1
|
Peng Y, Mao K, Li H, Ping J, Zhu J, Liu X, Zhang Z, Jin M, Wu C, Wang N, Yesaya A, Wilson K, Xiao Y. Extreme genetic signatures of local adaptation in a notorious rice pest, Chilo suppressalis. Natl Sci Rev 2025; 12:nwae221. [PMID: 39949366 PMCID: PMC11823119 DOI: 10.1093/nsr/nwae221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/13/2024] [Accepted: 05/23/2024] [Indexed: 02/16/2025] Open
Abstract
Climatic variation stands as a significant driving force behind genetic differentiation and the evolution of adaptive traits. Chilo (C.) suppressalis, commonly known as the rice stem borer, is a highly destructive pest that crucially harms rice production. The lack of natural population genomics data has hindered a more thorough understanding of its climate adaptation, particularly the genetic basis underlying adaptive traits. To overcome this obstacle, our study employed completely resequenced genomes of 384 individuals to explore the population structure, demographic history, and gene flow of C. suppressalis in China. This study observed that its gene flow occurred asymmetrically, moving from central populations to peripheral populations. Using genome-wide selection scans and genotype-environment association studies, we identified potential loci that may be associated with climatic adaptation. The most robust signal was found to be associated with cold tolerance, linked to a homeobox gene, goosecoid (GSC), whose expression level was significantly different in low and high latitudes. Moreover, downregulating the expression of this gene by RNAi enhances its cold tolerance phenotypes. Our findings have uncovered and delved into the genetic foundation of the ability of C. suppressalis to adapt to its environment. This is essential in ensuring the continued effectiveness and sustainability of novel control techniques.
Collapse
Affiliation(s)
- Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kaikai Mao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Jingyun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xinye Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuting Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Nan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Singh RP, Weng YM, Sondhi Y, Plotkin D, Frandsen PB, Kawahara AY. Genome assembly of a nocturnal butterfly (Macrosoma leucophasiata) reveals convergent adaptation of visual genes. Commun Biol 2024; 7:1664. [PMID: 39702780 DOI: 10.1038/s42003-024-07124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 12/21/2024] Open
Abstract
Nearly all animals exhibit a preferred period of daily activity (diel-niche), strongly influenced by the light environment. Vision is a sensory system that is strongly adapted to light, and evolutionary transitions to novel light environments can impose strong constraints on eye evolution, color, and motion vision. While the genetic and neural basis of visual adaptation are well-studied in a few model systems, our understanding across the tree of life remains incomplete. Butterflies and moths are an ideal system to investigate the association between gene evolution and diel-niche transitions. While most butterflies are day-flying, hedylid butterflies are unique in being primarily nocturnal, representing an important evolutionary shift from diurnality to nocturnality. We sequenced the first Hedylidae genome and annotated it to understand genomic changes associated with diel niche shifts. Comparing Hedylidae visual genes to those of other diurnal and nocturnal Lepidoptera revealed that visual genes are highly conserved, with no major losses. However, hedylid opsins were more similar to nocturnal moths than their diurnal congeners, suggesting that these opsins convergently evovled to adapt to the nocturnal environment. Evolutionary rate tests (dN/dS) confirmed strong selection on color vision opsins, with some sites being mapped to the functional domain of the blue opsin. Our study provides new insight into the molecular evolutionary adaptations associated with species' changes to new light environments.
Collapse
Affiliation(s)
- Rachit Pratap Singh
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Yi-Ming Weng
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Yash Sondhi
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Lv W, Jiang X, Li P, Xie D, Wang D, Stanley D, Zhang L. Interactions between migration and immunity among oriental armyworm populations infected with the insect pathogenic fungus, Beauveria bassiana. PEST MANAGEMENT SCIENCE 2024; 80:6167-6178. [PMID: 39119843 DOI: 10.1002/ps.8345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Migration and immunity are behavioral and physiological traits that protect organisms from environmental stressors or pathogen infection. Shifting from migration to residency has become more common in some wildlife populations owing to environmental changes. However, other biological shifts, such as interactions between migration and immunity among populations within a species are largely unexplored for many agricultural migratory pests. In the field, entomopathogenic fungi infection and transmission, particularly Beauveria bassiana, can cause reduced fitness and population declines across a broad range of insect species. RESULTS Here, we investigated migration-immunity interactions between migrant and resident populations of the oriental armyworm, Mythimna separata, infected with B. bassiana (the sole fungus used in this work). We found that migratory M. separata exerted stronger pathogen resistance, faster development and lower pupal weight than residents. High-dose infections (5.0 × 105 and 5.0 × 106 conidia mL-1) led to seriously decreased reproductive capacity in migrants and residents. Low-dose infections (1.0 × 104 and 5.0 × 104 conidia mL-1) led to significantly increased host flight capacities. Consecutive flight tests showed that five flight nights inhibited the reproduction of paternal infected M. separata populations. The flights also led to far-reaching transgenerational impairment of larval development and immune defense among offspring populations. By contrast, two flight nights enhanced the reproductive capacities of both M. separata populations and did not exert negative transgenerational effects on offspring populations, which may facilitate migration. CONCLUSIONS This study provides insights into interactions between migration and immunity among M. separata populations. These insights will guide development of future monitoring and management technologies of this pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weixiang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengjie Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - David Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, Columbia, MO, USA
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Hidaka N, Tian C, Zhang S, Akiduki G, Li G, Tayasu I, Shin KC, Niiyama T, Hu G, Li S, Otuka A, Feng H. Strontium isotope and trajectory method elucidating overseas migration of Mythimna separata to Japan. iScience 2024; 27:111160. [PMID: 39524358 PMCID: PMC11544078 DOI: 10.1016/j.isci.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The oriental armyworm, Mythimna separata, generally migrates from eastern to northeastern China in early summer, and some individuals are believed to migrate overseas to Japan depending on meteorological conditions. This potential migration was investigated with the immigrants' strontium radiogenic isotope ratio 87Sr/86Sr and backward flight trajectories from Japanese trapping sites. The results showed that the 87Sr/86Sr ratios of Chinese reared M. separata were significantly higher than those of reared insects of Japanese immigration areas. As some individuals trapped in western Japan had 87Sr/86Sr ratios higher than a statistical discriminating ratio, they likely originated in China. Trajectory analysis also indicated those individuals might have originated from the East Asian continent, such as the first-generation outbreak region in China and their migration waypoint regions. Our analysis, thus, suggests direct or multistep overseas migration of individual M. separata from the East Asian continent to Japan, giving insight into migration pathways and population dynamics.
Collapse
Affiliation(s)
- Naoya Hidaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Caihong Tian
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Shengnan Zhang
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Gaku Akiduki
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Guoping Li
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, Kyoto 603-8047, Japan
| | - Ki-Cheol Shin
- Research Institute for Humanity and Nature, Kyoto 603-8047, Japan
| | | | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Shimin Li
- Institute of Plant Protection, Luohe Academy of Agricultural Sciences, Luohe, Henan 462300, P.R. China
| | - Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Hongqiang Feng
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
5
|
Zhang J, Cong Q, Sun Y, Hua J, Luo S. Four New Furofuran Lignans from Phryma leptostachya Inhibit the Accumulation of Molting Hormones in Armyworm. Int J Mol Sci 2024; 25:7081. [PMID: 39000185 PMCID: PMC11240949 DOI: 10.3390/ijms25137081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Furofuran lignans have been identified as the main substances responsible for the biological activities of the plant genus Phryma. Here, four new phrymarolin-type leptolignans A-D (7-10) and eight previously known lignans were isolated from P. leptostachya. Of these, nine exhibited significant antifeedant activity against armyworm (Mythimna separata) through a dual-choice bioassay, with the EC50 values ranging from 0.58 to 10.08 μg/cm2. In particular, the newly identified lignan leptolignan A (7) showed strong antifeedant activity, with an EC50 value of 0.58 ± 0.34 μg/cm2. Further investigation found that leptolignan A can inhibit the growth and nutritional indicators in the armyworm M. separata. The concentrations of two molting hormones, 20-hydroxyecdysone and ecdysone, were also found to decrease significantly following the treatment of the armyworms with the lignan, implying that the target of the P. leptostachya lignan may be involved in 20-hydroxyecdysone and ecdysone synthesis. These results enrich our knowledge of P. leptostachya metabolite structural diversity, and provide a theoretical basis for the control of armyworm using lignans.
Collapse
Affiliation(s)
| | | | | | - Juan Hua
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shihong Luo
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Lv W, Shu Y, Wang F. Effects of short-term high temperature at different life stages on reproductive fitness in Mythimna separata (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae128. [PMID: 38836579 DOI: 10.1093/jee/toae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Extreme heat events commonly occur under climate warming. All life stages of insects may experience the occurrence of extremely high temperatures. However, the effects of short-term extreme heat events on life-history traits remain unclear in most migratory pests. Here, we investigated the biological effects of short-term heat exposure (35 °C for 4 h) at different life stages on Mythimna separata Walker (Lepidoptera: Noctuidae), a typical migratory pest. We found that the reproductive sensitivity of pupae and adults was higher than that of 3rd-instar larvae. Increasing the frequency of heat exposure decreased the reproductive performance of M. separata at all life stages. Parental short-term heat exposures could cause transgenerational damage to offspring survival and reproductive fitness when the exposure frequency reached 3 times. Our results suggest that short-term exposure to extreme temperatures could impact reproductive fitness across different life stages in M. separata. This should be taken into consideration in the population prediction of migratory pests under climate change.
Collapse
Affiliation(s)
- Weixiang Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Ya Shu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Fang Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| |
Collapse
|
7
|
Sun S, Yang Z, Ren J, Liu T, Jing X. Fitness of Nutrition Regulation in a Caterpillar Pest Mythimna separata (Walker): Insights from the Geometric Framework. INSECTS 2023; 14:937. [PMID: 38132610 PMCID: PMC10743772 DOI: 10.3390/insects14120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In nature, plants can contain variable nutrients depending upon the species, tissue, and developmental stage. Insect herbivores may regulate their nutrient intake behaviorally and physio- logically when encountering different foods. This study examined the nutritional regulation of the oriental armyworm, Mythimna separata, for the first time. In one experiment, we allowed the cater-pillars to choose between two nutritionally balanced but complementary diets. The caterpillars did not randomly consume the paired foods, but instead chose between the nutritionally balanced but complementary diets. This intake behavior was found to change with their developmental stages. Furthermore, the nutrient concentrations in food significantly impacted the insect's performance. In the other experiment, caterpillars were given one of eleven diets that reflected the different nutrient conditions in the field. The results showed that proteins were significantly associated with developmental time and fecundity. For example, by consuming protein-biased food, the caterpillars developed faster and produced more eggs. In contrast, carbohydrates were more strongly linked to lipid accumulation, and caterpillars accumulated more lipids when consuming the carbohydrate-biased food. Moreover, the caterpillars were also found to actively regulate their intake of proteins and carbohydrates based on food quality and to physiologically prepare for subsequent life stages. These findings enhance our understanding of how M. separata feeds and responds to different nutritional environments in the field, which could have implications for managing insect herbivores in agricultural settings.
Collapse
Affiliation(s)
- Shaolei Sun
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhen Yang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Jinchan Ren
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Tongxian Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Xiangfeng Jing
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| |
Collapse
|
8
|
Xu C, Ji J, Zhu X, Huangfu N, Xue H, Wang L, Zhang K, Li D, Niu L, Chen R, Gao X, Luo J, Cui J. Chromosome level genome assembly of oriental armyworm Mythimna separata. Sci Data 2023; 10:597. [PMID: 37684242 PMCID: PMC10491670 DOI: 10.1038/s41597-023-02506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The oriental armyworm, Mythimna separata, is an extremely destructive polyphagous pest with a broad host range that seriously threatens the safety of agricultural production. Here, a high-quality chromosome-level genome was assembled using Illumina, PacBio HiFi long sequencing, and Hi-C scaffolding technologies. The genome size was 706.30 Mb with a contig N50 of 22.08 Mb, and 99.2% of the assembled sequences were anchored to 31 chromosomes. In addition, 20,375 protein-coding genes and 258.68 Mb transposable elements were identified. The chromosome-level genome assembly of M. separata provides a significant genetic resource for future studies of this insect and contributes to the development of management strategies.
Collapse
Affiliation(s)
- Chao Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Ningbo Huangfu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Xue
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Lin Niu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Ran Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Zhao J, He J, Xuanyuan Z, Pan W, Sword GA, Chen F, Wan G. Probing Transcriptional Crosstalk between Cryptochromes and Iron-sulfur Cluster Assembly 1 ( MagR) in the Magnetoresponse of a Migratory Insect. Int J Mol Sci 2023; 24:11101. [PMID: 37446278 DOI: 10.3390/ijms241311101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Many organisms can sense and respond to magnetic fields (MFs), with migratory species in particular utilizing geomagnetic field information for long-distance migration. Cryptochrome proteins (Crys) along with a highly conserved Iron-sulfur cluster assembly protein (i.e., MagR) have garnered significant attention for their involvement in magnetoresponse (including magnetoreception). However, in vivo investigations of potential transcriptional crosstalk between Crys and MagR genes have been limited. The brown planthopper, Nilaparvata lugens, is a major migratory pest insect and an emerging model for studying MF intensity-related magnetoresponse. Here, we explored in vivo transcriptional crosstalk between Crys (Cry1 and Cry2) and MagR in N. lugens. The expression of Crys and MagR were found to be sensitive to MF intensity changes as small as several micro-teslas. Knocking down MagR expression led to a significant downregulation of Cry1, but not Cry2. The knockdown of either Cry1 or Cry2 individually did not significantly affect MagR expression. However, their double knockdown resulted in significant upregulation of MagR. Our findings clearly indicate transcriptional crosstalk between MagR and Crys known to be involved in magnetoresponse. This work advances the understanding of magnetoresponse signaling and represents a key initial step towards elucidating the functional consequences of these novel in vivo interactions.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinglan He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongjin Xuanyuan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Li JQ, Zhu R, Yao WC, Yu HP, Huang JR, Wang Z, Sun XY, Yuan DH, Sun YY, Emam SS, Dewer Y, Zhu XY, Zhang YN. Chemosensory Protein 2 of Male Athetis lepigone Is Involved in the Perception of Sex Pheromones and Maize Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6277-6287. [PMID: 37068196 DOI: 10.1021/acs.jafc.3c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In moths, the interactions between chemosensory proteins (CSPs) and sex pheromones have yet to be comprehensively investigated. Here, we examined the function of AlepCSP2 in male Athetis lepigone based on protein expression, molecular docking, site-directed mutagenesis, fluorescence competitive binding analyses, and RNA interference (RNAi) experiments. We found that AlepCSP2 showed strong binding affinity for two sex pheromones and five maize volatiles and that binding was optimal under neutral conditions. Furthermore, we identified six amino acids as being key residues involved in the interaction between AlepCSP2 and multiple ligands. Further RNAi showed that siCSP2 males displayed consistently lower electroantennography responses to two sex pheromones and three maize volatiles at different dosages tested, and the mating rate also decreased significantly by 37.50%. These findings will contribute to characterizing the binding mechanisms of moth CSPs to sex pheromones and host volatiles and also identify unique targets for developing novel pest behavior disruptors.
Collapse
Affiliation(s)
- Jian-Qiao Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Rui Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Ping Yu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhen Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yue Sun
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Di-Hua Yuan
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yuan-Yuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sekina S Emam
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
11
|
Biological Characteristics and Energy Metabolism of Migrating Insects. Metabolites 2023; 13:metabo13030439. [PMID: 36984878 PMCID: PMC10055822 DOI: 10.3390/metabo13030439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Through long-distance migration, insects not only find suitable breeding locations and increase the survival space and opportunities for the population but also facilitate large-scale material, energy, and information flow between regions, which is important in maintaining the stability of agricultural ecosystems and wider natural ecosystems. In this study, we summarize the changes in biological characteristics such as morphology, ovarian development, reproduction, and flight capability during the seasonal migration of the insect. In consideration of global research work, the interaction between flight and reproduction, the influence and regulation of the insulin-like and juvenile hormone on the flight and reproductive activities of migrating insects, and the types of energy substances, metabolic processes, and hormone regulation processes during insect flight are elaborated. This systematic review of the latest advances in the studies on insect migration biology and energy metabolism will help readers to better understand the biological behavior and regulation mechanism of the energy metabolism of insect migration.
Collapse
|
12
|
Xie D, Zhu C, Zhang L, Liu Y, Cheng Y, Jiang X. Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in the oriental armyworm, Mythimna separata (Walker). Int J Biol Macromol 2023; 235:123915. [PMID: 36871694 DOI: 10.1016/j.ijbiomac.2023.123915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.
Collapse
Affiliation(s)
- Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Tessnow AE, Nagoshi RN, Meagher RL, Fleischer SJ. Revisiting fall armyworm population movement in the United States and Canada. FRONTIERS IN INSECT SCIENCE 2023; 3:1104793. [PMID: 38469489 PMCID: PMC10926481 DOI: 10.3389/finsc.2023.1104793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/13/2024]
Abstract
Introduction Biophysical approaches validated against haplotype and trap catch patterns have modeled the migratory trajectory of fall armyworms at a semi-continental scale, from their natal origins in Texas or Florida through much of the United States east of the Rocky Mountains. However, unexplained variation in the validation analysis was present, and misalignments between the simulated movement patterns of fall armyworm populations and the haplotype ratios at several locations, especially in the northeastern US and Canada, have been reported. Methods Using an expanded dataset extending into Canada, we assess the consistency of haplotype patterns that relate overwintered origins of fall armyworm populations to hypothesized dispersal trajectories in North America and compare the geographic distribution of these patterns with previous model projections. Results and discussion We confirm the general accuracy of previous modeling efforts, except for late in the season where our data suggests a higher proportion of Texas populations invading the northeast, extending into eastern Canada. We delineate geographic limits to the range of both overwintering populations and show that substantial intermixing of the Texas and Florida migrants routinely occurs north of South Carolina. We discuss annual variation to these migratory trajectories and test the hypothesis that the Appalachian Mountains influence geographic patterns of haplotypes. We discuss how these results may limit gene flow between the Texas and Florida natal populations and limit the hereditary consequences of interbreeding between these populations.
Collapse
Affiliation(s)
- Ashley E. Tessnow
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Rodney N. Nagoshi
- U.S. Department of Agriculture- Agriculture Research Service- Center for Medical, Agricultural, and Veterinary Entomology (USDA-ARS CMAVE), Gainesville, FL, United States
| | - Robert L. Meagher
- U.S. Department of Agriculture- Agriculture Research Service- Center for Medical, Agricultural, and Veterinary Entomology (USDA-ARS CMAVE), Gainesville, FL, United States
| | | |
Collapse
|