1
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
2
|
Jochheim A, Jochheim FA, Kolodyazhnaya A, Morice É, Steinegger M, Söding J. Strain-resolved de-novo metagenomic assembly of viral genomes and microbial 16S rRNAs. MICROBIOME 2024; 12:187. [PMID: 39354646 PMCID: PMC11443906 DOI: 10.1186/s40168-024-01904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Metagenomics is a powerful approach to study environmental and human-associated microbial communities and, in particular, the role of viruses in shaping them. Viral genomes are challenging to assemble from metagenomic samples due to their genomic diversity caused by high mutation rates. In the standard de Bruijn graph assemblers, this genomic diversity leads to complex k-mer assembly graphs with a plethora of loops and bulges that are challenging to resolve into strains or haplotypes because variants more than the k-mer size apart cannot be phased. In contrast, overlap assemblers can phase variants as long as they are covered by a single read. RESULTS Here, we present PenguiN, a software for strain resolved assembly of viral DNA and RNA genomes and bacterial 16S rRNA from shotgun metagenomics. Its exhaustive detection of all read overlaps in linear time combined with a Bayesian model to select strain-resolved extensions allow it to assemble longer viral contigs, less fragmented genomes, and more strains than existing assembly tools, on both real and simulated datasets. We show a 3-40-fold increase in complete viral genomes and a 6-fold increase in bacterial 16S rRNA genes. CONCLUSION PenguiN is the first overlap-based assembler for viral genome and 16S rRNA assembly from large and complex metagenomic datasets, which we hope will facilitate studying the key roles of viruses in microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Annika Jochheim
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
| | - Florian A Jochheim
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
- Dep. of Molecular Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Kolodyazhnaya
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Étienne Morice
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany.
- Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Kwan SY, Sabotta CM, Cruz LR, Wong MC, Ajami NJ, McCormick JB, Fisher-Hoch SP, Beretta L. Gut phageome in Mexican Americans: a population at high risk for metabolic dysfunction-associated steatotic liver disease and diabetes. mSystems 2024; 9:e0043424. [PMID: 39166873 PMCID: PMC11406975 DOI: 10.1128/msystems.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Mexican Americans are disproportionally affected by metabolic dysfunction-associated steatotic liver disease (MASLD), which often co-occurs with diabetes. Despite extensive evidence on the causative role of the gut microbiome in MASLD, studies determining the involvement of the gut phageome are scarce. In this cross-sectional study, we characterized the gut phageome in Mexican Americans of South Texas by stool shotgun metagenomic sequencing of 340 subjects, concurrently screened for liver steatosis by transient elastography. Inter-individual variations in the phageome were associated with gender, country of birth, diabetes, and liver steatosis. The phage signatures for diabetes and liver steatosis were subsequently determined. Enrichment of Inoviridae was associated with both diabetes and liver steatosis. Diabetes was further associated with the enrichment of predominantly temperate Escherichia phages, some of which possessed virulence factors. Liver steatosis was associated with the depletion of Lactococcus phages r1t and BK5-T, and enrichment of the globally prevalent Crassvirales phages, including members of genus cluster IX (Burzaovirus coli, Burzaovirus faecalis) and VI (Kahnovirus oralis). The Lactococcus phages showed strong correlations and co-occurrence with Lactococcus lactis, while the Crassvirales phages, B. coli, B. faecalis, and UAG-readthrough crAss clade correlated and co-occurred with Prevotella copri. In conclusion, we identified the gut phageome signatures for two closely linked metabolic diseases with significant global burden. These phage signatures may have utility in risk modeling and disease prevention in this high-risk population, and identification of potential bacterial targets for phage therapy.IMPORTANCEPhages influence human health and disease by shaping the gut bacterial community. Using stool samples from a high-risk Mexican American population, we provide insights into the gut phageome changes associated with diabetes and liver steatosis, two closely linked metabolic diseases with significant global burden. Common to both diseases was an enrichment of Inoviridae, a group of phages that infect bacterial hosts chronically without lysis, allowing them to significantly influence bacterial growth, virulence, motility, biofilm formation, and horizontal gene transfer. Diabetes was additionally associated with the enrichment of Escherichia coli-infecting phages, some of which contained virulence factors. Liver steatosis was additionally associated with the depletion of Lactococcus lactis-infecting phages, and enrichment of Crassvirales phages, a group of virulent phages with high global prevalence and persistence across generations. These phageome signatures may have utility in risk modeling, as well as identify potential bacterial targets for phage therapy.
Collapse
Affiliation(s)
- Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caroline M. Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lorenzo R. Cruz
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew C. Wong
- The Platform for Innovative Microbiome and Translational Research (PRIME-TR), Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nadim J. Ajami
- The Platform for Innovative Microbiome and Translational Research (PRIME-TR), Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph B. McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas, USA
| | - Susan P. Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Baquero DP, Medvedeva S, Martin-Gallausiaux C, Pende N, Sartori-Rupp A, Tachon S, Pedron T, Debarbieux L, Borrel G, Gribaldo S, Krupovic M. Stable coexistence between an archaeal virus and the dominant methanogen of the human gut. Nat Commun 2024; 15:7702. [PMID: 39231967 PMCID: PMC11375127 DOI: 10.1038/s41467-024-51946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The human gut virome, which is mainly composed of bacteriophages, also includes viruses infecting archaea, yet their role remains poorly understood due to lack of isolates. Here, we characterize a temperate archaeal virus (MSTV1) infecting Methanobrevibacter smithii, the dominant methanogenic archaeon of the human gut. The MSTV1 genome is integrated in the host chromosome as a provirus which is sporadically induced, resulting in virion release. Using cryo-electron tomography, we capture several intracellular virion assembly intermediates and confirm that only a small fraction of the host population actively produces virions in vitro. Similar low frequency of induction is observed in a mouse colonization model, using mice harboring a stable consortium of 12 bacterial species (OMM12). Transcriptomic analysis suggests a regulatory lysogeny-lysis switch involving an interplay between viral proteins to maintain virus-host equilibrium, ensuring host survival and viral persistence. Thus, our study sheds light on archaeal virus-host interactions and highlights similarities with bacteriophages in establishing stable coexistence with their hosts in the gut.
Collapse
Affiliation(s)
- Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Camille Martin-Gallausiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Nika Pende
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
- University of Vienna, Archaea Physiology and Biotechnology Group, Vienna, Austria
| | - Anna Sartori-Rupp
- Institut Pasteur, NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Stéphane Tachon
- Institut Pasteur, NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Thierry Pedron
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
5
|
Zhang P, Ma S, Guo R, Li L, Guo X, Chang D, Li S, Zhang H, Fu C, Yang L, Zhang Y, Jiang J, Wang T, Wang J, Shi H. Metagenomic analysis of the gut virome in patients with irritable bowel syndrome. J Med Virol 2024; 96:e29802. [PMID: 39023095 DOI: 10.1002/jmv.29802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Shiyang Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | | | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Danyan Chang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | | | - Huan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Cui Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Ting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| |
Collapse
|
6
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
7
|
Wilde J, Boyes R, Robinson AV, Daisley BA, Botschner AJ, Brettingham DJL, Macpherson CV, Mallory E, Allen-Vercoe E. Assessing phage-host population dynamics by reintroducing virulent viruses to synthetic microbiomes. Cell Host Microbe 2024; 32:768-778.e9. [PMID: 38653241 DOI: 10.1016/j.chom.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Microbiomes feature complex interactions between diverse bacteria and bacteriophages. Synthetic microbiomes offer a powerful way to study these interactions; however, a major challenge is obtaining a representative bacteriophage population during the bacterial isolation process. We demonstrate that colony isolation reliably excludes virulent viruses from sample sources with low virion-to-bacteria ratios such as feces, creating "virulent virus-free" controls. When the virulent dsDNA virome is reintroduced to a 73-strain synthetic gut microbiome in a bioreactor model of the human colon, virulent viruses target susceptible strains without significantly altering community structure or metabolism. In addition, we detected signals of prophage induction that associate with virulent predation. Overall, our findings indicate that dilution-based isolation methods generate synthetic gut microbiomes that are heavily depleted, if not devoid, of virulent viruses and that such viruses, if reintroduced, have a targeted effect on community assembly, metabolism, and prophage replication.
Collapse
Affiliation(s)
- Jacob Wilde
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Randy Boyes
- Queen's University, Department of Community Health and Epidemiology, Kingston, ON K7L 3N6, Canada
| | - Avery V Robinson
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford OX3 7FY, UK
| | - Brendan A Daisley
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Alexander J Botschner
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Dylan J L Brettingham
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Christine V Macpherson
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Elizabeth Mallory
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Emma Allen-Vercoe
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
8
|
Cook R, Crisci MA, Pye HV, Telatin A, Adriaenssens EM, Santini JM. Decoding huge phage diversity: a taxonomic classification of Lak megaphages. J Gen Virol 2024; 105. [PMID: 38814706 PMCID: PMC11165621 DOI: 10.1099/jgv.0.001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class Caudoviricetes which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Marco A Crisci
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| | - Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| |
Collapse
|
9
|
Babkin IV, Tikunov AY, Baykov IK, Morozova VV, Tikunova NV. Genome Analysis of Epsilon CrAss-like Phages. Viruses 2024; 16:513. [PMID: 38675856 PMCID: PMC11054128 DOI: 10.3390/v16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.
Collapse
Affiliation(s)
- Igor V. Babkin
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Artem Y. Tikunov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Ivan K. Baykov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
- Shared Research Facility “Siberian Circular Photon Source” (SRF “SKIF”) of Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Vera V. Morozova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Nina V. Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| |
Collapse
|
10
|
Schmidtke DT, Hickey AS, Liachko I, Sherlock G, Bhatt AS. Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585998. [PMID: 38562748 PMCID: PMC10983915 DOI: 10.1101/2024.03.20.585998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.
Collapse
Affiliation(s)
- Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA, USA
- Senior author
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Hematology), Stanford University, Stanford, CA, USA
- Lead corresponding author
- Senior author
| |
Collapse
|
11
|
Garmaeva S, Sinha T, Gulyaeva A, Kuzub N, Spreckels JE, Andreu-Sánchez S, Gacesa R, Vich Vila A, Brushett S, Kruk M, Dekens J, Sikkema J, Kuipers F, Shkoporov AN, Hill C, Scherjon S, Wijmenga C, Fu J, Kurilshikov A, Zhernakova A. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life. Nat Commun 2024; 15:1945. [PMID: 38431663 PMCID: PMC10908809 DOI: 10.1038/s41467-024-45257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024] Open
Abstract
Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.
Collapse
Affiliation(s)
- Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nataliia Kuzub
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johanne E Spreckels
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Siobhan Brushett
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marloes Kruk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jackie Dekens
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- University Medical Center Groningen, Center for Development and Innovation, Groningen, Netherlands
| | - Jan Sikkema
- University Medical Center Groningen, Center for Development and Innovation, Groningen, Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Sicco Scherjon
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Istvan P, Birkeland E, Avershina E, Kværner AS, Bemanian V, Pardini B, Tarallo S, de Vos WM, Rognes T, Berstad P, Rounge TB. Exploring the gut DNA virome in fecal immunochemical test stool samples reveals associations with lifestyle in a large population-based study. Nat Commun 2024; 15:1791. [PMID: 38424056 PMCID: PMC10904388 DOI: 10.1038/s41467-024-46033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.
Collapse
Affiliation(s)
- Paula Istvan
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ekaterina Avershina
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ane S Kværner
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Vahid Bemanian
- Pathology Department, Akershus University Hospital, Lørenskog, Norway
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Sonia Tarallo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Paula Berstad
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Rounge
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
13
|
Spohr P, Scharf S, Rommerskirchen A, Henrich B, Jäger P, Klau GW, Haas R, Dilthey A, Pfeffer K. Insights into gut microbiomes in stem cell transplantation by comprehensive shotgun long-read sequencing. Sci Rep 2024; 14:4068. [PMID: 38374282 PMCID: PMC10876974 DOI: 10.1038/s41598-024-53506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
The gut microbiome is a diverse ecosystem, dominated by bacteria; however, fungi, phages/viruses, archaea, and protozoa are also important members of the gut microbiota. Exploration of taxonomic compositions beyond bacteria as well as an understanding of the interaction between the bacteriome with the other members is limited using 16S rDNA sequencing. Here, we developed a pipeline enabling the simultaneous interrogation of the gut microbiome (bacteriome, mycobiome, archaeome, eukaryome, DNA virome) and of antibiotic resistance genes based on optimized long-read shotgun metagenomics protocols and custom bioinformatics. Using our pipeline we investigated the longitudinal composition of the gut microbiome in an exploratory clinical study in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT; n = 31). Pre-transplantation microbiomes exhibited a 3-cluster structure, characterized by Bacteroides spp. /Phocaeicola spp., mixed composition and Enterococcus abundances. We revealed substantial inter-individual and temporal variabilities of microbial domain compositions, human DNA, and antibiotic resistance genes during the course of alloHSCT. Interestingly, viruses and fungi accounted for substantial proportions of microbiome content in individual samples. In the course of HSCT, bacterial strains were stable or newly acquired. Our results demonstrate the disruptive potential of alloHSCTon the gut microbiome and pave the way for future comprehensive microbiome studies based on long-read metagenomics.
Collapse
Affiliation(s)
- Philipp Spohr
- Chair Algorithmic Bioinformatics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Düsseldorf, Germany
| | - Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anna Rommerskirchen
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Immunology, and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gunnar W Klau
- Chair Algorithmic Bioinformatics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Düsseldorf, Germany.
| | - Rainer Haas
- Department of Hematology, Immunology, and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Düsseldorf, Germany.
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Jansen D, Falony G, Vieira-Silva S, Simsek C, Marcelis T, Caenepeel C, Machiels K, Raes J, Vermeire S, Matthijnssens J. Community Types of the Human Gut Virome are Associated with Endoscopic Outcome in Ulcerative Colitis. J Crohns Colitis 2023; 17:1504-1513. [PMID: 37052201 PMCID: PMC10588789 DOI: 10.1093/ecco-jcc/jjad061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 04/14/2023]
Abstract
BACKGROUND Inflammatory bowel disease [IBD] is a major debilitating disease. Recently, the gut microbiota has gained attention as an important factor involved in the pathophysiology of IBD. As a complement to the established bacterial 'enterotypes' associated with IBD, we focused here on viruses. We investigated the intestinal virome of IBD patients undergoing biological therapy for the presence of virome configurations associated with IBD, and to uncover how those configurations are associated with therapeutic success. METHODS Viral-like particle enrichment followed by deep sequencing was performed on 432 faecal samples from 181 IBD patients starting biological therapy. Redundancy analysis and Dirichlet Multinomial Mixtures were applied to determine covariates of the virome composition and to condense the gut virota into 'viral community types', respectively. RESULTS Patients were stratified based on unsupervised clustering into two viral community types. Community type CA showed a low α-diversity and a high relative abundance of Caudoviricetes [non-CrAss] phages and was associated with the dysbiotic Bact2-enterotype. Community type CrM showed a high α-diversity and a high relative abundance of Crassvirales and Malgrandaviricetes phages. During post-interventional analysis, endoscopic outcome was associated with gut virome composition. Remitting UC patients had a high percentage of community type CrM, a high Shannon diversity and a low lysogenic potential. Pre-interventional analyses also identified five novel phages associated with treatment success. CONCLUSIONS This study proposed two gut virome configurations that may be involved in the pathophysiology of IBD. Interestingly, those viral configurations are further associated with therapeutic success, suggesting a potential clinical relevance.
Collapse
Affiliation(s)
- Daan Jansen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Gwen Falony
- KU Leuven, Department of Microbiology Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, Leuven, Belgium
- Center for Microbiology, VIB, B-3000 Leuven, Belgium
| | - Sara Vieira-Silva
- KU Leuven, Department of Microbiology Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Ceren Simsek
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Tine Marcelis
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Clara Caenepeel
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Machiels
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, Leuven, Belgium
- Center for Microbiology, VIB, B-3000 Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
15
|
Abstract
The gut microbiome is a dense and metabolically active consortium of microorganisms and viruses located in the lower gastrointestinal tract of the human body. Bacteria and their viruses (phages) are the most abundant members of the gut microbiome. Investigating their biology and the interplay between the two is important if we are to understand their roles in human health and disease. In this review, we summarize recent advances in resolving the taxonomic structure and ecological functions of the complex community of phages in the human gut-the gut phageome. We discuss how age, diet, and geography can all have a significant impact on phageome composition. We note that alterations to the gut phageome have been observed in several diseases such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, and we evaluate whether these phageome changes can directly or indirectly contribute to disease etiology and pathogenesis. We also highlight how lack of standardization in studying the gut phageome has contributed to variation in reported results.
Collapse
Affiliation(s)
- Ciara A Tobin
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Yan M, Pratama AA, Somasundaram S, Li Z, Jiang Y, Sullivan MB, Yu Z. Interrogating the viral dark matter of the rumen ecosystem with a global virome database. Nat Commun 2023; 14:5254. [PMID: 37644066 PMCID: PMC10465536 DOI: 10.1038/s41467-023-41075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to Caudovirales, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.
Collapse
Affiliation(s)
- Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Akbar Adjie Pratama
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sripoorna Somasundaram
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Matthew B Sullivan
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Alotaibi R, Eifan S, Hanif A, Nour I, Alkathiri A. Prevalence and Genetic Diversity of Cross-Assembly Phages in Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:2167. [PMID: 37764011 PMCID: PMC10535421 DOI: 10.3390/microorganisms11092167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The most common DNA virus found in wastewaters globally is the cross-assembly phage (crAssphage). King Saud University wastewater treatment plant (KSU-WWTP); Manfoha wastewater treatment plant (MN-WWTP); and the Embassy wastewater treatment plant (EMB-WWTP) in Riyadh, Saudi Arabia were selected, and 36 untreated sewage water samples during the year 2022 were used in the current study. The meteorological impact on crAssphage prevalence was investigated. CrAssphage prevalence was recorded using PCR and Sanger sequencing. The molecular diversity of crAssphage sequences was studied for viral gene segments from the major capsid protein (MCP) and membrane protein containing the peptidoglycan-binding domain (MP-PBD). KSU-WWTP and EMB-WWTP showed a higher prevalence of crAssphage (83.3%) than MN-WWTP (75%). Phylogenetic analysis of MCP and MP-PBD segments depicted a close relationship to the Japanese isolates. The MCP gene from the current study's isolate WW/2M/SA/2022 depicted zero evolutionary divergence from 3057_98020, 2683_104905, and 4238_99953 isolates (d = 0.000) from Japan. A significant influence of temporal variations on the prevalence of crAssphage was detected in the three WWTPs. CrAssphage displayed the highest prevalence at high temperatures (33-44 °C), low relative humidity (6-14%), and moderate wind speed (16-21 Km/h). The findings provided pioneering insights into crAssphage prevalence and its genetic diversity in WWTPs in Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
18
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
19
|
Avellaneda-Franco L, Dahlman S, Barr JJ. The gut virome and the relevance of temperate phages in human health. Front Cell Infect Microbiol 2023; 13:1241058. [PMID: 37577374 PMCID: PMC10413269 DOI: 10.3389/fcimb.2023.1241058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 08/15/2023] Open
Abstract
Alterations in the gut virome impact human health. Bacteriophages, viruses that infect bacteria, dominate the gut virome and are mainly composed by virulent and temperate phages. While virulent phages exclusively replicate within and lyse their bacterial host's cell, temperate phages switch from an integrated state residing within their bacterial host's chromosome to an induced free virion state via an induction event. How often do these induction events occur and what are their implications on gut homeostasis? Here, we summarize the current knowledge of the gut virome based on metagenomics and present how the proportion of induced temperate phages varies amongst individuals, age, and disease states. Finally, we highlight the importance of building upon classical culture-dependent techniques and sequencing approaches to improve our understanding of temperate phages to enable their potential therapeutic use.
Collapse
Affiliation(s)
| | | | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Johansen J, Atarashi K, Arai Y, Hirose N, Sørensen SJ, Vatanen T, Knip M, Honda K, Xavier RJ, Rasmussen S, Plichta DR. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat Microbiol 2023; 8:1064-1078. [PMID: 37188814 DOI: 10.1038/s41564-023-01370-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Distinct gut microbiome ecology may be implicated in the prevention of aging-related diseases as it influences systemic immune function and resistance to infections. Yet, the viral component of the microbiome throughout different stages in life remains unexplored. Here we present a characterization of the centenarian gut virome using previously published metagenomes from 195 individuals from Japan and Sardinia. Compared with gut viromes of younger adults (>18 yr) and older individuals (>60 yr), centenarians had a more diverse virome including previously undescribed viral genera, such as viruses associated with Clostridia. A population shift towards higher lytic activity was also observed. Finally, we investigated phage-encoded auxiliary functions that influence bacterial physiology, which revealed an enrichment of genes supporting key steps in sulfate metabolic pathways. Phage and bacterial members of the centenarian microbiome displayed an increased potential for converting methionine to homocysteine, sulfate to sulfide and taurine to sulfide. A greater metabolic output of microbial hydrogen sulfide in centenarians may in turn support mucosal integrity and resistance to pathobionts.
Collapse
Affiliation(s)
- Joachim Johansen
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommi Vatanen
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
22
|
Chu Y, Meng Q, Yu J, Zhang J, Chen J, Kang Y. Strain-Level Dynamics Reveal Regulatory Roles in Atopic Eczema by Gut Bacterial Phages. Microbiol Spectr 2023; 11:e0455122. [PMID: 36951555 PMCID: PMC10101075 DOI: 10.1128/spectrum.04551-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
The vast population of bacterial phages or viruses (virome) plays pivotal roles in the ecology of human microbial flora and health conditions. Obstacles, including poor viral sequence inference, strain-sensitive virus-host relationship, and the high diversity among individuals, hinder the in-depth understanding of the human virome. We conducted longitudinal studies of the virome based on constructing a high-quality personal reference metagenome (PRM). By applying long-read sequencing for representative samples, we could build a PRM of high continuity that allows accurate annotation and abundance estimation of viruses and bacterial species in all samples of the same individual by aligning short sequencing reads to the PRM. We applied this approach to a series of fecal samples collected for 6 months from a 2-year-old boy who had experienced a 2-month flare-up of atopic eczema (dermatitis) in this period. We identified 31 viral strains in the patient's gut microbiota and deciphered their strain-level relationship to their bacterial hosts. Among them, a lytic crAssphage developed into a dozen substrains and coordinated downregulation in the catabolism of aromatic amino acids (AAAs) in their host bacteria which govern the production of immune-active AAA derivates. The metabolic alterations confirmed based on metabolomic assays cooccurred with symptom remission. Our PRM-based analysis provides an easy approach for deciphering the dynamics of the strain-level human gut virome in the context of entire microbiota. Close temporal correlations among virome alteration, microbial metabolism, and disease remission suggest a potential mechanism for how bacterial phages in microbiota are intimately related to human health. IMPORTANCE The vast populations of viruses or bacteriophages in human gut flora remain mysterious. However, poor annotation and abundance estimation remain obstacles to strain-level analysis and clarification of their roles in microbiome ecology and metabolism associated with human health and diseases. We demonstrate that a personal reference metagenome (PRM)-based approach provides strain-level resolution for analyzing the gut microbiota-associated virome. When applying such an approach to longitudinal samples collected from a 2-year-old boy who has experienced a 2-month flare-up of atopic eczema, we observed thriving substrains of a lytic crAssphage, showing temporal correlation with downregulated catabolism of aromatic amino acids, lower production of immune-active metabolites, and remission of the disease. The PRM-based approach is practical and powerful for strain-centric analysis of the human gut virome, and the underlying mechanism of how strain-level virome dynamics affect disease deserves further investigation.
Collapse
Affiliation(s)
- Yanan Chu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Qingren Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- Department of Pediatric, Peking University Third Hospital, Beijing, China
| | - Jing Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yu Kang
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
23
|
Chen C, Yan Q, Yao X, Li S, Lv Q, Wang G, Zhong Q, Tang F, Liu Z, Huang Y, An Y, Zhou J, Zhang Q, Zhang A, Ullah H, Zhang Y, Liu C, Zhu D, Li H, Sun W, Ma W. Alterations of the gut virome in patients with systemic lupus erythematosus. Front Immunol 2023; 13:1050895. [PMID: 36713446 PMCID: PMC9874095 DOI: 10.3389/fimmu.2022.1050895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that has been linked to the dysbiosis of the gut microbiome and virome. However, the potential characterization of the gut virome in SLE patients needs to be explored more extensively. Methods Herein, we analyzed the gut viral community of 16 SLE patients and 31 healthy controls using both bulk and virus-like particle (VLP)-based metagenomic sequencing of their fecal samples. A total of 15,999 non-redundant viral operational taxonomic units (vOTUs) were identified from the metagenomic assembled contigs and used for gut virome profiling. Results SLE patients exhibited a significant decrease in gut viral diversity in the bulk metagenome dataset, but this change was not significant in the VLP metagenome dataset. Also, considerable alterations of the overall gut virome composition and remarkable changes in the viral family compositions were observed in SLE patients compared with healthy controls, as observed in both two technologies. We identified 408 vOTUs (177 SLE-enriched and 231 control-enriched) with significantly different relative abundances between patients and controls in the bulk virome, and 18 vOTUs (17 SLE-enriched in 1 control-enriched) in the VLP virome. The SLE-enriched vOTUs included numerous Siphoviridae, Microviridae, and crAss-like viruses and were frequently predicted to infect Bacteroides, Parabacteroides, and Ruminococcus_E, while the control-enriched contained numerous members of Siphoviridae and Myoviridae and were predicted to infect Prevotella and Lachnospirales_CAG-274. We explored the correlations between gut viruses and bacteria and found that some Lachnospirales_CAG-274 and Hungatella_A phages may play key roles in the virus-bacterium network. Furthermore, we explored the gut viral signatures for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC) of above 0.95, suggesting the potential of the gut virome in the prediction of SLE. Conclusion Our findings demonstrated the alterations in viral diversity and taxonomic composition of the gut virome of SLE patients. Further research into the etiology of SLE and the gut viral community will open up new avenues for treating and preventing SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, China,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhengqi Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang An
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiongyu Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Can Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Zhu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hufan Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Wen Sun, ; Wukai Ma,
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China,*Correspondence: Wen Sun, ; Wukai Ma,
| |
Collapse
|
24
|
Jansen D, Matthijnssens J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023; 15:173. [PMID: 36680214 PMCID: PMC9861652 DOI: 10.3390/v15010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Virome research is a rapidly growing area in the microbiome field that is increasingly associated with human diseases, such as inflammatory bowel disease (IBD). Although substantial progress has been made, major methodological challenges limit our understanding of the virota. In this review, we describe challenges that must be considered to accurately report the virome composition and the current knowledge on the virome in health and IBD. First, the description of the virome shows strong methodological biases related to wetlab (e.g., VLP enrichment) and bioinformatics approaches (viral identification and classification). Second, IBD patients show consistent viral imbalances characterized by a high relative abundance of phages belonging to the Caudovirales and a low relative abundance of phages belonging to the Microviridae. Simultaneously, a sporadic contraction of CrAss-like phages and a potential expansion of the lysogenic potential of the intestinal virome are observed. Finally, despite numerous studies that have conducted diversity analysis, it is difficult to draw firm conclusions due to methodological biases. Overall, we present the many methodological and environmental factors that influence the virome, its current consensus in health and IBD, and a contributing hypothesis called the "positive inflammatory feedback loop" that may play a role in the pathophysiology of IBD.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Department of Microbiology, Immunology and Transplantation, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes 2023; 15:2177488. [PMID: 36823020 PMCID: PMC9980608 DOI: 10.1080/19490976.2023.2177488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The human gut virome has been increasingly explored in recent years. However, nearly all virome-sequencing efforts rely solely on fecal samples and few studies leverage multiomic approaches to investigate phage-host relationships. Here, we combine metagenomics, metaviromics, and metatranscriptomics to study virome-bacteriome interactions at the colonic mucosal-luminal interface in a cohort of three individuals with inflammatory bowel disease; non-IBD controls were not included in this study. We show that the mucosal viral population is distinct from the stool virome and houses abundant crAss-like phages that are undetectable by fecal sampling. Through viral protein prediction and metatranscriptomic analysis, we explore viral gene transcription, prophage activation, and the relationship between the presence of integrase and temperate phages in IBD subjects. We also show the impact of deep sequencing on virus recovery and offer guidelines for selecting optimal sequencing depths in future metaviromic studies. Systems biology approaches such as those presented in this report will enhance our understanding of the human virome and its interactions with our microbiome and our health.
Collapse
Affiliation(s)
- Austin Yan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Laetitia Schramm
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David R. Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,Inflammatory Bowel Disease Centre and CHEO Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,CONTACT Alain Stintzi Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
26
|
Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Otake-Kasamoto Y, Kawabata S, Nii T, Okuno T, Oguro-Igashira E, Kinoshita M, Takagaki M, Oyama N, Todo K, Yamamoto K, Sonehara K, Yagita M, Hosokawa A, Motooka D, Matsumoto Y, Matsuoka H, Yoshimura M, Ohshima S, Shinzaki S, Nakamura S, Iijima H, Inohara H, Kishima H, Takehara T, Mochizuki H, Takeda K, Kumanogoh A, Okada Y. Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, populations, and diseases. CELL GENOMICS 2022; 2:100219. [PMID: 36778050 PMCID: PMC9903723 DOI: 10.1016/j.xgen.2022.100219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
We reconstructed 19,084 prokaryotic and 31,395 viral genomes from 787 Japanese gut metagenomes as Japanese metagenome-assembled genomes (JMAG) and Japanese Virus Database (JVD), which are large microbial genome datasets for a single population. Population-specific enrichment of the Bacillus subtilis and β-porphyranase among the JMAG could derive from the Japanese traditional food natto (fermented soybeans) and nori (laver), respectively. Dairy-related Enterococcus_B lactis and Streptococcus thermophilus were nominally associated with the East Asian-specific missense variant rs671:G>A in ALDH2, which was associated with dairy consumption. Of the species-level viral genome clusters in the JVD, 62.9% were novel. The β crAss-like phage composition was low among the Japanese but relatively high among African and Oceanian peoples. Evaluations of the association between crAss-like phages and diseases showed significant disease-specific associations. Our large catalog of virus-host pairs identified the positive correlation between the abundance of the viruses and their hosts.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Corresponding author
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuriko Otake-Kasamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Naoki Oyama
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
| | - Mayu Yagita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Akiko Hosokawa
- Department of Neurology, Suita Municipal Hospital, Suita 564-8567, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hidetoshi Matsuoka
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan,Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan,Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Corresponding author
| |
Collapse
|
27
|
Gulyaeva A, Garmaeva S, Kurilshikov A, Vich Vila A, Riksen NP, Netea MG, Weersma RK, Fu J, Zhernakova A. Diversity and Ecology of Caudoviricetes Phages with Genome Terminal Repeats in Fecal Metagenomes from Four Dutch Cohorts. Viruses 2022; 14:2305. [PMID: 36298860 PMCID: PMC9610469 DOI: 10.3390/v14102305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The human gut harbors numerous viruses infecting the human host, microbes, and other inhabitants of the gastrointestinal tract. Most of these viruses remain undiscovered, and their influence on human health is unknown. Here, we characterize viral genomes in gut metagenomic data from 1950 individuals from four population and patient cohorts. We focus on a subset of viruses that is highly abundant in the gut, remains largely uncharacterized, and allows confident complete genome identification—phages that belong to the class Caudoviricetes and possess genome terminal repeats. We detect 1899 species-level units belonging to this subset, 19% of which do not have complete representative genomes in major public gut virome databases. These units display diverse genomic features, are predicted to infect a wide range of microbial hosts, and on average account for <1% of metagenomic reads. Analysis of longitudinal data from 338 individuals shows that the composition of this fraction of the virome remained relatively stable over a period of 4 years. We also demonstrate that 54 species-level units are highly prevalent (detected in >5% of individuals in a cohort). Finally, we find 34 associations between highly prevalent phages and human phenotypes, 24 of which can be explained by the relative abundance of potential hosts.
Collapse
Affiliation(s)
- Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Rinse K. Weersma
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| |
Collapse
|
28
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Chen J, Gissendanner CR, Tikhe CV, Li HF, Sun Q, Husseneder C. Genomics and Geographic Diversity of Bacteriophages Associated With Endosymbionts in the Guts of Workers and Alates of Coptotermes Species (Blattodea: Rhinotermitidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subterranean termites depend nutritionally on their gut microbiota, which includes protozoa as well as taxonomically and functionally diverse bacteria. Our previous metavirome study revealed a high diversity and novel families of bacteriophages in the guts of Coptotermes formosanus workers from New Orleans, Louisiana, United States. Two assembled bacteriophage genomes (Phages TG-crAlp-04 and 06, family Podoviridae) existed in all colonies and showed similarity to a prophage (ProJPt-Bp1) previously sequenced from a bacterial endosymbiont (Candidatus Azobacteroides pseudotrichonymphae, CAP) of protozoa in the gut of a termite species of the genus Prorhinotermes from Taiwan. In this study the genomes of Phage TG-crAlp-04 and 06 were subjected to detailed functional annotation. Both phage genomes contained conserved genes for DNA packaging, head and tail morphogenesis, and phage replication. Approximately 30% of the amino acid sequences derived from genes in both genomes matched to those of ProJPt-Bp1 phage or other phages from the crAss-like phage group. No integrase was identified; the lack of a lysogeny module is a characteristic of crAss-like phages. Primers were designed to sequence conserved genes of the two phages and their putative host bacterium (CAP) to detect their presence in different termite species from native and introduced distribution ranges. Related strains of the host bacterium were found across different termite genera and geographic regions. Different termite species had separate CAP strains, but intraspecific geographical variation was low. These results together with the fact that CAP is an important intracellular symbiont of obligate cellulose-digesting protozoa, suggest that CAP is a core gut bacterium and co-evolved across several subterranean termite species. Variants of both crAss-like phages were detected in different Coptotermes species from the native and introduced range, but they did not differentiate by species or geographic region. Since similar phages were detected in different termite species, we propose the existence of a core virome associated with core bacterial endosymbionts of protozoa in the guts of subterranean termites. This work provides a strong basis for further study of the quadripartite relationship of termites, protozoa, bacteria, and bacteriophages.
Collapse
|