1
|
McHugh SB, Lopes-Dos-Santos V, Castelli M, Gava GP, Thompson SE, Tam SKE, Hartwich K, Perry B, Toth R, Denison T, Sharott A, Dupret D. Offline hippocampal reactivation during dentate spikes supports flexible memory. Neuron 2024; 112:3768-3781.e8. [PMID: 39321790 PMCID: PMC7616703 DOI: 10.1016/j.neuron.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Stabilizing new memories requires coordinated neuronal spiking activity during sleep. Hippocampal sharp-wave ripples (SWRs) in the cornu ammonis (CA) region and dentate spikes (DSs) in the dentate gyrus (DG) are prime candidate network events for supporting this offline process. SWRs have been studied extensively, but the contribution of DSs remains unclear. By combining triple-ensemble (DG-CA3-CA1) recordings and closed-loop optogenetics in mice, we show that, like SWRs, DSs synchronize spiking across DG and CA principal cells to reactivate population-level patterns of neuronal coactivity expressed during prior waking experience. Notably, the population coactivity structure in DSs is more diverse and higher dimensional than that seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during DSs impairs subsequent flexible memory performance during multi-object recognition tasks and associated hippocampal patterns of neuronal coactivity. We conclude that DSs constitute a second offline network event central to hippocampal population dynamics serving memory-guided behavior.
Collapse
Affiliation(s)
- Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Manfredi Castelli
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Sophie E Thompson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Shu K E Tam
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Brook Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Timothy Denison
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
2
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Park EH, Jo YS, Kim EJ, Park EH, Lee KJ, Rhyu IJ, Kim HT, Choi JS. Heterogenous effect of early adulthood stress on cognitive aging and synaptic function in the dentate gyrus. Front Mol Neurosci 2024; 17:1344141. [PMID: 38638601 PMCID: PMC11024304 DOI: 10.3389/fnmol.2024.1344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive aging widely varies among individuals due to different stress experiences throughout the lifespan and vulnerability of neurocognitive mechanisms. To understand the heterogeneity of cognitive aging, we investigated the effect of early adulthood stress (EAS) on three different hippocampus-dependent memory tasks: the novel object recognition test (assessing recognition memory: RM), the paired association test (assessing episodic-like memory: EM), and trace fear conditioning (assessing trace memory: TM). Two-month-old rats were exposed to chronic mild stress for 6 weeks and underwent behavioral testing either 2 weeks or 20 months later. The results show that stress and aging impaired different types of memory tasks to varying degrees. RM is affected by combined effect of stress and aging. EM became less precise in EAS animals. TM, especially the contextual memory, showed impairment in aging although EAS attenuated the aging effect, perhaps due to its engagement in emotional memory systems. To further explore the neural underpinnings of these multi-faceted effects, we measured long-term potentiation (LTP), neural density, and synaptic density in the dentate gyrus (DG). Both stress and aging reduced LTP. Additionally, the synaptic density per neuron showed a further reduction in the stress aged group. In summary, EAS modulates different forms of memory functions perhaps due to their substantial or partial dependence on the functional integrity of the hippocampus. The current results suggest that lasting alterations in hippocampal circuits following EAS could potentially generate remote effects on individual variability in cognitive aging, as demonstrated by performance in multiple types of memory.
Collapse
Affiliation(s)
- Eun Hye Park
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, New York University, New York, NY, United States
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Eui Ho Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kea Joo Lee
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Taek Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Farrell JS, Hwaun E, Dudok B, Soltesz I. Neural and behavioural state switching during hippocampal dentate spikes. Nature 2024; 628:590-595. [PMID: 38480889 PMCID: PMC11023929 DOI: 10.1038/s41586-024-07192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Distinct brain and behavioural states are associated with organized neural population dynamics that are thought to serve specific cognitive functions1-3. Memory replay events, for example, occur during synchronous population events called sharp-wave ripples in the hippocampus while mice are in an 'offline' behavioural state, enabling cognitive mechanisms such as memory consolidation and planning4-11. But how does the brain re-engage with the external world during this behavioural state and permit access to current sensory information or promote new memory formation? Here we found that the hippocampal dentate spike, an understudied population event that frequently occurs between sharp-wave ripples12, may underlie such a mechanism. We show that dentate spikes are associated with distinctly elevated brain-wide firing rates, primarily observed in higher order networks, and couple to brief periods of arousal. Hippocampal place coding during dentate spikes aligns to the mouse's current spatial location, unlike the memory replay accompanying sharp-wave ripples. Furthermore, inhibiting neural activity during dentate spikes disrupts associative memory formation. Thus, dentate spikes represent a distinct brain state and support memory during non-locomotor behaviour, extending the repertoire of cognitive processes beyond the classical offline functions.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- F.M. Kirby Neurobiology Center and Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Santiago RMM, Lopes-Dos-Santos V, Aery Jones EA, Huang Y, Dupret D, Tort ABL. Waveform-based classification of dentate spikes. Sci Rep 2024; 14:2989. [PMID: 38316828 PMCID: PMC10844627 DOI: 10.1038/s41598-024-53075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M M Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B L Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
6
|
Park EH, Kao HY, Jourdi H, van Dijk MT, Carrillo-Segura S, Tunnell KW, Gutierrez J, Wallace EJ, Troy-Regier M, Radwan B, Lesburguères E, Alarcon JM, Fenton AA. Phencyclidine Disrupts Neural Coordination and Cognitive Control by Dysregulating Translation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:252-263. [PMID: 38298788 PMCID: PMC10829677 DOI: 10.1016/j.bpsgos.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 02/02/2024] Open
Abstract
Background Phencyclidine (PCP) causes psychosis, is abused with increasing frequency, and was extensively used in antipsychotic drug discovery. PCP discoordinates hippocampal ensemble action potential discharge and impairs cognitive control in rats, but how this uncompetitive NMDA receptor (NMDAR) antagonist impairs cognition remains unknown. Methods The effects of PCP were investigated on hippocampal CA1 ensemble action potential discharge in vivo in urethane-anesthetized rats and during awake behavior in mice, on synaptic responses in ex vivo mouse hippocampus slices, in mice on a hippocampus-dependent active place avoidance task that requires cognitive control, and on activating the molecular machinery of translation in acute hippocampus slices. Mechanistic causality was assessed by comparing the PCP effects with the effects of inhibitors of protein synthesis, group I metabotropic glutamate receptors (mGluR1/5), and subunit-selective NMDARs. Results Consistent with ionotropic actions, PCP discoordinated CA1 ensemble action potential discharge. PCP caused hyperactivity and impaired active place avoidance, despite the rodents having learned the task before PCP administration. Consistent with metabotropic actions, PCP exaggerated protein synthesis-dependent DHPG-induced mGluR1/5-stimulated long-term synaptic depression. Pretreatment with anisomycin or the mGluR1/5 antagonist MPEP, both of which repress translation, prevented PCP-induced discoordination and the cognitive and sensorimotor impairments. PCP as well as the NR2A-containing NMDAR antagonist NVP-AAM077 unbalanced translation that engages the Akt, mTOR (mechanistic target of rapamycin), and 4EBP1 translation machinery and increased protein synthesis, whereas the NR2B-containing antagonist Ro25-6981 did not. Conclusions PCP dysregulates translation, acting through NR2A-containing NMDAR subtypes, recruiting mGluR1/5 signaling pathways, and leading to neural discoordination that is central to the cognitive and sensorimotor impairments.
Collapse
Affiliation(s)
- Eun Hye Park
- Center for Neural Science, New York University, New York, New York
| | - Hsin-Yi Kao
- Center for Neural Science, New York University, New York, New York
| | - Hussam Jourdi
- Center for Neural Science, New York University, New York, New York
| | - Milenna T. van Dijk
- Center for Neural Science, New York University, New York, New York
- Graduate Program in Neuroscience and Physiology, New York University Langone Medical Center, New York, New York
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, New York
- Graduate Program in Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, New York, New York
| | - Kayla W. Tunnell
- Center for Neural Science, New York University, New York, New York
| | | | - Emma J. Wallace
- Graduate Program in Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Matthew Troy-Regier
- Graduate Program in Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Basma Radwan
- Graduate Program in Neural Science, Center for Neural Science, New York University, New York, New York
| | | | - Juan Marcos Alarcon
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - André A. Fenton
- Center for Neural Science, New York University, New York, New York
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
- Neuroscience Institute, NYU Langone Health, New York, New York
| |
Collapse
|
7
|
Huang X, Ye C, Zhao X, Tong Y, Lin W, Huang Q, Zheng Y, Wang J, Zhang A, Mo Y. TRIM45 aggravates microglia pyroptosis via Atg5/NLRP3 axis in septic encephalopathy. J Neuroinflammation 2023; 20:284. [PMID: 38037161 PMCID: PMC10688018 DOI: 10.1186/s12974-023-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglial pyroptosis is an important pathogenic mechanism of septic encephalopathy (SAE). It has been reported that TRIM45 is associated with tumours and inflammatory diseases. However, the role of TRIM45 in SAE and the relationship between TRIM45 and microglial pyroptosis are unknown. In this study, we found that TRIM45 played an important role in regulating microglial pyroptosis and the molecular mechanism. METHODS SAE was induced by intraperitoneal injection of LPS in WT and AAV-shTRIM45 mice. BV2 cells were treated with LPS/ATP in vitro. Cognitive function was assessed by the Morris water maze. Nissl staining was used to evaluate histological and structural lesions. ELISA was used to dectect neuroinflammation. qPCR was used to detect the mRNA levels of inflammatory cytokines, NLRP3, and autophagy genes. Western blotting and immunofluorescence analysis were used to analyse the expression of the proteins. Changes in reactive oxygen species (ROS) in cells were observed by flow cytometry. Changes in mitochondrial membrane potential in BV2 cells were detected by JC-1 staining. Peripheral blood mononuclear cells were extracted from blood by density gradient centrifugation and then used for qPCR, western blotting and flow detection. To further explore the mechanism, we used the overexpression plasmids TRIM45 and Atg5 as well as siRNA-TRIM45 and siRNA-Atg5 to analyse the downstream pathway of NLRP3. The protein and mRNA levels of TRIM45 in peripheral blood mononuclear cells from sepsis patients were examined. RESULTS Knocking down TRIM45 protected against neuronal damage and cognitive impairment in septic mice. TRIM45 knockdown inhibited microglial pyroptosis and the secretion of inflammatory cytokines in vivo and in vitro, which was mediated by NLRP3/Gsdmd-N activation. Overexpression of TRIM45 could activate NLRP3 and downstream proteins. Further examination showed that TRIM45 regulated the activation of NLRP3 by altering Atg5 and regulating autophagic flux. It was also found that overexpression and knockdown of TRIM45 affected the changes in ROS and mitochondrial membrane potential. Thus, knocking down TRIM45 could reduce microglial pyroptosis, the secretion of proinflammatory cytokines, and neuronal damage and improve cognitive function. In addition, the level of TRIM45 protein in septic patients was increased. There was a positive linear correlation between APACHE II score and TRIM45, between SOFA score and TRIM45. Compared to group GCS > 9, level of TRIM45 were increased in group GCS ≤ 8. CONCLUSION TRIM45 plays a key role in neuroinflammation caused by LPS, and the mechanism may involve TRIM45-mediated exacerbation of microglial pyroptosis via the Atg5/NLRP3 axis.
Collapse
Affiliation(s)
- Xuliang Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changzhou Ye
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Tong
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junlu Wang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yunchang Mo
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Santiago RM, Lopes-dos-Santos V, Jones EAA, Huang Y, Dupret D, Tort AB. Waveform-based classification of dentate spikes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563826. [PMID: 37961150 PMCID: PMC10634814 DOI: 10.1101/2023.10.24.563826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M.M. Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Vítor Lopes-dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B.L. Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
9
|
Levy ERJ, Carrillo-Segura S, Park EH, Redman WT, Hurtado JR, Chung S, Fenton AA. A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields. Cell Rep 2023; 42:113142. [PMID: 37742193 PMCID: PMC10842170 DOI: 10.1016/j.celrep.2023.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.
Collapse
Affiliation(s)
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, NY 10003, USA; Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - William Thomas Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - SueYeon Chung
- Center for Neural Science, New York University, New York, NY 10003, USA; Flatiron Institute Center for Computational Neuroscience, New York, NY 10010, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
10
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
11
|
Fenton AA, Hurtado JR, Broek JAC, Park E, Mishra B. Do Place Cells Dream of Deceptive Moves in a Signaling Game? Neuroscience 2023; 529:129-147. [PMID: 37591330 PMCID: PMC10592151 DOI: 10.1016/j.neuroscience.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we are to understand cognitive functions like learning, memory, and perception. The present work focuses on systems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus. These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.
Collapse
Affiliation(s)
- André A Fenton
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| | - José R Hurtado
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Jantine A C Broek
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - EunHye Park
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Bud Mishra
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA; Department of Cell Biology, NYU Langone Medical Center, New York, NY, USA; Simon Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
12
|
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal-hippocampal circuit coding following prolonged febrile seizures. Hippocampus 2023; 33:970-992. [PMID: 37096324 PMCID: PMC10529121 DOI: 10.1002/hipo.23541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Yuncai Chen
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
| | - Jennifer M. Daglian
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
| | - Gregory L. Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Tallie Z. Baram
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
- Departments of Neurology, University California-Irvine, Irvine, California, USA
| | - Jeremy M. Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
13
|
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, Knierim JJ, Rangel LM. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci 2023; 24:502-517. [PMID: 37316588 PMCID: PMC10529488 DOI: 10.1038/s41583-023-00710-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.
Collapse
Affiliation(s)
- Mia Borzello
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Helen Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Craig Stark
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
15
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
16
|
Frankle L. Entropy, Amnesia, and Abnormal Déjà Experiences. Front Psychol 2022; 13:794683. [PMID: 35967717 PMCID: PMC9364811 DOI: 10.3389/fpsyg.2022.794683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research has contrasted fleeting erroneous experiences of familiarity with equally convincing, and often more stubborn erroneous experiences of remembering. While a subset of the former category may present as nonpathological “déjà vu,” the latter, termed “déjà vécu” can categorize a delusion-like confabulatory phenomenon first described in elderly dementia patients. Leading explanations for this experience include the dual process view, in which erroneous familiarity and erroneous recollection are elicited by inappropriate activation of the parahippocampal cortex and the hippocampus, respectively, and the more popular encoding-as-retrieval explanation in which normal memory encoding processes are falsely flagged and interpreted as memory retrieval. This paper presents a novel understanding of this recollective confabulation that builds on the encoding-as-retrieval hypothesis but more adequately accounts for the co-occurrence of persistent déjà vécu with both perceptual novelty and memory impairment, the latter of which occurs not only in progressive dementia but also in transient epileptic amnesia (TEA) and psychosis. It makes use of the growing interdisciplinary understanding of the fluidity of time and posits that the functioning of memory and the perception of novelty, long known to influence the subjective experience of time, may have a more fundamental effect on the flow of time.
Collapse
|
17
|
Danchin A, Fenton AA. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.796413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, which can be analog or digital, and is often mixed. The theory behind computers is essentially digital, but efficient simulations of phenomena can be performed by analog devices; indeed, any physical calculation requires implementation in the physical world and is therefore analog to some extent, despite being based on abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks, functions as an analog device and has given rise to artificial neural networks that are implemented as digital algorithms but function as analog models would. Analog constructs compute with the implementation of a variety of feedback and feedforward loops. In contrast, digital algorithms allow the implementation of recursive processes that enable them to generate unparalleled emergent properties. We briefly illustrate how the cortical organization of neurons can integrate signals and make predictions analogically. While we conclude that brains are not digital computers, we speculate on the recent implementation of human writing in the brain as a possible digital path that slowly evolves the brain into a genuine (slow) Turing machine.
Collapse
|
18
|
Zhang L, Prince SM, Paulson AL, Singer AC. Goal discrimination in hippocampal nonplace cells when place information is ambiguous. Proc Natl Acad Sci U S A 2022; 119:e2107337119. [PMID: 35254897 PMCID: PMC8931233 DOI: 10.1073/pnas.2107337119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceGoal-directed spatial navigation has been found to rely on hippocampal neurons that are spatially modulated. We show that "nonplace" cells without significant spatial modulation play a role in discriminating goals when environmental cues for goals are ambiguous. This nonplace cell activity is performance-dependent and is modulated by gamma oscillations. Finally, nonplace cell goal discrimination coding fails in a mouse model of Alzheimer's disease (AD). Together, these results show that nonplace cell firing can signal unique task-relevant information when spatial information is ambiguous; these signals depend on performance and are absent in a mouse model of AD.
Collapse
Affiliation(s)
- Lu Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Stephanie M. Prince
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Abigail L. Paulson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Annabelle C. Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
19
|
Jones EAA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, Koutsodendris N, Nelson M, Yoon SY, Huang K, Yuan H, Gill TM, Huang Y, Frank LM. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep 2021; 37:110159. [PMID: 34965435 PMCID: PMC9069800 DOI: 10.1016/j.celrep.2021.110159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.
Collapse
Affiliation(s)
- Emily A. Aery Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jason S. Bant
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anna K. Gillespie
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Maxine Nelson
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Ky Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Heidi Yuan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Theodore M. Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA,Departments of Neurology and Pathology, University of California, San Francisco, CA 94143, USA,Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead contact,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| |
Collapse
|
20
|
Chung A, Jou C, Grau-Perales A, Levy E, Dvorak D, Hussain N, Fenton AA. Cognitive control persistently enhances hippocampal information processing. Nature 2021; 600:484-488. [PMID: 34759316 PMCID: PMC8872635 DOI: 10.1038/s41586-021-04070-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/29/2021] [Indexed: 01/30/2023]
Abstract
Could learning that uses cognitive control to judiciously use relevant information while ignoring distractions generally improve brain function, beyond forming explicit memories? According to a neuroplasticity hypothesis for how some cognitive behavioural therapies are effective, cognitive control training (CCT) changes neural circuit information processing1-3. Here we investigated whether CCT persistently alters hippocampal neural circuit function. We show that mice learned and remembered a conditioned place avoidance during CCT that required ignoring irrelevant locations of shock. CCT facilitated learning new tasks in novel environments for several weeks, relative to unconditioned controls and control mice that avoided the same place during reduced distraction. CCT rapidly changes entorhinal cortex-to-dentate gyrus synaptic circuit function, resulting in an excitatory-inhibitory subcircuit change that persists for months. CCT increases inhibition that attenuates the dentate response to medial entorhinal cortical input, and through disinhibition, potentiates the response to strong inputs, pointing to overall signal-to-noise enhancement. These neurobiological findings support the neuroplasticity hypothesis that, as well as storing item-event associations, CCT persistently optimizes neural circuit information processing.
Collapse
Affiliation(s)
- Ain Chung
- Center for Neural Science, New York University
| | - Claudia Jou
- Department of Psychology, Hunter College, City University of New York
| | | | - Eliott Levy
- Center for Neural Science, New York University
| | - Dino Dvorak
- Center for Neural Science, New York University
| | | | - André A. Fenton
- Center for Neural Science, New York University,Neuroscience Institute at the NYU Langone Medical Center
| |
Collapse
|