1
|
Hajdarpašić A, Tukker M, Rijdt WT, Mohamedhoesein S, Meijers WC, Caliskan K. Epigenetics of cardiomyopathies: the next frontier. Heart Fail Rev 2025; 30:257-270. [PMID: 39586986 DOI: 10.1007/s10741-024-10460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Cardiomyopathies (CMP) are a diverse group of myocardial diseases that cause structural, functional, and pathological changes to the heart. Alterations at the molecular level associated with the clinical phenotype and progression of CMPs cannot be solely explained by the genetic mutations, even in inherited cardiomyopathies. Epigenetics and environmental factors are likely to significantly modify the clinical manifestations of CMPs, resulting in variable clinical expression and different age-related penetrance. This review examines the role of dysfunctional DNA methylation, histone modifications, chromatin remodelling, and noncoding RNAs in the development and exacerbation of CMPs, highlighting their potential as diagnostic markers and therapeutic targets, including the use of histone deacetylase inhibitors. Additionally, it explores how environmental exposures can influence epigenetic changes and potentially be used for preventive strategies and personalized care in CMP patients. Monozygotic twin studies and intergenerational studies are discussed as valuable tools for understanding the interplay between genetics, epigenetics, and environmental factors. Lastly, this review addresses current challenges and future perspectives, such as the need for greater specificity in epigenetic therapies, minimizing off-target effects, and investigating sex differences in CMP research and treatment.
Collapse
Affiliation(s)
- Aida Hajdarpašić
- Department of Medical Biology and Genetics, Sarajevo Medical School, University Sarajevo School of Science and Technology, Hrasnička Cesta 3a, 71210, Sarajevo, Ilidža, Bosnia and Herzegovina.
| | - Martijn Tukker
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter Te Rijdt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sharida Mohamedhoesein
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Kosicki M, Baltoumas FA, Kelman G, Boverhof J, Ong Y, Cook LE, Dickel DE, Pavlopoulos GA, Pennacchio LA, Visel A. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res 2024:gkae940. [PMID: 39470740 DOI: 10.1093/nar/gkae940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024] Open
Abstract
Regulatory elements (enhancers) are major drivers of gene expression in mammals and harbor many genetic variants associated with human diseases. Here, we present an updated VISTA Enhancer Browser (https://enhancer.lbl.gov), a database of transgenic enhancer assays conducted in developing mouse embryos in vivo. Since the original publication in 2007, the database grew nearly 20-fold from 250 to over 4500 experiments and currently harbors over 23 500 images. The updated database provides structured information on experiments conducted at different stages of embryonic development, including enhancer activities of human pathogenic and synthetic variants and sequences derived from a variety of species. In addition to manually curated results of thousands of individual experiments, the new database also features hundreds of manually curated comparisons between alleles. The VISTA Enhancer Browser provides a crucial resource for study of human genetic variation, gene regulation and developmental biology.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', Vari, 16672, Greece
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Joshua Boverhof
- Scientific Data Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Yeongshnn Ong
- Scientific Data Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', Vari, 16672, Greece
| | - Len A Pennacchio
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| |
Collapse
|
3
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
4
|
Kosicki M, Zhang B, Pampari A, Akiyama JA, Plajzer-Frick I, Novak CS, Tran S, Zhu Y, Kato M, Hunter RD, von Maydell K, Barton S, Beckman E, Kundaje A, Dickel DE, Visel A, Pennacchio LA. Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611737. [PMID: 39282388 PMCID: PMC11398460 DOI: 10.1101/2024.09.06.611737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Boyang Zhang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Barton
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Erik Beckman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Paton V, Ramirez Flores RO, Gabor A, Badia-I-Mompel P, Tanevski J, Garrido-Rodriguez M, Saez-Rodriguez J. Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results. Nucleic Acids Res 2024; 52:8100-8111. [PMID: 38943333 DOI: 10.1093/nar/gkae552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.
Collapse
Affiliation(s)
- Victor Paton
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Ricardo Omar Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Attila Gabor
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Jovan Tanevski
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Martin Garrido-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|
6
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Dynamic enhancer landscapes in human craniofacial development. Nat Commun 2024; 15:2030. [PMID: 38448444 PMCID: PMC10917818 DOI: 10.1038/s41467-024-46396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, 3010, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Matthew J Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Octant Inc., Emeryville, CA, 94608, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
7
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Cell Type- and Tissue-specific Enhancers in Craniofacial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546603. [PMID: 37425964 PMCID: PMC10327103 DOI: 10.1101/2023.06.26.546603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Laura E. Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Cailyn H. Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304
| | - Matthew J. Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA 94110
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Octant Inc., Emeryville, CA 94608, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
9
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Anatskaya OV, Runov AL, Ponomartsev SV, Vonsky MS, Elmuratov AU, Vinogradov AE. Long-Term Transcriptomic Changes and Cardiomyocyte Hyperpolyploidy after Lactose Intolerance in Neonatal Rats. Int J Mol Sci 2023; 24:7063. [PMID: 37108224 PMCID: PMC10138443 DOI: 10.3390/ijms24087063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Collapse
Affiliation(s)
| | - Andrey L. Runov
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | | | - Maxim S. Vonsky
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | - Artem U. Elmuratov
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 105120, Russia
| | | |
Collapse
|