1
|
Saito Y, Yang Y, Saito M, Park CY, Funato K, Tabar V, Darnell RB. NOVA1 acts as an oncogenic RNA-binding protein to regulate cholesterol homeostasis in human glioblastoma cells. Proc Natl Acad Sci U S A 2024; 121:e2314695121. [PMID: 38416679 PMCID: PMC10927500 DOI: 10.1073/pnas.2314695121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/13/2024] [Indexed: 03/01/2024] Open
Abstract
NOVA1 is a neuronal RNA-binding protein identified as the target antigen of a rare autoimmune disorder associated with cancer and neurological symptoms, termed paraneoplastic opsoclonus-myoclonus ataxia. Despite the strong association between NOVA1 and cancer, it has been unclear how NOVA1 function might contribute to cancer biology. In this study, we find that NOVA1 acts as an oncogenic factor in a GBM (glioblastoma multiforme) cell line established from a patient. Interestingly, NOVA1 and Argonaute (AGO) CLIP identified common 3' untranslated region (UTR) targets, which were down-regulated in NOVA1 knockdown GBM cells, indicating a transcriptome-wide intersection of NOVA1 and AGO-microRNA (miRNA) targets regulation. NOVA1 binding to 3'UTR targets stabilized transcripts including those encoding cholesterol homeostasis related proteins. Selective inhibition of NOVA1-RNA interactions with antisense oligonucleotides disrupted GBM cancer cell fitness. The precision of our GBM CLIP studies point to both mechanism and precise RNA sequence sites to selectively inhibit oncogenic NOVA1-RNA interactions. Taken together, we find that NOVA1 is commonly overexpressed in GBM, where it can antagonize AGO2-miRNA actions and consequently up-regulates cholesterol synthesis, promoting cell viability.
Collapse
Affiliation(s)
- Yuhki Saito
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY10065
| | - Yanhong Yang
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY10065
| | - Misa Saito
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY10065
| | - Christopher Y. Park
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY10065
| | - Kosuke Funato
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY10065
| | - Viviane Tabar
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY10065
| | - Robert B. Darnell
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Feng W, Liu S, Deng Q, Fu S, Yang Y, Dai X, Wang S, Wang Y, Liu Y, Lin X, Pan X, Hao S, Yuan Y, Gu Y, Zhang X, Li H, Liu L, Liu C, Fei JF, Wei X. A scATAC-seq atlas of chromatin accessibility in axolotl brain regions. Sci Data 2023; 10:627. [PMID: 37709774 PMCID: PMC10502032 DOI: 10.1038/s41597-023-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Axolotl (Ambystoma mexicanum) is an excellent model for investigating regeneration, the interaction between regenerative and developmental processes, comparative genomics, and evolution. The brain, which serves as the material basis of consciousness, learning, memory, and behavior, is the most complex and advanced organ in axolotl. The modulation of transcription factors is a crucial aspect in determining the function of diverse regions within the brain. There is, however, no comprehensive understanding of the gene regulatory network of axolotl brain regions. Here, we utilized single-cell ATAC sequencing to generate the chromatin accessibility landscapes of 81,199 cells from the olfactory bulb, telencephalon, diencephalon and mesencephalon, hypothalamus and pituitary, and the rhombencephalon. Based on these data, we identified key transcription factors specific to distinct cell types and compared cell type functions across brain regions. Our results provide a foundation for comprehensive analysis of gene regulatory programs, which are valuable for future studies of axolotl brain development, regeneration, and evolution, as well as on the mechanisms underlying cell-type diversity in vertebrate brains.
Collapse
Affiliation(s)
- Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Shuai Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Yunzhi Yang
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Shuai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Yijin Wang
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Xiangyu Pan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovsacular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Yue Yuan
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, 518103, China
| | | | - Hanbo Li
- BGI-Shenzhen, Shenzhen, 518103, China
- BGI-Qingdao, Qingdao, 266555, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, China
| | - Longqi Liu
- BGI-Hangzhou, Hangzhou, 310012, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | | | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiaoyu Wei
- BGI-Hangzhou, Hangzhou, 310012, China.
- BGI-Shenzhen, Shenzhen, 518103, China.
| |
Collapse
|
3
|
Gantley L, Stringer BW, Conn VM, Ootsuka Y, Holds D, Slee M, Aliakbari K, Kirk K, Ormsby RJ, Webb ST, Hanson A, Lin H, Selth LA, Conn SJ. Functional Characterisation of the Circular RNA, circHTT(2-6), in Huntington's Disease. Cells 2023; 12:cells12091337. [PMID: 37174737 PMCID: PMC10177161 DOI: 10.3390/cells12091337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Trinucleotide repeat disorders comprise ~20 severe, inherited, human neuromuscular and neurodegenerative disorders, which result from an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington's disease (HD), results from expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Since non-coding RNAs have been implicated in the initiation and progression of many diseases, herein we focused on a circular RNA (circRNA) molecule arising from non-canonical splicing (backsplicing) of HTT pre-mRNA. The most abundant circRNA from HTT, circHTT(2-6), was found to be more highly expressed in the frontal cortex of HD patients, compared with healthy controls, and positively correlated with CAG repeat tract length. Furthermore, the mouse orthologue (mmu_circHTT(2-6)) was found to be enriched within the brain and specifically the striatum, a region enriched for medium spiny neurons that are preferentially lost in HD. Transgenic overexpression of circHTT(2-6) in two human cell lines-SH-SY5Y and HEK293-reduced cell proliferation and nuclear size without affecting cell cycle progression or cellular size, or altering the CAG repeat region length within HTT. CircHTT(2-6) overexpression did not alter total HTT protein levels, but reduced its nuclear localisation. As these phenotypic and genotypic changes resemble those observed in HD patients, our results suggest that circHTT(2-6) may play a functional role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Laura Gantley
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Youichirou Ootsuka
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Centre for Neuroscience, Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Duncan Holds
- Department of Genetics and Molecular Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Mark Slee
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kamelya Aliakbari
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Adrienne Hanson
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - He Lin
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|