1
|
Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, Mazeaud C, Sow AA, Léveillé A, Gilbert C, Tremblay N, Owen JE, Bemis CL, Laulhé X, Lamarre A, Neufeldt CJ, Rodrigue-Gervais IG, Pichlmair A, Girard D, Scaturro P, Hulea L, Chatel-Chaix L. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience 2025; 28:111599. [PMID: 39834870 PMCID: PMC11743106 DOI: 10.1016/j.isci.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles. Furthermore, virus infection modulated the mitochondrial oxygen consumption rate. Consistently, metabolomic and mitoproteomic analyses revealed a decrease in the abundance of several metabolites of the Krebs cycle and changes in the stoichiometry of the electron transport chain. Most importantly, ERMC destabilization by protein knockdown increased virus replication while dampening ZIKV-induced apoptosis. Overall, our results support the notion that flaviviruses hijack ERMCs to generate a cytoplasmic environment beneficial for sustained and efficient replication.
Collapse
Affiliation(s)
- Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Viviana Andrea Barragan Torres
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olus Uyar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Mathilde Broquière
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alexanne Léveillé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Jonathan Eintrez Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheyanne L. Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- German Center of Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Denis Girard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Pietro Scaturro
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- Leibniz Institute of Virology 20251 Hamburg, Germany
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
- Center of Excellence in Orphan Diseases Research-Fondation Courtois, Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Québec, Canada
| |
Collapse
|
2
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Pereira-Carvalho D, Chagas Valim AC, Borba Vieira Andrade C, Bloise E, Fontes Dias A, Muller Oliveira Nascimento V, Silva Alves RK, Dos Santos RC, Lopes Brum F, Gomes Medeiros I, Antunes Coelho SV, Barros Arruda L, Regina Todeschini A, Barbosa Dias W, Ortiga-Carvalho TM. Sex-specific effect of antenatal Zika virus infection on murine fetal growth, placental nutrient transporters, and nutrient sensor signaling pathways. FASEB J 2024; 38:e23799. [PMID: 38979938 DOI: 10.1096/fj.202301951rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.
Collapse
Affiliation(s)
- Daniela Pereira-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ariane Fontes Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rakel Kelly Silva Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronan Christian Dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Lopes Brum
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | - Luciana Barros Arruda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
6
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
8
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
9
|
Desmond LW, Holbrook EM, Wright CTO, Zambrano CA, Stamper CE, Bohr AD, Frank MG, Podell BK, Moreno JA, MacDonald AS, Reber SO, Hernández-Pando R, Lowry CA. Effects of Mycobacterium vaccae NCTC 11659 and Lipopolysaccharide Challenge on Polarization of Murine BV-2 Microglial Cells. Int J Mol Sci 2023; 25:474. [PMID: 38203645 PMCID: PMC10779110 DOI: 10.3390/ijms25010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.
Collapse
Affiliation(s)
- Luke W. Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Evan M. Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Caelan T. O. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Cristian A. Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Adam D. Bohr
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK;
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
11
|
Purandare N, Ghosalkar E, Grossman LI, Aras S. Mitochondrial Oxidative Phosphorylation in Viral Infections. Viruses 2023; 15:2380. [PMID: 38140621 PMCID: PMC10747082 DOI: 10.3390/v15122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.
Collapse
Affiliation(s)
- Neeraja Purandare
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Esha Ghosalkar
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Mingo-Casas P, Blázquez AB, Gómez de Cedrón M, San-Félix A, Molina S, Escribano-Romero E, Calvo-Pinilla E, Jiménez de Oya N, Ramírez de Molina A, Saiz JC, Pérez-Pérez MJ, Martín-Acebes MA. Glycolytic shift during West Nile virus infection provides new therapeutic opportunities. J Neuroinflammation 2023; 20:217. [PMID: 37759218 PMCID: PMC10537838 DOI: 10.1186/s12974-023-02899-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Ana San-Félix
- Instituto de Quimica Medica (IQM), CSIC, 28006, Madrid, Spain
| | - Susana Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | | | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain.
| |
Collapse
|
14
|
Chan KWK, Bifani AM, Watanabe S, Choy MM, Ooi EE, Vasudevan SG. Tissue-specific expansion of Zika virus isogenic variants drive disease pathogenesis. EBioMedicine 2023; 91:104570. [PMID: 37068347 PMCID: PMC10130475 DOI: 10.1016/j.ebiom.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The Asian lineage Zika virus (ZIKV) emerged as a public health emergency in 2016 causing severe neurological pathologies with no apparent historical correlate to the mild, disease-causing innocuous member of the mosquito-borne flavivirus genus that was discovered in Africa in 1947. Replication error rate of RNA viruses combined with viral protein/RNA structural plasticity can lead to evolution of virus-induced pathogenicity that is critical to identify and validate. METHODS Infection studies in cells and A129 interferon alpha/beta receptor deficient mice with ZIKV French Polynesian H/PF/2013 clinical isolate, plaque-purified isogenic clone derivatives as well as infectious cDNA clone derived wild-type and site-specific mutant viruses, were employed together with Next-Generation Sequencing (NGS) to pin-point the contributions of specific viral variants in neurovirulence recapitulated in our ZIKV mouse model. FINDINGS NGS analysis of the low-passage inoculum virus as well as mouse serum, brain and testis derived virus, revealed specific enrichment in the mouse brain that were not found in the other tissues. Specifically, non-structural (NS) protein 2A variant at position 117 along with changes in NS1 and NS4B were uniquely associated with the mouse brain isolate. Mutational analysis of these variants in cDNA infectious clones identified the NS2A A117V as the lethal pathogenic determinant with potential epistatic contribution of NS1 and NS4B variants in ZIKV brain penetrance. INTERPRETATION Our findings confirm that viral subpopulations drive ZIKV neuropathogenicity and identify specific sequence variants that expand in the mouse brain that associates with this phenotype which can serve as predictors of severe epidemics. FUNDING Duke-NUS Khoo Post-doctoral Fellowship Award 2020 (KWKC) and National Medical Research Council of Singapore grants MOH-000524 (OFIRG) (SW) and MOH-OFIRG20nov-0002 (SGV).
Collapse
Affiliation(s)
- Kitti Wing Ki Chan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Amanda Makha Bifani
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Milly M Choy
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia.
| |
Collapse
|
15
|
Gilbert-Jaramillo J, Purnama U, Molnár Z, James WS. Zika virus-induces metabolic alterations in fetal neuronal progenitors that could influence in neurodevelopment during early pregnancy. Biol Open 2023; 12:bio059889. [PMID: 37093064 PMCID: PMC10151830 DOI: 10.1242/bio.059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.
Collapse
Affiliation(s)
- Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
16
|
Sahoo BR, Crook AA, Pattnaik A, Torres-Gerena AD, Khalimonchuk O, Powers R, Franco R, Pattnaik AK. Redox Regulation and Metabolic Dependency of Zika Virus Replication: Inhibition by Nrf2-Antioxidant Response and NAD(H) Antimetabolites. J Virol 2023; 97:e0136322. [PMID: 36688653 PMCID: PMC9972919 DOI: 10.1128/jvi.01363-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Viral infections alter host cell metabolism and homeostasis; however, the mechanisms that regulate these processes have only begun to be elucidated. We report here that Zika virus (ZIKV) infection activates the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2), which precedes oxidative stress. Downregulation of Nrf2 or inhibition of glutathione (GSH) synthesis resulted in significantly increased viral replication. Interestingly, 6-amino-nicotinamide (6-AN), a nicotinamide analog commonly used as an inhibitor of the pentose phosphate pathway (PPP), decreased viral replication by over 1,000-fold. This inhibition was neither recapitulated by the knockdown of PPP enzymes, glucose 6-phosphate dehydrogenase (G6PD), or 6-phosphogluconate dehydrogenase (6PGD), nor prevented by supplementation with ribose 5-phosphate. Instead, our metabolomics and metabolic phenotype studies support a mechanism in which 6-AN depletes cells of NAD(H) and impairs NAD(H)-dependent glycolytic steps resulting in inhibition of viral replication. The inhibitory effect of 6-AN was rescued with precursors of the salvage pathway but not with those of other NAD+ biosynthesis pathways. Inhibition of glycolysis reduced viral protein levels, which were recovered transiently. This transient recovery in viral protein synthesis was prevented when oxidative metabolism was inhibited by blockage of the mitochondrial pyruvate carrier, fatty acid oxidation, or glutaminolysis, demonstrating a compensatory role of mitochondrial metabolism in ZIKV replication. These results establish an antagonistic role for the host cell Nrf2/GSH/NADPH-dependent antioxidant response against ZIKV and demonstrate the dependency of ZIKV replication on NAD(H). Importantly, our work suggests the potential use of NAD(H) antimetabolite therapy against the viral infection. IMPORTANCE Zika virus (ZIKV) is a major public health concern of international proportions. While the incidence of ZIKV infections has declined substantially in recent years, the potential for the reemergence or reintroduction remains high. Although viral infection alters host cell metabolism and homeostasis to promote its replication, deciphering the mechanism(s) involved in these processes is important for identifying therapeutic targets. The present work reveals the complexities of host cell redox regulation and metabolic dependency of ZIKV replication. An antagonistic effect of the Nrf2/GSH/NADP(H)-dependent antioxidant response against ZIKV infection and an essential role of NAD(H) metabolism and glycolysis for viral replication are established for the first time. These findings highlight the potential use of NAD(H) antimetabolites to counter ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexandra A. Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alondra D. Torres-Gerena
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
17
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
18
|
Kim S, Shin HY. Understanding the Tissue Specificity of ZIKV Infection in Various Animal Models for Vaccine Development. Vaccines (Basel) 2022; 10:1517. [PMID: 36146595 PMCID: PMC9504629 DOI: 10.3390/vaccines10091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flavivirus genus and is principally transmitted by Aedes aegypti mosquitoes. ZIKV infection often causes no or only mild symptoms, but it can also trigger severe consequences, including microcephaly in infants and Guillain-Barré syndrome, uveitis, and neurologic manifestations in adults. There is no ZIKV vaccine or treatment currently approved for clinical use. The primary target of ZIKV infection has been recognized as the maternal placenta, with vertical transmission to the fetal brain. However, ZIKV can also spread to multiple tissues in adults, including the sexual organs, eyes, lymph nodes, and brain. Since numerous studies have indicated that there are slightly different tissue-specific pathologies in each animal model of ZIKV, the distinct ZIKV tropism of a given animal model must be understood to enable effective vaccine development. Here, we comprehensively discussed the tissue specificity of ZIKV reported in each animal model depending on the genetic background and route of administration. This review should facilitate the selection of appropriate animal models when studying the fundamental pathogenesis of ZIKV infection, thereby supporting the design of optimal preclinical and clinical studies for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
19
|
Meng Q, Zhang Y, Hao S, Sun H, Liu B, Zhou H, Wang Y, Xu ZX. Recent findings in the regulation of G6PD and its role in diseases. Front Pharmacol 2022; 13:932154. [PMID: 36091812 PMCID: PMC9448902 DOI: 10.3389/fphar.2022.932154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the pentose phosphate pathway (PPP). Rapidly proliferating cells require metabolites from PPP to synthesize ribonucleotides and maintain intracellular redox homeostasis. G6PD expression can be abnormally elevated in a variety of cancers. In addition, G6PD may act as a regulator of viral replication and vascular smooth muscle function. Therefore, G6PD-mediated activation of PPP may promote tumor and non-neoplastic disease progression. Recently, studies have identified post-translational modifications (PTMs) as an important mechanism for regulating G6PD function. Here, we provide a comprehensive review of various PTMs (e.g., phosphorylation, acetylation, glycosylation, ubiquitination, and glutarylation), which are identified in the regulation of G6PD structure, expression and enzymatic activity. In addition, we review signaling pathways that regulate G6PD and evaluate the role of oncogenic signals that lead to the reprogramming of PPP in tumor and non-neoplastic diseases as well as summarize the inhibitors that target G6PD.
Collapse
Affiliation(s)
- Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| |
Collapse
|
20
|
Abstract
Aberrant cellular bioenergetics has detrimental consequences in host cells. For instance, pathogenic Zika virus strains can suppress mitochondria respiration and glycolytic functions, disrupting cellular bioenergetics that leads to apoptosis. Herein, we describe methods for flavivirus propagation, titering and infection, cell preparation, and procedures for mitochondrial and glycolytic stress tests. The protocol enables assessment of cellular respiration and glycolytic flux in flavivirus-infected cells. For complete details on the use and execution of this protocol, please refer to Yau et al. (2021). Step-by-step protocol for assessing cellular bioenergetics in flavivirus-infected cells Mitochondrial stress test measures respiratory parameters in flavivirus-infected cells Glycolysis stress test measures glycolysis parameters in flavivirus-infected cells
Collapse
|
21
|
Saha D, Iannuccelli M, Brun C, Zanzoni A, Licata L. The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Front Microbiol 2022; 13:849781. [PMID: 35531299 PMCID: PMC9069133 DOI: 10.3389/fmicb.2022.849781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components. Experimental protein-protein interactions described in the scientific literature have been systematically captured into several molecular interaction databases. These data are organized in structured formats and can be easily downloaded by users to perform further bioinformatic and network studies. Network analysis of available virus-host interactomes allow us to understand how the host interactome is perturbed upon viral infection and what are the key host proteins targeted by the virus and the main cellular pathways that are subverted. In this review, we give an overview of publicly available viral-human protein-protein interactions resources and the community standards, curation rules and adopted ontologies. A description of the main virus-human interactome available is provided, together with the main network analyses that have been performed. We finally discuss the main limitations and future challenges to assess the quality and reliability of protein-protein interaction datasets and resources.
Collapse
Affiliation(s)
- Deeya Saha
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Christine Brun
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- *Correspondence: Andreas Zanzoni,
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Luana Licata,
| |
Collapse
|