1
|
Mazzoleni S, Busnelli M, Bassani S. The complex role of protocadherin-19 in brain function: a focus on the oxytocin system. Neural Regen Res 2025; 20:3211-3212. [PMID: 39715087 DOI: 10.4103/nrr.nrr-d-24-00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Sara Mazzoleni
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
| | - Marta Busnelli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
- NeuroMi Milan Center for Neuroscience, Milan, Italy (Busnelli M, Bassani S)
| | - Silvia Bassani
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
- NeuroMi Milan Center for Neuroscience, Milan, Italy (Busnelli M, Bassani S)
| |
Collapse
|
2
|
Calligaris M, Spanò DP, Puccio MC, Müller SA, Bonelli S, Lo Pinto M, Zito G, Blobel CP, Lichtenthaler SF, Troeberg L, Scilabra SD. Development of a Proteomic Workflow for the Identification of Heparan Sulphate Proteoglycan-Binding Substrates of ADAM17. Proteomics 2024; 24:e202400076. [PMID: 39318062 DOI: 10.1002/pmic.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
Ectodomain shedding, which is the proteolytic release of transmembrane proteins from the cell surface, is crucial for cell-to-cell communication and other biological processes. The metalloproteinase ADAM17 mediates ectodomain shedding of over 50 transmembrane proteins ranging from cytokines and growth factors, such as TNF and EGFR ligands, to signalling receptors and adhesion molecules. Yet, the ADAM17 sheddome is only partly defined and biological functions of the protease have not been fully characterized. Some ADAM17 substrates (e.g., HB-EGF) are known to bind to heparan sulphate proteoglycans (HSPG), and we hypothesised that such substrates would be under-represented in traditional secretome analyses, due to their binding to cell surface or pericellular HSPGs. Thus, to identify novel HSPG-binding ADAM17 substrates, we developed a proteomic workflow that involves addition of heparin to solubilize HSPG-binding proteins from the cell layer, thereby allowing their mass spectrometry detection by heparin-treated secretome (HEP-SEC) analysis. Applying this methodology to murine embryonic fibroblasts stimulated with an ADAM17 activator enabled us to identify 47 transmembrane proteins that were shed in response to ADAM17 activation. This included known HSPG-binding ADAM17 substrates (i.e., HB-EGF, CX3CL1) and 14 novel HSPG-binding putative ADAM17 substrates. Two of these, MHC-I and IL1RL1, were validated as ADAM17 substrates by immunoblotting.
Collapse
Affiliation(s)
- Matteo Calligaris
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Donatella Pia Spanò
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Maria Chiara Puccio
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simone Bonelli
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA
- School of Medicine, Technical University Munich, Munich, Germany
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, USA
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- School of Medicine, Technical University Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simone Dario Scilabra
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
3
|
Forastieri C, Romito E, Paplekaj A, Battaglioli E, Rusconi F. Dissecting the Hippocampal Regulation of Approach-Avoidance Conflict: Integrative Perspectives From Optogenetics, Stress Response, and Epigenetics. Hippocampus 2024; 34:753-766. [PMID: 39494726 DOI: 10.1002/hipo.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Psychiatric disorders are multifactorial conditions without clear biomarkers, influenced by genetic, environmental, and developmental factors. Understanding these disorders requires identifying specific endophenotypes that help break down their complexity. Here, we undertake an in-depth analysis of one such endophenotype, namely imbalanced approach-avoidance conflict (AAC), reviewing its significant dependency on the hippocampus. Imbalanced AAC is a transdiagnostic endophenotype, being a feature of many psychiatric conditions in humans. However, it is predominantly examined in preclinical research through paradigms that subject rodents to conflict-laden scenarios. This review offers an original perspective by discussing the AAC through three distinct lights: optogenetic modulation of the AAC, which updates our understanding of the hippocampal contribution to behavioral inhibition; the impact of environmental stress, which exacerbates conflict and strengthens the stress-psychopathology axis; and inherent epigenetic aspects, which uncover crucial molecular underpinnings of environmental (mal) adaptation. By integrating these perspectives, in this review we aim to underline a cross-species causal nexus between heightened hippocampal activity and avoidance behavior. In addition, we suggest a rationale to explore epigenetic pharmacology as a potential strategy to tackle AAC-related psychopathology. This review assumes greater significance when viewed through the lens of advancing AAC-centric diagnostics in human subjects. Unlike traditional questionnaires, which struggle to accurately measure individual differences in AAC-related dimensions, new approaches using virtual reality and computer games show promise in better focusing the magnitude of AAC contribution to psychopathology.
Collapse
Affiliation(s)
- C Forastieri
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Romito
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - A Paplekaj
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Battaglioli
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - F Rusconi
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jung J, Park J, Park S, Kim CH, Jung H. Protocadherin 19 regulates axon guidance in the developing Xenopus retinotectal pathway. Mol Brain 2024; 17:58. [PMID: 39175067 PMCID: PMC11342623 DOI: 10.1186/s13041-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Protocadherin 19 (Pcdh19) is a homophilic cell adhesion molecule and is involved in a variety of neuronal functions. Here, we tested whether Pcdh19 has a regulatory role in axon guidance using the developing Xenopus retinotectal system. We performed targeted microinjections of a translation blocking antisense morpholino oligonucleotide to knock down the expression of Pcdh19 selectively in the central nervous system. Knocking down Pcdh19 expression resulted in navigational errors of retinal ganglion cell (RGC) axons specifically at the optic chiasm. Instead of projecting to the contralateral optic tectum, RGC axons in the Pcdh19-depleted embryo misprojected ipsilaterally. Although incorrectly delivered into the ipsilateral brain hemisphere, these axons correctly reached the optic tectum. These data suggest that Pcdh19 has a critical role in preventing mixing of RGC axons originating from the opposite eyes at the optic chiasm, highlighting the importance of cell adhesion in bundling of RGC axons.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sihyeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Li HX, Yang LY, Wan YX, Zhao YP, Liu YF, Wen KS, Yang JJ, Fan XY. The epigenetically regulated PP1α expression by KDM1A may contribute to oxycodone conditioned place preference in mice. Biomed Pharmacother 2024; 176:116931. [PMID: 38870630 DOI: 10.1016/j.biopha.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.
Collapse
Affiliation(s)
- Hong-Xi Li
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Yu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Xiao Wan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fei Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kai-Shu Wen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Jing Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
de Nys R, Gardner A, van Eyk C, Mincheva-Tasheva S, Thomas P, Bhattacharjee R, Jolly L, Martinez-Garay I, Fox IWJ, Kamath KS, Kumar R, Gecz J. Proteomic analysis of the developing mammalian brain links PCDH19 to the Wnt/β-catenin signalling pathway. Mol Psychiatry 2024; 29:2199-2210. [PMID: 38454084 PMCID: PMC11408250 DOI: 10.1038/s41380-024-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, β-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of β-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alison Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Clare van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Stefka Mincheva-Tasheva
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Paul Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Jolly
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian W J Fox
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Motosugi N, Sugiyama A, Otomo A, Sakata Y, Araki T, Hadano S, Kumasaka N, Fukuda A. Effect of PCDH19 missense mutations on cell-to-cell proximity and neuronal development under heterotypic conditions. PNAS NEXUS 2024; 3:pgae060. [PMID: 38516276 PMCID: PMC10957236 DOI: 10.1093/pnasnexus/pgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
The mutation of the X-linked protocadherin (PCDH) 19 gene in heterozygous females causes epilepsy. However, because of the erosion of X-chromosome inactivation (XCI) in female human pluripotent stem cells, precise disease modeling often leads to failure. In this study, using a mathematical approach and induced pluripotent stem cells retaining XCI derived from patients with PCDH19 missense mutations, we found that heterotypic conditions, which are composed of wild-type and missense PCDH19, led to significant cell-to-cell proximity and impaired neuronal differentiation, accompanied by the aberrant accumulation of doublecortin, a microtubule-associated protein. Our findings suggest that ease of adhesion between cells expressing either wild-type or missense PCDH19 might lead to aberrant cell aggregation in early embryonic phases, causing poor neuronal development.
Collapse
Affiliation(s)
- Nami Motosugi
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akiko Sugiyama
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Yuka Sakata
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Takuma Araki
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Shinji Hadano
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Natsuhiko Kumasaka
- Genetics Division, Medical Support Center of the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Atsushi Fukuda
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo 157-0074, Japan
| |
Collapse
|
10
|
de Nys R, van Eyk CL, Ritchie T, Møller RS, Scheffer IE, Marini C, Bhattacharjee R, Kumar R, Gecz J. Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy. Transl Psychiatry 2024; 14:65. [PMID: 38280856 PMCID: PMC10821879 DOI: 10.1038/s41398-024-02783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Carla Marini
- Child Neurology and Psychiatry Unit Children's Hospital "G. Salesi" Azienda Ospedaliero-Universitaria delle Marche Ancona, Ancona, Italy
| | - Rudrarup Bhattacharjee
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
11
|
Sokolov PL, Chebanenko NV, Mednaya DM, Fedotova YA. [Epilepsy with PCDH19 mutation: polypharmacy as a consequence of the complexity and diversity of pathogenesis mechanisms]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:51-55. [PMID: 39113443 DOI: 10.17116/jnevro202412407151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mutations in the human PCDH19 gene lead to epileptic encephalopathy of early childhood. It is characterized by the early onset of serial seizures, cognitive impairment and behavioral disorders (including autistic personality traits). In most cases, difficulties arise in selecting therapy due to pharmacoresistance. The pathogenesis of the disease is complex. The data available to us at the moment from numerous studies present the pathogenesis of «PCDH19 syndrome» as multi-level, affecting both the epigenetic support of cell life, and development of stem cells and progenitor cells in the process of neuroontogenesis, and the influence on the neurotransmitter mechanisms of the brain, and disruption of the formation of neural networks with an inevitable increase in the excitability of the cerebral cortex as a whole, and local changes in the highly labile regulatory structures of the hippocampal region. And it is not surprising that all these changes entail not only (and perhaps not so much) epileptization, but a profound disruption of the regulation of brain activity, accompanied by autism spectrum disorders, more profound disorders in the form of schizophrenia or cyclothymia, and the formation of delayed psychomotor development. A «side branch» of these pathogenetic processes can also be considered the participation of PCDH19 dysfunctions in certain variants of oncogenesis. The need for polypharmacy (in most cases) confirms the diversity of mechanisms involved in the pathogenesis of the disease and makes the prospects for the development of effective and rational treatment regimens very vague. Cautious optimism is caused only by attempts at relatively specific treatment with ganaxolone.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yu A Fedotova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
12
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Mol Cell Neurosci 2023; 125:103854. [PMID: 37084990 DOI: 10.1016/j.mcn.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eckart D Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
14
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
15
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|