Liang L, Deng W, Gao J, Li X, Guan F. Sialyl Lewis X decorated integrin α3 on small extracellular vesicles promotes metastasis of bladder cancer via enhancing vascular permeability. Angiogenesis 2024; 27:883-901. [PMID: 39222273 DOI: 10.1007/s10456-024-09947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.
Collapse
Affiliation(s)
- Hui Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Liang Liang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Jiaojiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, People's Republic of China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
2
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Ling Y, Kang X, Yi Y, Feng S, Ma G, Qu H. CLDN5: From structure and regulation to roles in tumors and other diseases beyond CNS disorders. Pharmacol Res 2024; 200:107075. [PMID: 38228255 DOI: 10.1016/j.phrs.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Claudin-5 (CLDN5) is an essential component of tight junctions (TJs) and is critical for the integrity of the blood-brain barrier (BBB), ensuring homeostasis and protection from damage to the central nervous system (CNS). Currently, many researchers have summarized the role and mechanisms of CLDN5 in CNS diseases. However, it is noteworthy that CLDN5 also plays a significant role in tumor growth and metastasis. In addition, abnormal CLDN5 expression is involved in the development of respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications. This paper aims to review the structure, expression, and regulation of CLDN5, focusing on its role in tumors, including its expression and regulation, effects on malignant phenotypes, and clinical significance. Furthermore, this paper will provide an overview of the role and mechanisms of CLDN5 in respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications.
Collapse
Affiliation(s)
- Yao Ling
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Xinxin Kang
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Ying Yi
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Shenao Feng
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Guanshen Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Zhang J, Liu S, Chen X, Xu X, Xu F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed Pharmacother 2023; 166:115336. [PMID: 37591126 DOI: 10.1016/j.biopha.2023.115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.
Collapse
Affiliation(s)
- Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
5
|
Wang Y, Wu T, Tsai MC, Rezzonico MG, Abdel-Haleem AM, Xie L, Gandham VD, Ngu H, Stark K, Glock C, Xu D, Foreman O, Friedman BA, Sheng M, Hanson JE. TPL2 kinase activity regulates microglial inflammatory responses and promotes neurodegeneration in tauopathy mice. eLife 2023; 12:e83451. [PMID: 37555828 PMCID: PMC10411973 DOI: 10.7554/elife.83451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Tiffany Wu
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Mitchell G Rezzonico
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Alyaa M Abdel-Haleem
- Computational Science & Exploratory Analytics, Roche IT, Hoffmann-La Roche LimitedMississaugaCanada
| | - Luke Xie
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Vineela D Gandham
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Hai Ngu
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Kimberly Stark
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Daqi Xu
- Department of Immunology, Genentech IncSouth San FranciscoUnited States
| | - Oded Foreman
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Morgan Sheng
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jesse E Hanson
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| |
Collapse
|
6
|
Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. Int J Mol Sci 2023; 24:ijms24031964. [PMID: 36768307 PMCID: PMC9916342 DOI: 10.3390/ijms24031964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman's correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFβR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines.
Collapse
|
7
|
Huang Z, Chen Y, Yang C, Ma B, Guo S, Zhang J, Chen N, Umar T, Yin B, Deng G. Enhanced expression of miR-26a ameliorates lipopolysaccharide-induced endometritis by targeting MAP3K8 to inactivate MAPK signaling pathway. J Reprod Immunol 2022; 154:103751. [PMID: 36252394 DOI: 10.1016/j.jri.2022.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Endometritis is a severe postpartum inflammatory disease that puts cows' reproductive health at risk and causes the dairy industry to suffer significant financial losses. The present study aimed to investigate the regulatory role of miR‑26a in LPS‑induced bovine endometrial epithelial cells (bEECs) and the implication for endometritis. Here, we found inflammatory cell infiltration and destruction of endometrial structure in cow uterus, and dramatic increase in myeloperoxidase (MPO) activity and upregulation of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in endometritis. Meanwhile, miR-26a was down-regulated, but MAP3K8 was increased in the uterine tissue of endometritis. Similarly, the expression of miR-26a was significantly decreased in LPS-stimulated bEECs, while MAP3K8 was risen. In addition, we further verified that MAP3K8 was a target of miR-26a by dual-luciferase reporter assay. Under LPS stress, over-expressing miR-26a markedly decreased MAP3K8 expression levels, along with the reduced expression of inflammatory factors, such as IL-1β, TNF-α and IL-6, whereas this effect was countered by the inhibition of miR-26a. Furthermore, we demonstrated that miR-26a overexpression prevented the MAPK pathway from being activated by targeting MAP3K8. Then we carried out experiments in LPS-stimulated mice uterus to expound that MAP3K8 was essential in endometritis development, which further confirmed the reliability of the above results. In conclusion, overexpression of miR-26a effectively inhibited the expression of MAP3K8 in LPS-induced bEECs and thereby partially suppressed the activation of MAPK signaling pathway. miR-26a and MAP3K8 may be a promising biomarker and therapeutic target for dairy cow endometritis.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Cheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bin Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
8
|
Versele R, Sevin E, Gosselet F, Fenart L, Candela P. TNF-α and IL-1β Modulate Blood-Brain Barrier Permeability and Decrease Amyloid-β Peptide Efflux in a Human Blood-Brain Barrier Model. Int J Mol Sci 2022; 23:ijms231810235. [PMID: 36142143 PMCID: PMC9499506 DOI: 10.3390/ijms231810235] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer’s disease (AD) by contributing to amyloid-β (Aβ) peptide accumulation. Here, we investigated whether TNF-α and IL-1β modulate the permeability of the BBB and alter Aβ peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1β differentially induced changes in BLECs’ permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1β act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aβ peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aβ peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
- Correspondence:
| |
Collapse
|
9
|
Wyatt KD, Sarr D, Sakamoto K, Watford WT. Influenza-induced Tpl2 expression within alveolar epithelial cells is dispensable for host viral control and anti-viral immunity. PLoS One 2022; 17:e0262832. [PMID: 35051238 PMCID: PMC8775564 DOI: 10.1371/journal.pone.0262832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumor progression locus 2 (Tpl2) is a serine/threonine kinase that regulates the expression of inflammatory mediators in response to Toll-like receptors (TLR) and cytokine receptors. Global ablation of Tpl2 leads to severe disease in response to influenza A virus (IAV) infection, characterized by respiratory distress, and studies in bone marrow chimeric mice implicated Tpl2 in non-hematopoietic cells. Lung epithelial cells are primary targets and replicative niches of influenza viruses; however, the specific regulation of antiviral responses by Tpl2 within lung epithelial cells has not been investigated. Herein, we show that Tpl2 is basally expressed in primary airway epithelial cells and that its expression increases in both type I and type II airway epithelial cells (AECI and AECII) in response to influenza infection. We used Nkx2.1-cre to drive Tpl2 deletion within pulmonary epithelial cells to delineate epithelial cell-specific functions of Tpl2 during influenza infection in mice. Although modest increases in morbidity and mortality were attributed to cre-dependent deletion in lung epithelial cells, no alterations in host cytokine production or lung pathology were observed. In vitro, Tpl2 inhibition within the type I airway epithelial cell line, LET1, as well as genetic ablation in primary airway epithelial cells did not alter cytokine production. Overall, these findings establish that Tpl2-dependent defects in cells other than AECs are primarily responsible for the morbidity and mortality seen in influenza-infected mice with global Tpl2 ablation.
Collapse
Affiliation(s)
- Kara D. Wyatt
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Demba Sarr
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cognitive Dysfunction after Heart Disease: A Manifestation of the Heart-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4899688. [PMID: 34457113 PMCID: PMC8387198 DOI: 10.1155/2021/4899688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The functions of the brain and heart, which are the two main supporting organs of human life, are closely linked. Numerous studies have expounded the mechanisms of the brain-heart axis and its related clinical applications. However, the effect of heart disease on brain function, defined as the heart-brain axis, is less studied even though cognitive dysfunction after heart disease is one of its most frequently reported manifestations. Hypoperfusion caused by heart failure appears to be an important risk factor for cognitive decline. Blood perfusion, the immune response, and oxidative stress are the possible main mechanisms of cognitive dysfunction, indicating that the blood-brain barrier, glial cells, and amyloid-β may play active roles in these mechanisms. Clinicians should pay more attention to the cognitive function of patients with heart disease, especially those with heart failure. In addition, further research elucidating the associated mechanisms would help discover new therapeutic targets to intervene in the process of cognitive dysfunction after heart disease. This review discusses cognitive dysfunction in relation to heart disease and its potential mechanisms.
Collapse
|
11
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|