1
|
Meng H, Huan Y, Zhang K, Yi X, Meng X, Kang E, Wu S, Deng W, Wang Y. Quiescent Adult Neural Stem Cells: Developmental Origin and Regulatory Mechanisms. Neurosci Bull 2024; 40:1353-1363. [PMID: 38656419 PMCID: PMC11365920 DOI: 10.1007/s12264-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024] Open
Abstract
The existence of neural stem cells (NSCs) in the adult mammalian nervous system, although small in number and restricted to the sub-ventricular zone of the lateral ventricles, the dentate gyrus of the hippocampus, and the olfactory epithelium, is a gift of evolution for the adaptive brain function which requires persistent plastic changes of these regions. It is known that most adult NSCs are latent, showing long cell cycles. In the past decade, the concept of quiescent NSCs (qNSCs) has been widely accepted by researchers in the field, and great progress has been made in the biology of qNSCs. Although the spontaneous neuronal regeneration derived from adult NSCs is not significant, understanding how the behaviors of qNSCs are regulated sheds light on stimulating endogenous NSC-based neuronal regeneration. In this review, we mainly focus on the recent progress of the developmental origin and regulatory mechanisms that maintain qNSCs under normal conditions, and that mobilize qNSCs under pathological conditions, hoping to give some insights for future study.
Collapse
Affiliation(s)
- Han Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuyang Yi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinyu Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science and Research Center for Natural Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yan'an, 716000, China
| | - Enming Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenbing Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 510631, China.
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
3
|
Cai Z, Satyanarayana G, Song P, Zhao F, You S, Liu Z, Mu J, Ding Y, He B, Zou MH. Regulation of Ptbp1-controlled alternative splicing of pyruvate kinase muscle by Liver kinase b1 governs vascular smooth muscle cell plasticity in vivo. Cardiovasc Res 2024:cvae187. [PMID: 39189621 DOI: 10.1093/cvr/cvae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/12/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS Vascular smooth muscle cell (VSMC) plasticity is a state in which VSMCs undergo phenotypic switching from a quiescent contractile phenotype into other functionally distinct phenotypes. Although emerging evidence suggest that VSMC plasticity plays critical roles in the development of vascular diseases, little is known about the key determinant for controlling VSMC plasticity and fate. METHODS AND RESULTS We found that smooth muscle cell-specific deletion of Lkb1 in tamoxifen-inducible Lkb1flox/flox; Myh11-Cre/ERT2 mice spontaneously and progressively induced aortic/arterial dilation, aneurysm, rupture, and premature death. Single-cell RNA sequencing and imaging-based lineage tracing showed that Lkb1-deficient VSMCs transdifferentiated gradually from early modulated VSMCs to fibroblast-like and chondrocyte-like cells, leading to ossification and blood-vessel rupture. Mechanistically, Lkb1 regulates polypyrimidine tract binding protein 1 (Ptbp1) expression and controls alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2. Lkb1 loss in VSMC results in an increased PKM2/PKM1 ratio and alters the metabolic profile by promoting aerobic glycolysis. Treatment with PKM2 activator TEPP-46 rescues VSMC transformation and aortic dilation in Lkb1flox/flox; Myh11-Cre/ERT2 mice. Furthermore, we found that Lkb1 expression decreased in human aortic aneurysm tissue compared to control tissue, along with changes in markers of VSMC fate. CONCLUSIONS Lkb1, via its regulation of Ptbp1-dependent alterative splicing of PKM, maintains VSMC in contractile states by suppressing VSMC plasticity.
Collapse
Affiliation(s)
- Zhaohua Cai
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ganesh Satyanarayana
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Shaojin You
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Jing Mu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303
| |
Collapse
|
4
|
Zhang Z, Su Z, Li Z, Li J, Yu W, Ye G, Lin J, Che Y, Xu P, Zeng Y, Wu Y, Shen H, Xie Z. CYP7B1-mediated 25-hydroxycholesterol degradation maintains quiescence-activation balance and improves therapeutic potential of mesenchymal stem cells. Cell Chem Biol 2024; 31:1277-1289.e7. [PMID: 38382532 DOI: 10.1016/j.chembiol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China; Department of Orthopedics, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Zhikun Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yipeng Zeng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| |
Collapse
|
5
|
Soares R, Lourenço DM, Mota IF, Sebastião AM, Xapelli S, Morais VA. Lineage-specific changes in mitochondrial properties during neural stem cell differentiation. Life Sci Alliance 2024; 7:e202302473. [PMID: 38664022 PMCID: PMC11045976 DOI: 10.26508/lsa.202302473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.
Collapse
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isa F Mota
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Shen J, Xie P, Wang J, Yang F, Li S, Jiang H, Wu X, Zhou F, Li J. Nlrp6 protects from corticosterone-induced NSPC ferroptosis by modulating RIG-1/MAVS-mediated mitophagy. Redox Biol 2024; 73:103196. [PMID: 38772149 PMCID: PMC11134915 DOI: 10.1016/j.redox.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Hippocampal neural stem/progenitor cells (NSPCs) are highly vulnerable to different stress stimuli, resulting in adult neurogenesis decline and eventual cognitive defects. Our previous study demonstrated that NOD-like receptor family pyrin domain-containing 6 (Nlrp6) highly expressed in NSPCs played a critical role in sustaining hippocampal neurogenesis to resist stress-induced depression, but the underlying mechnistms are still unclear. Here, we found that Nlrp6 depletion led to cognitive defects and hippocampal NSPC loss in mice. RNA-sequencing analysis of the primary NSPCs revealed that Nlrp6 deficiency altered gene expression profiles of mitochondrial energy generation and ferroptotic process. Upon siNlrp6 transfection, as well as corticosterone (CORT) exposure, downregulation of Nlrp6 suppressed retinoic acid-inducible gene I (RIG-1)/mitochondrial antiviral signaling proteins (MAVS)-mediated autophagy, but drove NSPC ferroptotic death. More interesting, short chain fatty acids (SCFAs) upregulated Nlrp6 expression and promoted RIG-1/MAVS-mediated mitophagy, preventing CORT-induced NSPC ferroptosis. Our study further demonstrates that Nlrp6 should be a sensor for RIG-1/MAVS-mediated mitophagy and play a critical role in maintain mitochondrial homeostasis of hippocampal NSPCs. These results suggests that Nlrp6 should be a potential drug target to combat neurodegenerative diseases relative with chronic stress.
Collapse
Affiliation(s)
- Jingyan Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Junhan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Haitao Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Kochan SMV, Malo MC, Jevtic M, Jahn-Kelleter HM, Wani GA, Ndoci K, Pérez-Revuelta L, Gaedke F, Schäffner I, Lie DC, Schauss A, Bergami M. Enhanced mitochondrial fusion during a critical period of synaptic plasticity in adult-born neurons. Neuron 2024; 112:1997-2014.e6. [PMID: 38582081 DOI: 10.1016/j.neuron.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.
Collapse
Affiliation(s)
- Sandra M V Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Meret Cepero Malo
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Milica Jevtic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hannah M Jahn-Kelleter
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gulzar A Wani
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Kristiano Ndoci
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Laura Pérez-Revuelta
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Cologne 50674, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany.
| |
Collapse
|
8
|
Kobayashi T. Protein homeostasis and degradation in quiescent neural stem cells. J Biochem 2024; 175:481-486. [PMID: 38299708 DOI: 10.1093/jb/mvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Tissue stem cells are maintained in the adult body throughout life and are crucial for tissue homeostasis as they supply newly functional cells. Quiescence is a reversible arrest in the G0/G1 phase of the cell cycle and a strategy to maintain the quality of tissue stem cells. Quiescence maintains stem cells in a self-renewable and differentiable state for a prolonged period by suppressing energy consumption and cell damage and depletion. Most adult neural stem cells in the brain maintain the quiescent state and produce neurons and glial cells through differentiation after activating from the quiescent state to the proliferating state. In this process, proteostasis, including proteolysis, is essential to transition between the quiescent and proliferating states associated with proteome remodeling. Recent reports have demonstrated that quiescent and proliferating neural stem cells have different expression patterns and roles as proteostatic molecules and are affected by age, indicating differing processes for protein homeostasis in these two states in the brain. This review discusses the multiple regulatory stages from protein synthesis (protein birth) to proteolysis (protein death) in quiescent neural stem cells.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Department of Basic Medical Sciences, The Institute of Medical Science, The University of Tokyo, 108-8639, Japan
| |
Collapse
|
9
|
Baig S, Nadaf J, Allache R, Le PU, Luo M, Djedid A, Nkili-Meyong A, Safisamghabadi M, Prat A, Antel J, Guiot MC, Petrecca K. Identity and nature of neural stem cells in the adult human subventricular zone. iScience 2024; 27:109342. [PMID: 38495819 PMCID: PMC10940989 DOI: 10.1016/j.isci.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.
Collapse
Affiliation(s)
- Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Phuong U. Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Annisa Djedid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Maryam Safisamghabadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Alex Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X0A9, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| |
Collapse
|
10
|
Morrow CS, Tweed K, Farhadova S, Walsh AJ, Lear BP, Roopra A, Risgaard RD, Klosa PC, Arndt ZP, Peterson ER, Chi MM, Harris AG, Skala MC, Moore DL. Autofluorescence is a biomarker of neural stem cell activation state. Cell Stem Cell 2024; 31:570-581.e7. [PMID: 38521057 PMCID: PMC10997463 DOI: 10.1016/j.stem.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey Tweed
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabina Farhadova
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alex J Walsh
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bo P Lear
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan D Risgaard
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Payton C Klosa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella R Peterson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michelle M Chi
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Allison G Harris
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Andraini T, Moulédous L, Petsophonsakul P, Florian C, Gauzin S, Botella-Daloyau M, Arrázola M, Nikolla K, Philip A, Leydier A, Marque M, Arnauné-Pelloquin L, Belenguer P, Rampon C, Miquel MC. Mitochondrial OPA1 Deficiency Is Associated to Reversible Defects in Spatial Memory Related to Adult Neurogenesis in Mice. eNeuro 2023; 10:ENEURO.0073-23.2023. [PMID: 37863658 PMCID: PMC10668243 DOI: 10.1523/eneuro.0073-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are integrative hubs central to cellular adaptive pathways. Such pathways are critical in highly differentiated postmitotic neurons, the plasticity of which sustains brain function. Consequently, defects in mitochondria and in their dynamics appear instrumental in neurodegenerative diseases and may also participate in cognitive impairments. To directly test this hypothesis, we analyzed cognitive performances in a mouse mitochondria-based disease model, because of haploinsufficiency in the mitochondrial optic atrophy type 1 (OPA1) protein involved in mitochondrial dynamics. In males, we evaluated adult hippocampal neurogenesis parameters using immunohistochemistry. We performed a battery of tests to assess basal behavioral characteristics and cognitive performances, and tested putative treatments. While in dominant optic atrophy (DOA) mouse models, the known main symptoms are late onset visual deficits, we discovered early impairments in hippocampus-dependent spatial memory attributable to defects in adult neurogenesis. Moreover, less connected adult-born hippocampal neurons showed a decrease in mitochondrial content. Remarkably, voluntary exercise or pharmacological treatment targeting mitochondrial dynamics restored spatial memory in DOA mice. Altogether, our study identifies a crucial role for OPA1-dependent mitochondrial functions in adult neurogenesis, and thus in hippocampal-dependent cognitive functions. More generally, our findings show that adult neurogenesis is highly sensitive to mild mitochondrial defects, generating impairments in spatial memory that can be detected at an early stage and counterbalanced by physical exercise and pharmacological targeting of mitochondrial dynamics. Thus, amplification of mitochondrial function at an early stage appears beneficial for late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Petnoi Petsophonsakul
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Sébastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Marlène Botella-Daloyau
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Macarena Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Kamela Nikolla
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Adam Philip
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Alice Leydier
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Manon Marque
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse 3, 31400, Toulouse, France
| |
Collapse
|
12
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
13
|
Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M. Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 2023; 34:446-461. [PMID: 37380501 DOI: 10.1016/j.tem.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Metabolism has emerged as a key regulator of stem cell behavior. Mitochondria are crucial metabolic organelles that are important for differentiated cells, yet considered less so for stem cells. However, recent studies have shown that mitochondria influence stem cell maintenance and fate decisions, inviting a revised look at this topic. In this review, we cover the current literature addressing the role of mitochondrial metabolism in mouse and human neural stem cells (NSCs) in the embryonic and adult brain. We summarize how mitochondria are implicated in fate regulation and how substrate oxidation affects NSC quiescence. We further explore single-cell RNA sequencing (scRNA-seq) data for metabolic signatures of adult NSCs, highlight emerging technologies reporting on metabolic signatures, and discuss mitochondrial metabolism in other stem cells.
Collapse
Affiliation(s)
- Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon M G Braun
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Rieskamp JD, Rosado-Burgos I, Christofi JE, Ansar E, Einstein D, Walters AE, Valentini V, Bruno JP, Kirby ED. Excitatory amino acid transporter 1 supports adult hippocampal neural stem cell self-renewal. iScience 2023; 26:107068. [PMID: 37534178 PMCID: PMC10391730 DOI: 10.1016/j.isci.2023.107068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.
Collapse
Affiliation(s)
- Joshua D. Rieskamp
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Jacob E. Christofi
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Eliza Ansar
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Dalia Einstein
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Walters
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Valentina Valentini
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - John P. Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth D. Kirby
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
17
|
Petrelli F, Scandella V, Montessuit S, Zamboni N, Martinou JC, Knobloch M. Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells. SCIENCE ADVANCES 2023; 9:eadd5220. [PMID: 36857455 PMCID: PMC9977184 DOI: 10.1126/sciadv.add5220] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cellular metabolism is important for adult neural stem/progenitor cell (NSPC) behavior. However, its role in the transition from quiescence to proliferation is not fully understood. We here show that the mitochondrial pyruvate carrier (MPC) plays a crucial and unexpected part in this process. MPC transports pyruvate into mitochondria, linking cytosolic glycolysis to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Despite its metabolic key function, the role of MPC in NSPCs has not been addressed. We show that quiescent NSPCs have an active mitochondrial metabolism and express high levels of MPC. Pharmacological MPC inhibition increases aspartate and triggers NSPC activation. Furthermore, genetic Mpc1 ablation in vitro and in vivo also activates NSPCs, which differentiate into mature neurons, leading to overall increased hippocampal neurogenesis in adult and aged mice. These findings highlight the importance of metabolism for NSPC regulation and identify an important pathway through which mitochondrial pyruvate import controls NSPC quiescence and activation.
Collapse
Affiliation(s)
- Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Male Stressed Mice Having Behavioral Control Exhibit Escalations in Dorsal Dentate Adult-Born Neurons and Spatial Memory. Int J Mol Sci 2023; 24:ijms24031983. [PMID: 36768303 PMCID: PMC9916676 DOI: 10.3390/ijms24031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
An escapable (ES)/inescapable stress (IS) paradigm was used to study whether behavioral control and repeated footshock stressors may affect adult neurogenesis and related cognitive function. Male stressed mice having behavioral control (ES) had a short-term escalation in dorsal dentate gyrus (DG) neurogenesis, while similarly stressed mice having no such control had unaltered neurogenesis as compared to control mice receiving no stressors. Paradoxically, ES and IS mice had comparable stress-induced corticosterone elevations throughout the stress regimen. Appetitive operant conditioning and forced running procedures were used to model learning and exercise effects in this escapable/inescapable paradigm. Further, conditioning and running procedures did not seem to affect the mice's corticosterone or short-term neurogenesis. ES and IS mice did not show noticeable long-term changes in their dorsal DG neurogenesis, gliogenesis, local neuronal density, apoptosis, autophagic flux, or heterotypic stress responses. ES mice were found to have a greater number of previously labeled and functionally integrated DG neurons as compared to IS and control mice 6 weeks after the conclusion of the stressor regimen. Likewise, ES mice outperformed IS and non-stressed control mice for the first two, but not the remaining two, trials in the object location task. Compared to non-stressed controls, temozolomide-treated ES and IS mice having a lower number of dorsal DG 6-week-old neurons display poor performance in their object location working memory. These results, taken together, prompt us to conclude that repeated stressors, albeit their corticosterone secretion-stimulating effect, do not necessary affect adult dorsal DG neurogenesis. Moreover, stressed animals having behavioral control may display adult neurogenesis escalation in the dorsal DG. Furthermore, the number of 6-week-old and functionally-integrated neurons in the dorsal DG seems to confer the quality of spatial location working memory. Finally, these 6-week-old, adult-born neurons seem to contribute spatial location memory in a use-dependent manner.
Collapse
|
19
|
Motori E, Giavalisco P. 13C Isotope Labeling and Mass Spectrometric Isotope Enrichment Analysis in Acute Brain Slices. Methods Mol Biol 2023; 2675:181-194. [PMID: 37258764 DOI: 10.1007/978-1-0716-3247-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Feeding of stable 13C-labeled compounds coupled to mass spectrometric analysis has enabled the characterization of dynamic metabolite partitioning in various experimental conditions. This information is particularly relevant for the study and functional understanding of brain metabolic heterogeneity. We here describe a protocol for the analysis of metabolic enrichment analysis upon feeding of murine acute cerebellar slices with 13C-labeled substrates.
Collapse
Affiliation(s)
- Elisa Motori
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | | |
Collapse
|
20
|
Petridi S, Dubal D, Rikhy R, van den Ameele J. Mitochondrial respiration and dynamics of in vivo neural stem cells. Development 2022; 149:285126. [PMID: 36445292 PMCID: PMC10112913 DOI: 10.1242/dev.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dnyanesh Dubal
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.,Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jelle van den Ameele
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
21
|
Pareek G. AAA+ proteases: the first line of defense against mitochondrial damage. PeerJ 2022; 10:e14350. [PMID: 36389399 PMCID: PMC9648348 DOI: 10.7717/peerj.14350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria play essential cellular roles in Adenosine triphosphate (ATP) synthesis, calcium homeostasis, and metabolism, but these vital processes have potentially deadly side effects. The production of the reactive oxygen species (ROS) and the aggregation of misfolded mitochondrial proteins can lead to severe mitochondrial damage and even cell death. The accumulation of mitochondrial damage is strongly implicated in aging and several incurable diseases, including neurodegenerative disorders and cancer. To oppose this, metazoans utilize a variety of quality control strategies, including the degradation of the damaged mitochondrial proteins by the mitochondrial-resident proteases of the ATPase Associated with the diverse cellular Activities (AAA+) family. This mini-review focuses on the quality control mediated by the mitochondrial-resident proteases of the AAA+ family used to combat the accumulation of damaged mitochondria and on how the failure of this mitochondrial quality control contributes to diseases.
Collapse
|
22
|
Liu LL, van Rijn RM, Zheng W. Copper Modulates Adult Neurogenesis in Brain Subventricular Zone. Int J Mol Sci 2022; 23:ijms23179888. [PMID: 36077284 PMCID: PMC9456150 DOI: 10.3390/ijms23179888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The subventricular zone (SVZ) in lateral ventricles is the largest neurogenic region in adult brain containing high amounts of copper (Cu). This study aims to define the role of Cu in adult neurogenesis by chelating labile Cu ions using a well-established Cu chelator D-Penicillamine (D-Pen). A neurosphere model derived from adult mouse SVZ tissues was established and characterized for its functionality with regards to neural stem/progenitor cells (NSPCs). Applying D-Pen in cultured neurospheres significantly reduced intracellular Cu levels and reversed the Cu-induced suppression of NSPC’s differentiation and migration. An in vivo intracerebroventricular (ICV) infusion model was subsequently established to infuse D-Pen directly into the lateral ventricle. Metal analyses revealed a selective reduction of Cu in SVZ by 13.1% (p = 0.19) and 21.4% (p < 0.05) following D-Pen infusions at low (0.075 μg/h) and high (0.75 μg/h) doses for 28 days, respectively, compared to saline-infused controls. Immunohistochemical studies revealed that the 7-day, low-dose D-Pen infusion significantly increased Ki67(+)/Nestin(+) cell counts in SVZ by 28% (p < 0.05). Quantification of BrdU(+)/doublecortin (DCX)(+) newborn neuroblasts in the rostral migration stream (RMS) and olfactory bulb (OB) further revealed that the short-term, low-dose D-Pen infusion, as compared with saline-infused controls, resulted in more newborn neuroblasts in OB, while the high-dose D-Pen infusion showed fewer newborn neuroblasts in OB but with more arrested in the RMS. Long-term (28-day) infusion revealed similar outcomes. The qPCR data from neurosphere experiments revealed altered expressions of mRNAs encoding key proteins known to regulate SVZ adult neurogenesis, including, but not limited to, Shh, Dlx2, and Slit1, in response to the changed Cu level in neurospheres. Further immunohistochemical data indicated that Cu chelation also altered the expression of high-affinity copper uptake protein 1 (CTR1) and metallothionein-3 (MT3) in the SVZ as well as CTR1 in the choroid plexus, a tissue regulating brain Cu homeostasis. Taken together, this study provides first-hand evidence that a high Cu level in SVZ appears likely to maintain the stability of adult neurogenesis in this neurogenic zone.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
23
|
Rai M, Curley M, Coleman Z, Demontis F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022; 21:e13603. [PMID: 35349763 PMCID: PMC9124314 DOI: 10.1111/acel.13603] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Michelle Curley
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Zane Coleman
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Fabio Demontis
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| |
Collapse
|