1
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Wei H, Zhong Z, Li Z, Zhang Y, Stukenbrock EH, Tang B, Yang N, Baroncelli R, Peng L, Liu Z, He X, Yang Y, Yuan Z. Loss of the accessory chromosome converts a pathogenic tree-root fungus into a mutualistic endophyte. PLANT COMMUNICATIONS 2024; 5:100672. [PMID: 37563834 PMCID: PMC10811371 DOI: 10.1016/j.xplc.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a ∼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.
Collapse
Affiliation(s)
- Huanshen Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118 Kiel, Germany; Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| | - Ningning Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinghua He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuzhan Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
4
|
Brahma P, Aggarwal R, Sanyal K. Biased eviction of variant histone H3 nucleosomes triggers biofilm growth in Candida albicans. mBio 2023; 14:e0206323. [PMID: 37768046 PMCID: PMC10653867 DOI: 10.1128/mbio.02063-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Candida albicans lives as a commensal in most healthy humans but can cause superficial skin infections to life-threatening systemic infections. C. albicans also forms biofilms on biotic and abiotic surfaces. Biofilm cells are difficult to treat and highly resistant to antifungals. A specific set of genes is differentially regulated in biofilm cells as compared to free-floating planktonic cells of C. albicans. In this study, we addressed how a variant histone H3VCTG, a previously identified negative regulator of biofilm formation, modulates gene expression changes. By providing compelling evidence, we show that biased eviction of H3VCTG nucleosomes at the promoters of biofilm-relevant genes facilitates the accessibility of both transcription activators and repressors to modulate gene expression. Our study is a comprehensive investigation of genome-wide nucleosome occupancy in both planktonic and biofilm states, which reveals transition to an open chromatin landscape during biofilm mode of growth in C. albicans, a medically relevant pathogen.
Collapse
Affiliation(s)
- Priya Brahma
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Singha R, Aggarwal R, Sanyal K. Negative regulation of biofilm development by the CUG-Ser1 clade-specific histone H3 variant is dependent on the canonical histone chaperone CAF-1 complex in Candida albicans. Mol Microbiol 2023; 119:574-585. [PMID: 36855815 DOI: 10.1111/mmi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
6
|
Kwok ACM, Li C, Lam WT, Wong JTY. Responses of dinoflagellate cells to ultraviolet-C irradiation. Environ Microbiol 2022; 24:5936-5950. [PMID: 35837869 DOI: 10.1111/1462-2920.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/12/2023]
Abstract
Dinoflagellates are important aquatic microbes and major harmful algal bloom (HAB) agents that form invasive species through ship ballast transfer. UV-C installations are recommended for ballast treatments and HAB controls, but there is a lack of knowledge in dinoflagellate responses to UV-C. We report here dose-dependent cell cycle delay and viability loss of dinoflagellate cells irradiated with UV-C, with significant proliferative reduction at 800 Jm-2 doses or higher, but immediate LD50 was in the range of 2400-3200 Jm-2 . At higher dosages, some dinoflagellate cells surprisingly survived after days of recovery incubation, and continued viability loss, with samples exhibiting DNA fragmentations per proliferative resumption. Sequential cell cycle postponements, suggesting DNA damages were repaired over one cell cycle, were revealed with flow cytometric analysis and transcriptomic analysis. Over a sustained level of other DNA damage repair pathways, transcript elevation was observed only for several components of base pair repair and mismatch repair. Cumulatively, our findings demonstrated special DNA damage responses in dinoflagellate cells, which we discussed in relation to their unique chromo-genomic characters, as well as indicating resilience of dinoflagellate cells to UV-C.
Collapse
Affiliation(s)
- Alvin Chun Man Kwok
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chongping Li
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wing Tai Lam
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Joseph Tin Yum Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
7
|
Wang Z, Yin L, Qi Y, Zhang J, Zhu H, Tang J. Intestinal Flora-Derived Kynurenic Acid Protects Against Intestinal Damage Caused by Candida albicans Infection via Activation of Aryl Hydrocarbon Receptor. Front Microbiol 2022; 13:934786. [PMID: 35923391 PMCID: PMC9339982 DOI: 10.3389/fmicb.2022.934786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Colonization of the intestinal tract by Candida albicans (C. albicans) can lead to invasive candidiasis. Therefore, a functional intestinal epithelial barrier is critical for protecting against invasive C. albicans infections. We collected fecal samples from patients with Candida albicans bloodstream infection and healthy people. Through intestinal flora 16sRNA sequencing and intestinal metabolomic analysis, we found that C. albicans infection resulted in a significant decrease in the expression of the metabolite kynurenic acid (KynA). We used a repeated C. albicans intestinal infection mouse model, established following intake of 3% dextran sulfate sodium salt (DSS) for 9 days, and found that KynA, a tryptophan metabolite, inhibited inflammation, promoted expression of intestinal tight junction proteins, and protected from intestinal barrier damage caused by invasive Candida infections. We also demonstrated that KynA activated aryl hydrocarbon receptor (AHR) repressor in vivo and in vitro. Using Caco-2 cells co-cultured with C. albicans, we showed that KynA activated AHR, inhibited the myosin light chain kinase-phospho-myosin light chain (MLCK-pMLC) signaling pathway, and promoted tristetraprolin (TTP) expression to alleviate intestinal inflammation. Our findings suggest that the metabolite KynA which is differently expressed in patients with C. albicans infection and has a protective effect on the intestinal epithelium, via activating AHR, could be explored to provide new potential therapeutic strategies for invasive C. albicans infections.
Collapse
Affiliation(s)
- Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yue Qi
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Haiyan Zhu,
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Jianguo Tang,
| |
Collapse
|
8
|
A J Domain Protein Functions as a Histone Chaperone to Maintain Genome Integrity and the Response to DNA Damage in a Human Fungal Pathogen. mBio 2021; 12:e0327321. [PMID: 34933457 PMCID: PMC8689522 DOI: 10.1128/mbio.03273-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a dnj4Δ deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents. The transcriptional response to DNA damage was also impaired in the dnj4Δ mutant. Genes related to DNA damage and iron homeostasis were upregulated in the wild-type strain in response to hydroxyurea treatment; however, their upregulation was either absent from or reduced in the dnj4Δ mutant. Accordingly, excess iron rescued the mutant’s growth in response to DNA-damaging agents. Iron homeostasis is crucial for virulence in C. neoformans; however, Dnj4 was found to be dispensable for disease in a mouse model of cryptococcosis. Finally, we confirmed a conserved role for Dnj4 as a histone chaperone by expressing it in Saccharomyces cerevisiae and showing that it disrupted endogenous histone chaperoning. Altogether, this study highlights the importance of a JDP cochaperone in maintaining genome integrity in C. neoformans.
Collapse
|