1
|
Wang L, Ouyang D, Li L, Cao Y, Wang Y, Gu N, Zhang Z, Li Z, Tang S, Tang H, Zhang Y, Sun X, Yan J. TREM2 affects DAM-like cell transformation in the acute phase of TBI in mice by regulating microglial glycolysis. J Neuroinflammation 2025; 22:6. [PMID: 39800730 PMCID: PMC11727224 DOI: 10.1186/s12974-025-03337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear. Although glycolysis is important for microglial differentiation, its regulatory role in DAM transformation during the acute phase of TBI is still unclear. In this study, we investigated the functions of DAM-like cells in the acute phase of TBI in mice, as well as the relationship between their transformation and glycolysis. METHODS In this study, a controlled cortical impact model was used to induce TBI in adult male wild-type (WT) C57BL/6 mice and adult male TREM2 knockout mice. Various techniques were used to assess the role of DAM-like cells in TBI and the effects of glycolysis on DAM-like cells, including RT‒qPCR, immunofluorescence assays, behavioural tests, extracellular acidification rate (ECAR) tests, Western blot analysis, cell magnetic sorting and culture, glucose and lactate assays, and flow cytometry. RESULTS DAM-like cells were observed in the acute phase of TBI in mice, and their transformation depended on TREM2 expression. TREM2 knockout impaired neurological recovery in TBI mice, possibly due in part to their role in clearing debris and secreting VEGFa and BDNF. Moreover, DAM-like cells exhibited significantly increased glycolytic activity. TREM2 regulated the AKT‒mTOR‒HIF-1α pathway and glycolysis in microglia in the acute phase of TBI. The increase in glycolysis in microglia partially contributed to the transformation of DAM-like cells in the acute phase of TBI in mice. CONCLUSIONS Taken together, the results of our study demonstrated that DAM-like cells were present in the acute phase of TBI in mice. TREM2 might influence DAM-like cell transformation by modulating the glycolysis of microglia. Our results provide a new possible pathway for intervening TBI.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China
| | - Diqing Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunchuan Cao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Shuang Tang
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000, China
| | - Hui Tang
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China
| | - Yuan Zhang
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Bell TR, Franz CE, Thomas KR, Williams ME, Eyler LT, Lerman I, Fennema-Notestine C, Puckett OK, Dorros SM, Panizzon MS, Pearce RC, Hagler DJ, Lyons MJ, Elman JA, Kremen WS. Elevated C-Reactive Protein in Older Men With Chronic Pain: Association With Plasma Amyloid Levels and Hippocampal Volume. J Gerontol A Biol Sci Med Sci 2024; 79:glae206. [PMID: 39169831 PMCID: PMC11439493 DOI: 10.1093/gerona/glae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Chronic pain leads to tau accumulation and hippocampal atrophy, which may be moderated through inflammation. In older men, we examined associations of chronic pain with Alzheimer's disease (AD)-related plasma biomarkers and hippocampal volume as moderated by systemic inflammation. METHODS Participants were men without dementia. Chronic pain was defined as moderate-to-severe pain in 2+ study waves at average ages 56, 62, and 68. At age 68, we measured plasma amyloid-beta (Aβ42, n = 871), Aβ40 (n = 887), total tau (t-tau, n = 841), and neurofilament light chain (NfL, n = 915), and serum high-sensitivity C-reactive protein (hs-CRP, n = 968), a marker of systemic inflammation. A subgroup underwent structural MRI to measure hippocampal volume (n = 385). Analyses adjusted for medical morbidities, depressive symptoms, and opioid use. RESULTS Chronic pain was related to higher Aβ40 (β = 0.25, p = .009), but hs-CRP was unrelated to AD-related biomarkers (ps > .05). There was a significant interaction such that older men with both chronic pain and higher levels of hs-CRP had higher levels of Aβ42 (β = 0.36, p = .001) and Aβ40 (β = 0.29, p = .003). Chronic pain and hs-CRP did not interact to predict levels of Aβ42/Aβ40, t-tau, or NfL. Furthermore, there were significant interactions such that Aβ42 and Aβ40 were associated with lower hippocampal volume, particularly when levels of hs-CRP were elevated (hs-CRP × Aβ42: β = -0.19, p = .002; hs-CRP × Aβ40: β = -0.21, p = .001), regardless of chronic pain status. CONCLUSIONS Chronic pain was associated with higher plasma Aβ, especially when hs-CRP was also elevated. Higher hs-CRP and Aβ levels were both related to smaller hippocampal volumes. Chronic pain, when accompanied by systemic inflammation, may elevate the risk of neurodegeneration in AD-vulnerable regions.
Collapse
Affiliation(s)
- Tyler R Bell
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Kelsey R Thomas
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - McKenna E Williams
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Stephen M Dorros
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Donald J Hagler
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, Massachusetts, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Rahimzadeh N, Srinivasan SS, Zhang J, Swarup V. Gene networks and systems biology in Alzheimer's disease: Insights from multi-omics approaches. Alzheimers Dement 2024; 20:3587-3605. [PMID: 38534018 PMCID: PMC11095483 DOI: 10.1002/alz.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Despite numerous studies in the field of dementia and Alzheimer's disease (AD), a comprehensive understanding of this devastating disease remains elusive. Bulk transcriptomics have provided insights into the underlying genetic factors at a high level. Subsequent technological advancements have focused on single-cell omics, encompassing techniques such as single-cell RNA sequencing and epigenomics, enabling the capture of RNA transcripts and chromatin states at a single cell or nucleus resolution. Furthermore, the emergence of spatial omics has allowed the study of gene responses in the vicinity of amyloid beta plaques or across various brain regions. With the vast amount of data generated, utilizing gene regulatory networks to comprehensively study this disease has become essential. This review delves into some techniques employed in the field of AD, explores the discoveries made using these techniques, and provides insights into the future of the field.
Collapse
Affiliation(s)
- Negin Rahimzadeh
- Mathematical, Computational, and Systems Biology (MCSB) ProgramUniversity of California IrvineIrvineCaliforniaUSA
| | - Shushrruth Sai Srinivasan
- Mathematical, Computational, and Systems Biology (MCSB) ProgramUniversity of California IrvineIrvineCaliforniaUSA
| | - Jing Zhang
- Department of Computer ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Vivek Swarup
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders (MIND)University of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
4
|
Scholz R, Brösamle D, Yuan X, Beyer M, Neher JJ. Epigenetic control of microglial immune responses. Immunol Rev 2024; 323:209-226. [PMID: 38491845 DOI: 10.1111/imr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Microglia, the major population of brain-resident macrophages, are now recognized as a heterogeneous population comprising several cell subtypes with different (so far mostly supposed) functions in health and disease. A number of studies have performed molecular characterization of these different microglial activation states over the last years making use of "omics" technologies, that is transcriptomics, proteomics and, less frequently, epigenomics profiling. These approaches offer the possibility to identify disease mechanisms, discover novel diagnostic biomarkers, and develop new therapeutic strategies. Here, we focus on epigenetic profiling as a means to understand microglial immune responses beyond what other omics methods can offer, that is, revealing past and present molecular responses, gene regulatory networks and potential future response trajectories, and defining cell subtype-specific disease relevance through mapping non-coding genetic variants. We review the current knowledge in the field regarding epigenetic regulation of microglial identity and function, provide an exemplary analysis that demonstrates the advantages of performing joint transcriptomic and epigenomic profiling of single microglial cells and discuss how comprehensive epigenetic analyses may enhance our understanding of microglial pathophysiology.
Collapse
Affiliation(s)
- Rebekka Scholz
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Desirée Brösamle
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xidi Yuan
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|