1
|
Yan G, Wang X, Zhang G. Unraveling the landscape of non-melanoma skin cancer through single-cell RNA sequencing technology. Front Oncol 2024; 14:1500300. [PMID: 39558960 PMCID: PMC11570581 DOI: 10.3389/fonc.2024.1500300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) mainly includes basal cell carcinoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma, showing a low mortality rate but the highest incidence worldwide. In recent decades, research has focused on understanding the pathogenesis and clinical treatments of NMSC, leading to significant advances in our knowledge of these diseases and the development of novel therapies, including immunotherapy. Nevertheless, the low to moderate objective response rate, high recurrence, and therapeutic resistance remain persistent challenges, which are partly attributable to the intratumoral heterogeneity. This heterogeneity indicates that tumor cells, immune cells, and stromal cells in the tumor microenvironment can be reshaped to a series of phenotypic and transcriptional cell states that vary in invasiveness and treatment responsiveness. The advent of single-cell RNA sequencing (scRNA-seq) has enabled the comprehensive profiling of gene expression heterogeneity at the single-cell level, which has been applied to NMSC to quantify cell compositions, define states, understand tumor evolution, and discern drug resistance. In this review, we highlight the key findings, with a focus on intratumoral heterogeneity and the mechanism of drug resistance in NMSC, as revealed by scRNA-seq. Furthermore, we propose potential avenues for future research in NMSC using scRNA-seq.
Collapse
Affiliation(s)
- Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Cai MY, Mao X, Zhang B, Yip CY, Pan KW, Niu Y, Kwok-Wing Tsui S, Si-Long Vong J, Choi-Wo Mak J, Luo W, Ko WH. Single-cell RNA sequencing reveals heterogeneity of ALI model and epithelial cell alterations after exposure to electronic cigarette aerosol. Heliyon 2024; 10:e38552. [PMID: 39397927 PMCID: PMC11470615 DOI: 10.1016/j.heliyon.2024.e38552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) have been advertised as a healthier alternative to traditional cigarettes; however, their exact effects on the bronchial epithelium are poorly understood. Air-liquid interface culture human bronchial epithelium (ALI-HBE) contains various cell types, including basal cell, ciliated cell and secretory cell, providing an in vitro model that simulates the biological characteristics of normal bronchial epithelium. Multiplex single-cell RNA sequencing of ALI-HBE was used to reveal previously unrecognized transcriptional heterogeneity within the human bronchial epithelium and cell type-specific responses to acute exposure to e-cigarette aerosol (e-aerosol) containing distinct components (nicotine and/or flavoring). The findings of our study show that nicotine-containing e-aerosol affected gene expression related to transformed basal cells into secretory cells after acute exposure; inhibition of secretory cell function by down-regulating genes related to epithelial cell differentiation, calcium ion binding, extracellular exosomes, and secreted proteins; and enhanced interaction between secretory cells and other cells. On the other hand, flavoring may alter the growth pattern of epithelial cells and make basal cells more susceptible to SARS-CoV infection. Besides, the data also indicate factors that may promote SARS-CoV-2 infection and suggest therapeutic targets for restoring normal bronchial epithelium function after e-cigarette use. In summary, the current study offered fresh perspectives on alterations in the cellular landscape and cell type-specific responses in human bronchial epithelium that are brought about by e-cigarette use.
Collapse
Affiliation(s)
- Meng-yun Cai
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Xiaofan Mao
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ke-wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Joaquim Si-Long Vong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Judith Choi-Wo Mak
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
3
|
Li NY, Zhang W, Haensel D, Jussila AR, Pan C, Gaddam S, Plevritis SK, Oro AE. Basal-to-inflammatory transition and tumor resistance via crosstalk with a pro-inflammatory stromal niche. Nat Commun 2024; 15:8134. [PMID: 39289380 PMCID: PMC11408617 DOI: 10.1038/s41467-024-52394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Cancer-associated inflammation is a double-edged sword possessing both pro- and anti-tumor properties through ill-defined tumor-immune dynamics. While we previously identified a carcinoma tumor-intrinsic resistance pathway, basal-to-squamous cell carcinoma transition, here, employing a multipronged single-cell and spatial-omics approach, we identify an inflammation and therapy-enriched tumor state we term basal-to-inflammatory transition. Basal-to-inflammatory transition signature correlates with poor overall patient survival in many epithelial tumors. Basal-to-squamous cell carcinoma transition and basal-to-inflammatory transition occur in adjacent but distinct regions of a single tumor: basal-to-squamous cell carcinoma transition arises within the core tumor nodule, while basal-to-inflammatory transition emerges from a specialized inflammatory environment defined by a tumor-associated TREM1 myeloid signature. TREM1 myeloid-derived cytokines IL1 and OSM induce basal-to-inflammatory transition in vitro and in vivo through NF-κB, lowering sensitivity of patient basal cell carcinoma explant tumors to Smoothened inhibitor treatment. This work deepens our knowledge of the heterogeneous local tumor microenvironment and nominates basal-to-inflammatory transition as a drug-resistant but targetable tumor state driven by a specialized inflammatory microenvironment.
Collapse
Affiliation(s)
- Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna R Jussila
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
5
|
Long GR, Kurdian AI, Atwood SX. Applying Multiomics to Basosquamous Carcinoma. J Invest Dermatol 2024; 144:1181-1183. [PMID: 38385917 DOI: 10.1016/j.jid.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/23/2024]
Affiliation(s)
- Gavin R Long
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Arinnae I Kurdian
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, California, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
6
|
Jussila AR, Haensel D, Gaddam S, Oro AE. Acquisition of Drug Resistance in Basal Cell Nevus Syndrome Tumors through Basal to Squamous Cell Carcinoma Transition. J Invest Dermatol 2024; 144:1368-1377.e6. [PMID: 38157930 PMCID: PMC11116079 DOI: 10.1016/j.jid.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
Although basal cell carcinomas arise from ectopic Hedgehog pathway activation and can be treated with pathway inhibitors, sporadic basal cell carcinomas display high resistance rates, whereas tumors arising in patients with Gorlin syndrome with germline Patched (PTCH1) alterations are uniformly suppressed by inhibitor therapy. In rare cases, patients with Gorlin syndrome on long-term inhibitor therapy will develop individual resistant tumor clones that rapidly progress, but the basis of this resistance remains unstudied. In this study, we report a case of an SMO inhibitor-resistant tumor arising in a patient with Gorlin syndrome on suppressive SMO inhibitor for nearly a decade. Using a combination of multiomics and spatial transcriptomics, we define the tumor populations at the cellular and tissue level to conclude that Gorlin tumors can develop resistance to SMO inhibitors through the previously described basal to squamous cell carcinoma transition. Intriguingly, through spatial whole-exome genomic analysis, we nominate PCYT2, ETNK1, and the phosphatidylethanolamine biosynthetic pathway as genetic suppressors of basal to squamous cell carcinoma transition resistance. These observations provide a general framework for studying tumor evolution and provide important clinical insight into mechanisms of resistance to SMO inhibitors for not only Gorlin syndrome but also sporadic basal cell carcinomas.
Collapse
Affiliation(s)
- Anna R Jussila
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
7
|
Huang L, Wang X, Pei S, Li X, Dong L, Bian X, Sun H, Jin L, Hou H, Shi W, Zhang X, Zhang L, Zhao S, Chen X, Yin M. Single-Cell Profiling Reveals Sustained Immune Infiltration, Surveillance, and Tumor Heterogeneity in Infiltrative Basal Cell Carcinoma. J Invest Dermatol 2023; 143:2283-2294.e17. [PMID: 37201777 DOI: 10.1016/j.jid.2023.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Infiltrative basal cell carcinoma (iBCC) is a particularly aggressive subtype of basal cell carcinoma that tends to progress and recur after surgery, and its malignancy is closely related to the tumor microenvironment. In this study, we performed a comprehensive single-cell RNA analysis to profile 29,334 cells from iBCC and adjacent normal skin. We found active immune collaborations enriched in iBCC. Specifically, SPP1+CXCL9/10high macrophage 1 had strong BAFF signaling with plasma cells, and T follicular helper-like cells highly expressed the B-cell chemokine CXCL13. Heterogeneous proinflammatory SPP1+CXCL9/10high macrophage 1 and angiogenesis-related SPP1+CCL2high macrophage 1 were identified within the tumor microenvironment. Interestingly, we found an upregulation of major histocompatibility complex I molecules in fibroblasts in iBCC compared with those in adjacent normal skin. Moreover, MDK signals derived from malignant basal cells were markedly increased, and their expression was an independent factor in predicting the infiltration depth of iBCC, emphasizing its role in driving malignancy and remodeling the tumor microenvironment. In addition, we identified differentiation-associated SOSTDC1+IGFBP5+CTSV+ malignant basal subtype 1 and epithelial-mesenchymal transition-associated TNC+SFRP1+CHGA+ malignant basal subtype 2 cells. The high expression of malignant basal 2 cell markers was associated with the invasion and recurrence of iBCC. Altogether, our study helps to elucidate the cellular heterogeneity in iBCC and provides potential therapeutic targets for clinical research.
Collapse
Affiliation(s)
- Lingjuan Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xianggui Wang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China; Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyao Pei
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xin Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xiaohui Bian
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Liping Jin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Huihui Hou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Wensheng Shi
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China; Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiyuan Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Lining Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China.
| |
Collapse
|
8
|
Yang Y, Gomez N, Infarinato N, Adam RC, Sribour M, Baek I, Laurin M, Fuchs E. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nat Cell Biol 2023; 25:1185-1195. [PMID: 37488435 PMCID: PMC10415178 DOI: 10.1038/s41556-023-01184-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.
Collapse
Affiliation(s)
- Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Nicholas Gomez
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Allen Institute for Cell Sciences, Seattle, WA, USA
| | - Nicole Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- PRECISIONscientia, Yardley, PA, USA
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Megan Sribour
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Inwha Baek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Kyung Hee University, Seoul, South Korea
| | - Mélanie Laurin
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Jussila AR, Haensel D, Gaddam S, Oro AE. Acquisition of drug resistance in basal cell nevus syndrome tumors through basal to squamous cell carcinoma transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550719. [PMID: 37546976 PMCID: PMC10402087 DOI: 10.1101/2023.07.26.550719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
While basal cell carcinomas (BCCs) arise from ectopic hedgehog pathway activation and can be treated with pathway inhibitors, sporadic BCCs display high resistance rates while tumors arising in Gorlin syndrome patients with germline Patched ( PTCH1 ) mutations are uniformly suppressed by inhibitor therapy. In rare cases, Gorlin syndrome patients on long-term inhibitor therapy will develop individual resistant tumor clones that rapidly progress, but the basis of this resistance remains unstudied. Here we report a case of an SMO i -resistant tumor arising in a Gorlin patient on suppressive SMO i for nearly a decade. Using a combination of multi-omics and spatial transcriptomics, we define the tumor populations at the cellular and tissue level to conclude that Gorlin tumors can develop resistance to SMO i through the previously described basal to squamous cell carcinoma transition (BST). Intriguingly, through spatial whole exome genomic analysis, we nominate PCYT2, ETNK1, and the phosphatidylethanolamine biosynthetic pathway as novel genetic suppressors of BST resistance. These observations provide a general framework for studying tumor evolution and provide important clinical insight into mechanisms of resistance to SMO i for not only Gorlin syndrome but sporadic BCCs as well.
Collapse
|
10
|
Qiu T, Zhou J, Ji B, Yuan L, Weng T, Liu H. Transcription factor c-fos induces the development of premature ovarian insufficiency by regulating MALAT1/miR-22-3p/STAT1 network. J Ovarian Res 2023; 16:144. [PMID: 37480147 PMCID: PMC10362627 DOI: 10.1186/s13048-023-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The current study attempted to investigate the role of transcription factor c-fos in the development of premature ovarian insufficiency (POI) as well as the underlying mechanism involving the MALAT1/miR-22-3p/STAT1 ceRNA network. METHODS Bioinformatics analysis was performed to extract POI-related microarray dataset for identifying the target genes. Interaction among c-fos, MALAT1, miR-22-3p, and STAT1 was analyzed. An in vivo POI mouse model was prepared followed by injection of sh-c-fos and sh-STAT1 lentiviruses. Besides, an in vitro POI cell model was constructed to study the regulatory roles of c-fos, MALAT1, miR-22-3p, and STAT1. RESULTS c-fos, MALAT1, and STAT1 were highly expressed in ovarian tissues from POI mice and CTX-induced KGN cells, while miR-22-3p was poorly expressed. c-fos targeted MALAT1 and promoted MALAT1 transcription. MALAT1 competitively bound to miR-22-3p and miR-22-3p could suppress STAT1 expression. Mechanically, c-fos aggravated ovarian function impairment in POI mice and inhibited KGN cell proliferation through regulation of the MALAT1/miR-22-3p/STAT1 regulatory network. CONCLUSION Our findings highlighted inducing role of the transcription factor c-fos in POI through modulation of the MALAT1/miR-22-3p/STAT1 ceRNA network.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong Province, 510630, P.R. China
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Bing Ji
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Liuyang Yuan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Tingsong Weng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Huishu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong Province, 510630, P.R. China.
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China.
| |
Collapse
|
11
|
Haensel D, Daniel B, Gaddam S, Pan C, Fabo T, Bjelajac J, Jussila AR, Gonzalez F, Li NY, Chen Y, Hou J, Patel T, Aasi S, Satpathy AT, Oro AE. Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche. Nat Commun 2023; 14:2685. [PMID: 37164949 PMCID: PMC10172319 DOI: 10.1038/s41467-023-37993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023] Open
Abstract
Cancer immunotherapies have revolutionized treatment but have shown limited success as single-agent therapies highlighting the need to understand the origin, assembly, and dynamics of heterogeneous tumor immune niches. Here, we use single-cell and imaging-based spatial analysis to elucidate three microenvironmental neighborhoods surrounding the heterogeneous basal cell carcinoma tumor epithelia. Within the highly proliferative neighborhood, we find that TREM2+ skin cancer-associated macrophages (SCAMs) support the proliferation of a distinct tumor epithelial population through an immunosuppression-independent manner via oncostatin-M/JAK-STAT3 signaling. SCAMs represent a unique tumor-specific TREM2+ population defined by VCAM1 surface expression that is not found in normal homeostatic skin or during wound healing. Furthermore, SCAMs actively proliferate and self-propagate through multiple serial tumor passages, indicating long-term potential. The tumor rapidly drives SCAM differentiation, with intratumoral injections sufficient to instruct naive bone marrow-derived monocytes to polarize within days. This work provides mechanistic insights into direct tumor-immune niche dynamics independent of immunosuppression, providing the basis for potential combination tumor therapies.
Collapse
Affiliation(s)
- Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tania Fabo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Bjelajac
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna R Jussila
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda Gonzalez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - JinChao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, 94305, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Wu K, Chen L, Qiu Z, Zhao B, Hou J, Lei S, Jiang M, Xia Z. Protective Effect and Mechanism of Xbp1s Regulating HBP/O-GlcNAcylation through GFAT1 on Brain Injury after SAH. Biomedicines 2023; 11:biomedicines11051259. [PMID: 37238930 DOI: 10.3390/biomedicines11051259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) SAH induces cellular stress and endoplasmic reticulum stress, activating the unfolded protein response (UPR) in nerve cells. IRE1 (inositol-requiring enzyme 1) is a protein that plays a critical role in cellular stress response. Its final product, Xbp1s, is essential for adapting to changes in the external environment. This process helps maintain proper cellular function in response to various stressors. O-GlcNAcylation, a means of protein modification, has been found to be involved in SAH pathophysiology. SAH can increase the acute O-GlcNAcylation level of nerve cells, which enhances the stress capacity of nerve cells. The GFAT1 enzyme regulates the level of O-GlcNAc modification in cells, which could be a potential target for neuroprotection in SAH. Investigating the IRE1/XBP1s/GFAT1 axis could offer a promising avenue for future research. (2) Methods: SAH was induced using a suture to perforate an artery in mice. HT22 cells with Xbp1 loss- and gain-of-function in neurons were generated. Thiamet-G was used to increase O-GlcNAcylation; (3) Results: Severe neuroinflammation caused by subarachnoid hemorrhage leads to extensive endoplasmic reticulum stress of nerve cells. Xbp1s, the final product of unfolded proteins induced by endoplasmic reticulum stress, can induce the expression of the hexosamine pathway rate limiting enzyme GFAT1, increase the level of O-GlcNAc modification of cells, and have a protective effect on neural cells; (4) Conclusions: The correlation between Xbp1s displayed by immunohistochemistry and O-GlcNAc modification suggests that the IRE1/XBP1 branch of unfolded protein reaction plays a key role in subarachnoid hemorrhage. IRE1/XBP1 branch is a new idea to regulate protein glycosylation modification, and provides a promising strategy for clinical perioperative prevention and treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Kefan Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Shaoqin Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| |
Collapse
|
13
|
Kurokami Y, Ishitsuka Y, Kiyohara E, Tanemura A, Fujimoto M. c-FOS Expression in Metastatic Basal Cell Carcinoma with Spontaneous Basosquamous Transition. Acta Derm Venereol 2023; 103:adv5347. [PMID: 36994778 PMCID: PMC10108615 DOI: 10.2340/actadv.v103.5347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Yu Kurokami
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Eiji Kiyohara
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
14
|
Haensel D, Gaddam S, Li NY, Gonzalez F, Patel T, Cloutier JM, Sarin KY, Tang JY, Rieger KE, Aasi SZ, Oro AE. LY6D marks pre-existing resistant basosquamous tumor subpopulations. Nat Commun 2022; 13:7520. [PMID: 36473848 PMCID: PMC9726704 DOI: 10.1038/s41467-022-35020-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Improved response to canonical therapies requires a mechanistic understanding of dynamic tumor heterogeneity by identifying discrete cellular populations with enhanced cellular plasticity. We have previously demonstrated distinct resistance mechanisms in skin basal cell carcinomas, but a comprehensive understanding of the cellular states and markers associated with these populations remains poorly understood. Here we identify a pre-existing resistant cellular population in naive basal cell carcinoma tumors marked by the surface marker LY6D. LY6D+ tumor cells are spatially localized and possess basal cell carcinoma and squamous cell carcinoma-like features. Using computational tools, organoids, and spatial tools, we show that LY6D+ basosquamous cells represent a persister population lying on a central node along the skin lineage-associated spectrum of epithelial states with local environmental and applied therapies determining the kinetics of accumulation. Surprisingly, LY6D+ basosquamous populations exist in many epithelial tumors, such as pancreatic adenocarcinomas, which have poor outcomes. Overall, our results identify the resistant LY6D+ basosquamous population as an important clinical target and suggest strategies for future therapeutic approaches to target them.
Collapse
Affiliation(s)
- Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Y Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda Gonzalez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Cloutier
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerri E Rieger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Yuan S, Stewart KS, Yang Y, Abdusselamoglu MD, Parigi SM, Feinberg TY, Tumaneng K, Yang H, Levorse JM, Polak L, Ng D, Fuchs E. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 2022; 612:555-563. [PMID: 36450983 PMCID: PMC9750880 DOI: 10.1038/s41586-022-05475-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFβ signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Katherine S Stewart
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Merve Deniz Abdusselamoglu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Tamar Y Feinberg
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Volastra Therapeutics, New York, NY, USA
| | - Karen Tumaneng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Sanofi, Cambridge, MA, USA
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - John M Levorse
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Temple University, Philadelphia, PA, USA
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - David Ng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
16
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|