1
|
Brozzi F, Jacovetti C, Cosentino C, Menoud V, Wu K, Bayazit MB, Abdulkarim B, Iseli C, Guex N, Guay C, Regazzi R. tRNA-derived fragments in T lymphocyte-beta cell crosstalk and in type 1 diabetes pathogenesis in NOD mice. Diabetologia 2024; 67:2260-2274. [PMID: 38967669 PMCID: PMC11446995 DOI: 10.1007/s00125-024-06207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
AIMS/HYPOTHESIS tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes. METHODS Global profiling of the tRFs present in pancreatic islets of 4- and 8-week-old NOD mice and in extracellular vesicles released by activated CD4+ T lymphocytes was performed by small RNA-seq. Changes in the level of specific fragments were confirmed by quantitative PCR. The transfer of tRFs from immune cells to beta cells occurring during insulitis was assessed using an RNA-tagging approach. The functional role of tRFs increasing in beta cells during the initial phases of type 1 diabetes was determined by overexpressing them in dissociated islet cells and by determining the impact on gene expression and beta cell apoptosis. RESULTS We found that the tRF pool was altered in the islets of NOD mice during the initial phases of type 1 diabetes. Part of these changes were triggered by prolonged exposure of beta cells to proinflammatory cytokines (IL-1β, TNF-α and IFN-γ) while others resulted from the delivery of tRFs produced by CD4+ T lymphocytes infiltrating the islets. Indeed, we identified several tRFs that were enriched in extracellular vesicles from CD4+/CD25- T cells and were transferred to beta cells upon adoptive transfer of these immune cells in NOD.SCID mice. The tRFs delivered to beta cells during the autoimmune reaction triggered gene expression changes that affected the immune regulatory capacity of insulin-secreting cells and rendered the cells more prone to apoptosis. CONCLUSIONS/INTERPRETATION Our data point to tRFs as novel players in the crosstalk between the immune system and insulin-secreting cells and suggest a potential involvement of this novel class of non-coding RNAs in type 1 diabetes pathogenesis. DATA AVAILABILITY Sequences are available from the Gene Expression Omnibus (GEO) with accession numbers GSE242568 and GSE256343.
Collapse
Affiliation(s)
- Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, EPFL, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, EPFL, Lausanne, Switzerland
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Schult P, Kümmerer BM, Hafner M, Paeschke K. Viral hijacking of hnRNPH1 unveils a G-quadruplex-driven mechanism of stress control. Cell Host Microbe 2024; 32:1579-1593.e8. [PMID: 39094585 DOI: 10.1016/j.chom.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Viral genomes are enriched with G-quadruplexes (G4s), non-canonical structures formed in DNA or RNA upon assembly of four guanine stretches into stacked quartets. Because of their critical roles, G4s are potential antiviral targets, yet their function remains largely unknown. Here, we characterize the formation and functions of a conserved G4 within the polymerase coding region of orthoflaviviruses of the Flaviviridae family. Using yellow fever virus, we determine that this G4 promotes viral replication and suppresses host stress responses via interactions with hnRNPH1, a host nuclear protein involved in RNA processing. G4 binding to hnRNPH1 causes its cytoplasmic retention with subsequent impacts on G4-containing tRNA fragments (tiRNAs) involved in stress-mediated reductions in translation. As a result, these host stress responses and associated antiviral effects are impaired. These data reveal that the interplay between hnRNPH1 and both host and viral G4 targets controls the integrated stress response and viral replication.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Tang X, Wu J, Chen Y, Wang D, Wang T, Weng Y, Zhu Z, Peng R, Wang Y, Yan F. Evaluation of 5'-tRF-His-GTG As a Molecular Biomarker in Breast Cancer Diagnoses and Prognosis. Cancer Biother Radiopharm 2024; 39:441-450. [PMID: 38527246 DOI: 10.1089/cbr.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Background: Breast cancer (BC) is the most prevalent cancer among women worldwide. Although advances have been made in the identification of predictive biomarkers, current options for early diagnosis and prognostic analysis are still suboptimal. Recently, transfer-RNA-derived RNA fragments (tRFs) have emerged as a class of small noncoding RNAs that play a role in the cancer progression. The authors aimed to identify a specific class of tRFs as a molecular marker for BC diagnosis and prognosis in clinical management. Methods: The levels of 5'-tRF-His-GTG were quantified in BC tissue (n = 101) and inflammatory normal breast tissue (n = 22) using in situ hybridization. Clinicopathological parameters were obtained, including age, tumor node metastasis stage, hormone receptor status, histopathological grade, lymphovascular invasion, and recurrence. The correlation between the expression of 5'-tRF-His-GTG and these parameters in different BC subtypes was analyzed. Patient death and cancer progression were regarded as clinical endpoints in the survival analysis. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed to predict the involvement in pivotal biological process. Results: The expression of 5'-tRF-His-GTG was significantly downregulated in BC tissues and was in connection with T stage in human epidermal growth factor 2-positive and basal-like BC, as well as N stage and histopathological grade in luminal BC. Patients with low expression of 5'-tRF-His-GTG had a poor overall survival rate. Statistics of GO and KEGG pathway revealed that cation channel activity, protein catabolic process, response to temperature stimulus, cell cycle, focal adhesion, and glycerophospholipid metabolism were significantly enriched. Conclusions: This study suggests that the assessment of 5'-tRF-His-GTG expression could serve as a novel biomarker for individual diagnosis and prognosis in BC.
Collapse
Affiliation(s)
- Xun Tang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Rui Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
- Nanjing University (Suzhou) High-tech Institute, Suzhou Industrial Park, Nanjing University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
4
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Ng N, Gibriel HAY, Halang L, Jirström E, Ioana JA, Burke M, Byrne MM, Prehn JHM. tRNA-derived fragments are altered in diabetes. Diabet Med 2024; 41:e15258. [PMID: 37935454 DOI: 10.1111/dme.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
AIMS Maternally inherited diabetes and deafness (MIDD) is a rare form of adult-onset diabetes that can be difficult to diagnose due to its variable clinical phenotype. Transfer RNA-derived small fragments are a novel, emerging class of small non-coding RNAs (sncRNAs) that have significant potential as serum biomarkers due to their stress-induced generation, abundance, stability and ease of detection. METHODS We investigated the levels of tiRNA 5'ValCAC (alone and in combination with miR-23b-3p) identified from small RNA sequencing studies in serum samples from healthy controls, type 1 diabetes, type 2 diabetes and MIDD subjects. RESULTS Serum levels of 5'ValCAC were reduced in MIDD and type 2 diabetes subjects compared to controls. Type 2 diabetes subjects had higher serum levels of miR-23b-3p compared to all other subjects. Receiver Operating Characteristic analysis showed the potential of 5'ValCAC and miR-23b-3p as MIDD biomarkers, with the combination showing excellent separation from type 2 diabetes subjects. CONCLUSIONS This is the first report showing altered serum levels of tiRNAs in diabetes subjects. The combined use of 5'ValCAC and miR-23b-3p as serum biomarkers could potentially differentiate between MIDD subjects and type 2 diabetes subjects.
Collapse
Affiliation(s)
- N Ng
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - H A Y Gibriel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Halang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - E Jirström
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J A Ioana
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - M Burke
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - M M Byrne
- Department of Diabetes and Endocrinology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
7
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|