1
|
Chiang JCB, Tajbakhsh Z, Wolffsohn JS. The clinical impact of contact lens wear on neural structure and function of the cornea. Clin Exp Optom 2024:1-11. [PMID: 39250904 DOI: 10.1080/08164622.2024.2401511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Contact lens (CL) use is growing rapidly, with a current estimate of over 100 million wearers worldwide. Vast improvements in materials and designs have occurred over the past decades with advancements in the understanding of ocular surface health with CL wear. However, the potential impact of CL on neural structures and function of the ocular surface, particularly in relation to the richly innervated cornea, remain poorly understood. Problems with sensation such as CL discomfort and conditions that may be associated with lens wear including dry eye disease also remain pervasive. This narrative review discusses the findings from studies involving soft or rigid CL wearers, assessed with c linical techniques designed for examining the neural integrity of the cornea, namely in vivo confocal microscopy and esthesiometry. While the collective findings remain equivocal in terms of the changes in corneal nerve morphology and function with conventional CL wear, more specialised CLs, namely orthokeratology lenses, which mechanically manipulates the structure of the cornea seem to produce more prominent changes in nerve distribution and sensitivity reduction. Given the intricate relationship between neural and immune mechanisms in maintaining balanced ocular surface health, the potential links between these structural and functional findings with parainflammation and neuroinflammation, as well as clinical issues including CL discomfort and dry eye disease, are also explored.
Collapse
Affiliation(s)
| | - Zahra Tajbakhsh
- Department of Optometry, University of Western Australia, Crawley, Australia
| | | |
Collapse
|
2
|
Chen L, Wu MY, Chen SL, Hu R, Wang Y, Zeng W, Feng S, Ke M, Wang L, Chen S, Gu M. The Guardian of Vision: Intelligent Bacteriophage-Based Eyedrops for Clinical Multidrug-Resistant Ocular Surface Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407268. [PMID: 39091071 DOI: 10.1002/adma.202407268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Clinical multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is the leading cause of refractory bacterial keratitis (BK). However, the reported BK treatment methods lack biosecurity and bioavailability, which usually causes irreversible visual impairment and even blindness. Herein, for BK caused by clinically isolated MDR-PA infection, armed phages are modularized with the type I photosensitizer (PS) ACR-DMT, and an intelligent phage eyedrop is developed for combined phagotherapy and photodynamic therapy (PDT). These eyedrops maximize the advantages of bacteriophages and ACR-DMT, enabling more robust and specific targeting killing of MDR-PA under low oxygen-dependence, penetrating and disrupting biofilms, and efficiently preventing biofilm reformation. Altering the biofilm and immune microenvironments alleviates inflammation noninvasively, promotes corneal healing without scar formation, protects ocular tissues, restores visual function, and prevents long-term discomfort and pain. This strategy exhibits strong scalability, enables at-home treatment of ocular surface infections with great patient compliance and a favorable prognosis, and has significant potential for clinical application.
Collapse
Affiliation(s)
- Luojia Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming-Yu Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Si-Ling Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Hu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifei Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Weijuan Zeng
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Min Ke
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Shi Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meijia Gu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024:10.1038/s41577-024-01064-y. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Ghenciu LA, Hațegan OA, Bolintineanu SL, Dănilă AI, Faur AC, Prodan-Bărbulescu C, Stoicescu ER, Iacob R, Șișu AM. Immune-Mediated Ocular Surface Disease in Diabetes Mellitus-Clinical Perspectives and Treatment: A Narrative Review. Biomedicines 2024; 12:1303. [PMID: 38927510 PMCID: PMC11201425 DOI: 10.3390/biomedicines12061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by hyperglycemia due to defects in insulin secretion, action, or both, with a global prevalence that has tripled in recent decades. This condition poses significant public health challenges, affecting individuals, healthcare systems, and economies worldwide. Among its numerous complications, ocular surface disease (OSD) is a significant concern, yet understanding its pathophysiology, diagnosis, and management remains challenging. This review aims to explore the epidemiology, pathophysiology, clinical manifestations, diagnostic approaches, and management strategies of diabetes-related OSD. The ocular surface, including the cornea, conjunctiva, and associated structures, is vital for maintaining eye health, with the lacrimal functional unit (LFU) playing a crucial role in tear film regulation. In DM, changes in glycosaminoglycan metabolism, collagen synthesis, oxygen consumption, and LFU dysfunction contribute to ocular complications. Persistent hyperglycemia leads to the expression of cytokines, chemokines, and cell adhesion molecules, resulting in neuropathy, tear film abnormalities, and epithelial lesions. Recent advances in molecular research and therapeutic modalities, such as gene and stem cell therapies, show promise for managing diabetic ocular complications. Future research should focus on pathogenetically oriented therapies for diabetic neuropathy and keratopathy, transitioning from animal models to clinical trials to improve patient outcomes.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, ‘Vasile Goldis’ Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra-Ioana Dănilă
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Cătălin Prodan-Bărbulescu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- IInd Surgery Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
- Department of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Iacob
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| |
Collapse
|
5
|
Hong M, Chong SZ, Goh YY, Tong L. Two-Photon and Multiphoton Microscopy in Anterior Segment Diseases of the Eye. Int J Mol Sci 2024; 25:1670. [PMID: 38338948 PMCID: PMC10855705 DOI: 10.3390/ijms25031670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Two-photon excitation microscopy (TPM) and multiphoton fluorescence microscopy (MPM) are advanced forms of intravital high-resolution functional microscopy techniques that allow for the imaging of dynamic molecular processes and resolve features of the biological tissues of interest. Due to the cornea's optical properties and the uniquely accessible position of the globe, it is possible to image cells and tissues longitudinally to investigate ocular surface physiology and disease. MPM can also be used for the in vitro investigation of biological processes and drug kinetics in ocular tissues. In corneal immunology, performed via the use of TPM, cells thought to be intraepithelial dendritic cells are found to resemble tissue-resident memory T cells, and reporter mice with labeled plasmacytoid dendritic cells are imaged to understand the protective antiviral defenses of the eye. In mice with limbal progenitor cells labeled by reporters, the kinetics and localization of corneal epithelial replenishment are evaluated to advance stem cell biology. In studies of the conjunctiva and sclera, the use of such imaging together with second harmonic generation allows for the delineation of matrix wound healing, especially following glaucoma surgery. In conclusion, these imaging models play a pivotal role in the progress of ocular surface science and translational research.
Collapse
Affiliation(s)
- Merrelynn Hong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Training and Education Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Yun Yao Goh
- Lee Kong Chian School of Medicine, National Technical University, Singapore 639798, Singapore;
| | - Louis Tong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Eye Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
6
|
El Zarif M, Abdul Jawad K, Alió JL, Makdissy N, De Miguel MP. In vivo confocal microscopy evaluation of infiltrated immune cells in corneal stroma treated with cell therapy in advanced keratoconus. J Ophthalmic Inflamm Infect 2024; 14:5. [PMID: 38277094 PMCID: PMC10817874 DOI: 10.1186/s12348-024-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE This study investigates immune cell (ICs) infiltration in advanced keratoconus patients undergoing autologous adipose-derived adult stem cell (ADASC) therapy with recellularized human donor corneal laminas (CL). METHODS A prospective clinical trial included fourteen patients divided into three groups: G-1, ADASCs; G-2, decellularized CL (dCL); and G-3, dCL recellularized with ADASCs (ADASCs-rCL). Infiltrated ICs were assessed using in vivo confocal microscopy (IVCM) at 1,3,6, and12 months post-transplant. RESULTS Infiltrated ICs, encompassing granulocytes and agranulocytes, were observed across all groups, categorized by luminosity, structure, and area. Stromal ICs infiltration ranged from 1.19% to 6.62%, with a consistent increase in group-related cell density (F = 10.68, P < .0001), independent of post-op time (F = 0.77, P = 0.511); the most substantial variations were observed in G-3 at 6 and 12 months (2.0 and 1.87-fold, respectively). Similarly, significant size increases were more group-dependent (F = 5.76, P < .005) rather than time-dependent (F = 2.84, P < .05); G-3 exhibited significant increases at 6 and 12 months (3.70-fold and 2.52-fold, respectively). A lamina-induced shift in IC size occurred (F = 110.23, P < .0001), primarily with 50-100 μm2 sizes and up to larger cells > 300μm2, presumably macrophages, notably in G-3, indicating a potential role in tissue repair and remodeling, explaining reductions in cells remnants < 50μm2. CONCLUSIONS ADASCs-rCL therapy may lead to increased IC infiltration compared to ADASCs alone, impacting cell distribution and size due to the presence of the lamina. The findings reveal intricate immune patterns shaped by the corneal microenvironment and highlight the importance of understanding immune responses for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Mona El Zarif
- Optica General, Saida, Lebanon
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Lebanon
| | | | - Jorge L Alió
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain
| | - Nehman Makdissy
- Genomic Surveillance and Biotherapy GSBT, Faculty of Sciences, Lebanese University, RasMaska, Lebanon.
| | - María P De Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Health Research Institute, Madrid, Spain.
| |
Collapse
|
7
|
Mobeen R, Stapleton F, Chao C, Huynh MC, Phoebe Wong YS, Naduvilath T, Golebiowski B. Epithelial Immune Cell Response to Initial Soft Contact Lens Wear in the Human Corneal and Conjunctival Epithelium. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 38099736 PMCID: PMC10729840 DOI: 10.1167/iovs.64.15.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose The purpose of this study was to assess the immediate ocular immune response to soft contact lens (CL) wear by examining presumed epithelial immune cell (EIC) density and morphology at the central, peripheral, limbal cornea, and conjunctiva. Methods Fifty-four participants naïve to CL wear (mean age = 24.8 ± 9.8 years, 44% female participants), were examined using in vivo confocal microscopy at baseline and after 2 hours of CL wear (1-Day ACUVUE MOIST). Images were captured at the central, temporal far peripheral and limbal cornea, and bulbar conjunctiva. EIC density was counted manually and morphology was graded. Differences in EIC parameters pre- and post-CL wear were examined using a generalized estimating equation model with appropriate post hoc analyses. Results After 2 hours of soft CL wear, there was a significant increase in EIC density in all regions other than the central cornea (all P < 0.001). Cell body size was significantly larger, and a higher proportion of participants exhibited EIC with long dendrites after lens wear at the central and peripheral cornea (both P < 0.001). There was a significant increase in the number of participants displaying EIC with thick dendrites at the peripheral (P = 0.04) and limbal cornea (P < 0.001) after lens wear. Conclusions EICs were primarily recruited to the peripheral regions, whereas the central cornea shows no significant recruitment after short-term CL wear. Both central and peripheral corneas exhibited an enhanced antigen capture capacity, whereas migratory capacity was increased in the peripheral corneal regions suggesting EIC activation following a short period of CL wear.
Collapse
Affiliation(s)
- Rabia Mobeen
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Cecilia Chao
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Mandy C. Huynh
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Yee S. Phoebe Wong
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| | - Thomas Naduvilath
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
- Brien Holden Vision Institute, University of New South Wales, New South Wales, Sydney, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Moekotte L, Kuiper JJW, Hiddingh S, Nguyen XTA, Boon CJF, van den Born LI, de Boer JH, van Genderen MM. CRB1-Associated Retinal Dystrophy Patients Have Expanded Lewis Glycoantigen-Positive T Cells. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37792335 PMCID: PMC10565706 DOI: 10.1167/iovs.64.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Eye inflammation may occur in patients with inherited retinal dystrophies (IRDs) and is seen frequently in IRDs associated with mutations in the CRB1 gene. The purpose of this study was to determine the types of inflammatory cells involved in IRDs, by deep profiling the composition of peripheral blood mononuclear cells of patients with a CRB1-associated IRD. Methods This study included 33 patients with an IRD with confirmed CRB1 mutations and 32 healthy controls. A 43-parameter flow cytometry analysis was performed on peripheral blood mononuclear cells isolated from venous blood. FlowSOM and manual Boolean combination gating were used to identify and quantify immune cell subsets. Results Comparing patients with controls revealed a significant increase in patients in the abundance of circulating CD4+ T cells and CD8+ T cells that express sialyl Lewis X antigen. Furthermore, we detected a decrease in plasmacytoid dendritic cells and an IgA+CD24+CD38+ transitional B-cell subset in patients with an IRD. Conclusions Patients with a CRB1-associated IRD show marked changes in blood leukocyte composition, affecting lymphocyte and dendritic cell populations. These results implicate inflammatory pathways in the disease manifestations of IRDs.
Collapse
Affiliation(s)
- Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Joke H. de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Bartiméus, Diagnostic Center for complex visual disorders, Zeist, the Netherlands
| |
Collapse
|
9
|
Qin L, Li Q, Wang L, Huang Y. Mass cytometry reveals the corneal immune cell changes at single cell level in diabetic mice. Front Endocrinol (Lausanne) 2023; 14:1253188. [PMID: 37732130 PMCID: PMC10507693 DOI: 10.3389/fendo.2023.1253188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Diabetic ocular complications include sight-threatening consequences and decreased corneal sensitivity, characterized by decreased tear production, corneal sensitivity and delayed corneal epithelial wound healing. The pathogenesis of diabetic corneal disorders remains largely unknown. Growing evidence implies the participation of immune cells in the development of diabetic corneal diseases. Nonetheless, the immunological changes that result in diabetic corneal problems are largely unknown. Methods Mass cytometry by time of flight (CyTOF) was used to investigate immune cell cluster alterations associated with diabetic corneal disorders. CyTOF test was performed on corneal cells at a single level from 21-week-old diabetic (db/db) and non-diabetic (db/m) mice. A panel of 41 immune-related markers monitored different immune cell types in diabetic corneas. To investigate the proportion of each immune cell subpopulation, an unsupervised clustering method was employed, and T-distributed stochastic neighbor embedding was used to visualize the distinctions between different immune cell subsets. Results Through CyTOF test, we identified 10 immune cell subsets in the corneal tissues. In a novel way, we discovered significant immune alterations in diabetic corneas, including pronounced alterations in T cells and myeloid cell subgroups in diabetic corneas linked to potential biomarkers, including CD103, CCR2, SiglecF, Ly6G, and CD172a. Comprehensive immunological profiling indicated remarkable changes in the immune microenvironment in diabetic corneas, characterized by a notable decrease in CD103+CD8+ tissue-resident memory T (TRM) cells and Tregs, as well as a dramatic increase of γδT cells and subsets of CD11b+Ly6G+ myeloid-derived suppressor cells (MDSCs). Conclusion CyTOF analysis revealed significant alterations in the immune microenvironment during the development of diabetic corneal complications. This study mapped the immune microenvironment landscape of type 2 diabetic corneas, providing a fundamental understanding of immune-driven diabetic corneal disorders.
Collapse
Affiliation(s)
- Limin Qin
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, The First Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, The First Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
10
|
Sakowska J, Glasner P, Dukat-Mazurek A, Rydz A, Zieliński M, Pellowska I, Biernat W, Glasner L, Michalska-Małecka K, Trzonkowski P. Local T cell infiltrates are predominantly associated with corneal allograft rejection. Transpl Immunol 2023; 79:101852. [PMID: 37196866 DOI: 10.1016/j.trim.2023.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Corneal transplantations (CTXs) are a vision-saving procedure. Routinely, while CTXs' survival rates remain high, the risk of graft failure increases significantly for repeated CTXs. The reason is an alloimmunization following previous CTXs and development of memory T (Tm) and B (Bm) cells. METHODS We characterized populations of cells present in explanted human corneas from patients receiving the first CTX and marked as a primary CTX (PCTX) or the second or more CTXs and marked as a repeated CTX (RCTX). Cells extracted from resected corneas and from peripheral blood mononuclear cells (PBMCs) were analyzed by the flow cytometry method using multiple surface and intracellular markers. RESULTS Overall, the number of cells was similar in PCTX and RCTX patients. Extracted infiltrates from PCTXs and RCTXs contained similar numbers of T cell subsets, namely CD4+, CD8+, CD4+ Tm, CD8+ Tm, CD4+Foxp3+ T regulatory (Tregs), CD8+ Treg cells, while very few B cells (all p = NS). However, when compared to peripheral blood, PCTX and RCTX corneas contained significantly higher percentages of effector memory CD4+ and CD8+ T cells (both p < 0,05). In comparison to PCTX, RCTX group had the highest levels of Foxp3 in T CD4+ Tregs (p = 0,04) but decreased percentage of Helios-positive CD4+ Tregs. CONCLUSION PCTXs and especially RCTXs are rejected mainly by local T cells. The accumulation of effector CD4+ and CD8+ T cells, as well as CD4+ and CD8+ Tm cells is associated with the final rejection. Furthermore, local CD4+ and CD8+ Tregs expressing Foxp3 and Helios are probably insufficient to impose the acceptance of CTX.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland.
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Anna Rydz
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Irena Pellowska
- Department of Clinical Pathomorphology, University Clinical Centre in Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| |
Collapse
|
11
|
Stolley JM, Scott MC, Joag V, Dale AJ, Johnston TS, Saavedra F, Gavil NV, Lotfi-Emran S, Soerens AG, Weyu E, Pierson MJ, Herzberg MC, Zhang N, Vezys V, Masopust D. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. J Exp Med 2023; 220:e20221853. [PMID: 37097449 PMCID: PMC10130744 DOI: 10.1084/jem.20221853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The oral mucosa is a frontline for microbial exposure and juxtaposes several unique tissues and mechanical structures. Based on parabiotic surgery of mice receiving systemic viral infections or co-housing with microbially diverse pet shop mice, we report that the oral mucosa harbors CD8+ CD103+ resident memory T cells (TRM), which locally survey tissues without recirculating. Oral antigen re-encounter during the effector phase of immune responses potentiated TRM establishment within tongue, gums, palate, and cheek. Upon reactivation, oral TRM triggered changes in somatosensory and innate immune gene expression. We developed in vivo methods for depleting CD103+ TRM while sparing CD103neg TRM and recirculating cells. This revealed that CD103+ TRM were responsible for inducing local gene expression changes. Oral TRM putatively protected against local viral infection. This study provides methods for generating, assessing, and in vivo depleting oral TRM, documents their distribution throughout the oral mucosa, and provides evidence that TRM confer protection and trigger responses in oral physiology and innate immunity.
Collapse
Affiliation(s)
- J. Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Milcah C. Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J. Dale
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Timothy S. Johnston
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Flavia Saavedra
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Noah V. Gavil
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sahar Lotfi-Emran
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrew G. Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Mark J. Pierson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Mark C. Herzberg
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Chiang JCB, Roy M, Kim J, Markoulli M, Krishnan AV. In-vivo corneal confocal microscopy: Imaging analysis, biological insights and future directions. Commun Biol 2023; 6:652. [PMID: 37336941 DOI: 10.1038/s42003-023-05005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
In-vivo corneal confocal microscopy is a powerful imaging technique which provides clinicians and researcher with the capabilities to observe microstructures at the ocular surfaces in significant detail. In this Mini Review, the optics and image analysis methods with the use of corneal confocal microscopy are discussed. While novel insights of neuroanatomy and biology of the eyes, particularly the ocular surface, have been provided by corneal confocal microscopy, some debatable elements observed using this technique remain and these are explored in this Mini Review. Potential improvements in imaging methodology and instrumentation are also suggested.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, NSW, UK
| | - Maitreyee Roy
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Juno Kim
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia.
- Department of Neurology, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Vereertbrugghen A, Pizzano M, Sabbione F, Keitelman IA, Shiromizu CM, Aguilar DV, Fuentes F, de Paiva CS, Giordano M, Trevani A, Galletti JG. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation 2023; 20:120. [PMID: 37217914 PMCID: PMC10201717 DOI: 10.1186/s12974-023-02800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mirta Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Xia D, Toy R, Pradhan P, Hejri A, Chae J, Grossniklaus HE, Cursiefen C, Roy K, Prausnitz MR. Enhanced immune responses to vaccine antigens in the corneal stroma. J Control Release 2023; 353:434-446. [PMID: 36462639 PMCID: PMC9892265 DOI: 10.1016/j.jconrel.2022.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
To examine the widely accepted dogma that the eye is an immune-privileged organ that can suppress antigen immunogenicity, we explored systemic immune responses to a model vaccine antigen (tetanus toxoid) delivered to six compartments of the rodent eye (ocular surface, corneal stroma, anterior chamber, subconjunctival space, suprachoroidal space, vitreous body). We discovered that antigens delivered to corneal stroma induced enhanced, rather than suppressed, antigen-specific immune responses, which were 18- to 30-fold greater than conventional intramuscular injection and comparable to intramuscular vaccination with alum adjuvant. Systemic immune responses to antigen delivered to the other ocular compartments were much weaker. The enhanced systemic immune responses after intrastromal injection were related to a sequence of events involving the formation of an antigen "depot" in the avascular stroma, infiltration of antigen-presenting cells, up-regulation of MHC class II and costimulatory molecules CD80/CD86, and induction of lymphangiogenesis in the corneal stroma facilitating sustained presentation of antigen to the lymphatic system. These enhanced immune responses in corneal stroma suggest new approaches to medical interventions for ocular immune diseases and vaccination methods.
Collapse
Affiliation(s)
- Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amir Hejri
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeremy Chae
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hans E Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne 50937, Germany
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Ma C, Zhang N. Lymphoid tissue residency: A key to understand Tcf-1 +PD-1 + T cells. Front Immunol 2022; 13:1074698. [PMID: 36569850 PMCID: PMC9767944 DOI: 10.3389/fimmu.2022.1074698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During chronic antigen exposure, a subset of exhausted CD8+ T cells differentiate into stem cell-like or progenitor-like T cells expressing both transcription factor Tcf-1 (T cell factor-1) and co-inhibitory receptor PD-1. These Tcf-1+ stem-like or progenitor exhausted T cells represent the key target for immunotherapies. Deeper understanding of the biology of Tcf-1+PD-1+ CD8+ T cells will lead to rational design of future immunotherapies. Here, we summarize recent findings about the migratory and resident behavior of Tcf-1+ T cells. Specifically, we will focus on TGF-β-dependent lymphoid tissue residency program of Tcf-1+ T cells, which may represent a key to understanding the differentiation and maintenance of Tcf-1+ stem-like CD8+ T cells during persistent antigen stimulation.
Collapse
Affiliation(s)
- Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
16
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
17
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
18
|
|