1
|
Schaer DJ, Schaer CA, Humar R, Vallelian F, Henderson R, Tanaka KA, Levy JH, Buehler PW. Navigating Hemolysis and the Renal Implications of Hemoglobin Toxicity in Cardiac Surgery. Anesthesiology 2024; 141:1162-1174. [PMID: 39159287 PMCID: PMC11560668 DOI: 10.1097/aln.0000000000005109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Acute kidney injury (AKI) affects 20% to 30% of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). This review synthesizes clinical evidence indicating that CPB-induced hemolysis plays a pivotal role in the development of AKI. The pathogenesis involves cell-free hemoglobin, which triggers oxidative stress, depletes nitric oxide, and incites inflammation, culminating in renal damage. We highlight emerging interventions, including haptoglobin administration, nitric oxide supplementation, and antioxidants, which are promising in reducing the toxicity of cell-free hemoglobin and the incidence of AKI. Current clinical data support the potential efficacy of these treatments. Our analysis concludes that sufficient proof of concept exists to further develop and test these targeted therapies for preventing hemoglobin-induced AKI in patients undergoing CPB. Cardiopulmonary bypass-induced hemolysis is linked to acute kidney injury in cardiac surgery. Emerging therapies targeting cell-free hemoglobin, like haptoglobin, nitric oxide, and antioxidants, show promise in reducing kidney injury, highlighting the need for further research.
Collapse
Affiliation(s)
- Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Institute of Anesthesiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Reney Henderson
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care and Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
3
|
Zhou J, Shi W, Wu D, Wang S, Wang X, Min J, Wang F. Mendelian Randomization Analysis of Systemic Iron Status and Risk of Different Types of Kidney Disease. Nutrients 2024; 16:1978. [PMID: 38999730 PMCID: PMC11243746 DOI: 10.3390/nu16131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With rapid increases in incidence, diverse subtypes, and complicated etiologies, kidney disease remains a global public health problem. Iron, as an essential trace element, has pleiotropic effects on renal function and the progression of kidney diseases. A two-sample Mendelian randomization (MR) analysis was implemented to determine the potential causal effects between systemic iron status on different kidney diseases. Systemic iron status was represented by four iron-related biomarkers: serum iron, ferritin, transferrin saturation (TfSat), and total iron binding capacity (TIBC). For systemic iron status, 163,511, 246,139, 131,471, and 135,430 individuals were included in the genome-wide association study (GWAS) of serum iron, ferritin, TfSat, and TIBC, respectively. For kidney diseases, 653,143 individuals (15,658 cases and 637,485 controls), 657,076 individuals (8160 cases and 648,916 controls), and 659,320 individuals (10,404 cases and 648,916 controls) were included for immunoglobulin A nephropathy (IgAN), acute kidney disease (AKD), and chronic kidney disease (CKD), respectively. Our MR results showed that increased serum iron [odds ratio (OR): 1.10; 95% confidence interval (95% CI): 1.04, 1.16; p < 0.0042], ferritin (OR: 1.30; 95% CI: 1.14, 1.48; p < 0.0042), and TfSat (OR: 1.07; 95% CI: 1.04, 1.11; p < 0.0042)] and decreased TIBC (OR: 0.92; 95% CI: 0.88, 0.97; p < 0.0042) were associated with elevated IgAN risk. However, no significant associations were found between systemic iron status and AKD or CKD. In our MR study, the genetic evidence supports elevated systemic iron status as a causal effect on IgAN, which suggests a potential protective effect of iron chelation on IgAN patients.
Collapse
Affiliation(s)
- Jiahui Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanting Shi
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongya Wu
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shujie Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinhui Wang
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
4
|
Ramos S, Jeney V, Figueiredo A, Paixão T, Sambo MR, Quinhentos V, Martins R, Gouveia Z, Carlos AR, Ferreira A, Pais TF, Lainé H, Faísca P, Rebelo S, Cardoso S, Tolosano E, Penha-Gonçalves C, Soares MP. Targeting circulating labile heme as a defense strategy against malaria. Life Sci Alliance 2024; 7:e202302276. [PMID: 38307624 PMCID: PMC10837040 DOI: 10.26508/lsa.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Severe presentations of malaria emerge as Plasmodium (P.) spp. parasites invade and lyse red blood cells (RBC), producing extracellular hemoglobin (HB), from which labile heme is released. Here, we tested whether scavenging of extracellular HB and/or labile heme, by haptoglobin (HP) and/or hemopexin (HPX), respectively, counter the pathogenesis of severe presentations of malaria. We found that circulating labile heme is an independent risk factor for cerebral and non-cerebral presentations of severe P. falciparum malaria in children. Labile heme was negatively correlated with circulating HP and HPX, which were, however, not risk factors for severe P. falciparum malaria. Genetic Hp and/or Hpx deletion in mice led to labile heme accumulation in plasma and kidneys, upon Plasmodium infection This was associated with higher incidence of mortality and acute kidney injury (AKI) in ageing but not adult Plasmodium-infected mice, and was corroborated by an inverse correlation between heme and HPX with serological markers of AKI in P. falciparum malaria. In conclusion, HP and HPX act in an age-dependent manner to prevent the pathogenesis of severe presentation of malaria in mice and presumably in humans.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria Rosário Sambo
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Vatúsia Quinhentos
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Ana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Hugo Lainé
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sofia Rebelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | |
Collapse
|
5
|
Wu Q, Carlos AR, Braza F, Bergman ML, Kitoko JZ, Bastos-Amador P, Cuadrado E, Martins R, Oliveira BS, Martins VC, Scicluna BP, Landry JJ, Jung FE, Ademolue TW, Peitzsch M, Almeida-Santos J, Thompson J, Cardoso S, Ventura P, Slot M, Rontogianni S, Ribeiro V, Domingues VDS, Cabral IA, Weis S, Groth M, Ameneiro C, Fidalgo M, Wang F, Demengeot J, Amsen D, Soares MP. Ferritin heavy chain supports stability and function of the regulatory T cell lineage. EMBO J 2024; 43:1445-1483. [PMID: 38499786 PMCID: PMC11021483 DOI: 10.1038/s44318-024-00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.
Collapse
Affiliation(s)
- Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, Zhejiang, China
| | - Ana Rita Carlos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Faouzi Braza
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Eloy Cuadrado
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Jonathan Jm Landry
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ferris E Jung
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | | | | | - Manon Slot
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Stamatia Rontogianni
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Vanessa Ribeiro
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Sebastian Weis
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Cristina Ameneiro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | | | - Derk Amsen
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|